586 lines
30 KiB
C++
586 lines
30 KiB
C++
/*******************************************************************************
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015 David Williams and Matthew Williams
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*******************************************************************************/
|
|
|
|
#include "Impl/Timer.h"
|
|
|
|
namespace PolyVox
|
|
{
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Vertex encoding/decoding
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
inline Vector3DFloat decodePosition(const Vector3DUint16& encodedPosition)
|
|
{
|
|
Vector3DFloat result(encodedPosition.getX(), encodedPosition.getY(), encodedPosition.getZ());
|
|
result *= (1.0f / 256.0f); // Division is compile-time constant
|
|
return result;
|
|
}
|
|
|
|
inline uint16_t encodeNormal(const Vector3DFloat& normal)
|
|
{
|
|
// The first part of this function is based off the code in Listing 1 of http://jcgt.org/published/0003/02/01/
|
|
// It was rewritten in C++ and is restructued for the CPU rather than the GPU.
|
|
|
|
// Get the input components
|
|
float vx = normal.getX();
|
|
float vy = normal.getY();
|
|
float vz = normal.getZ();
|
|
|
|
// Project the sphere onto the octahedron, and then onto the xy plane
|
|
float px = vx * (1.0f / (std::abs(vx) + std::abs(vy) + std::abs(vz)));
|
|
float py = vy * (1.0f / (std::abs(vx) + std::abs(vy) + std::abs(vz)));
|
|
|
|
// Reflect the folds of the lower hemisphere over the diagonals.
|
|
if (vz <= 0.0f)
|
|
{
|
|
float refx = ((1.0f - std::abs(py)) * (px >= 0.0f ? +1.0f : -1.0f));
|
|
float refy = ((1.0f - std::abs(px)) * (py >= 0.0f ? +1.0f : -1.0f));
|
|
px = refx;
|
|
py = refy;
|
|
}
|
|
|
|
// The next part was not given in the paper. We map our two
|
|
// floats into two bytes and store them in a single uint16_t
|
|
|
|
// Move from range [-1.0f, 1.0f] to [0.0f, 255.0f]
|
|
px = (px + 1.0f) * 127.5f;
|
|
py = (py + 1.0f) * 127.5f;
|
|
|
|
// Convert to uints
|
|
uint16_t resultX = static_cast<uint16_t>(px + 0.5f);
|
|
uint16_t resultY = static_cast<uint16_t>(py + 0.5f);
|
|
|
|
// Make sure only the lower bits are set. Probably
|
|
// not necessary but we're just being careful really.
|
|
resultX &= 0xFF;
|
|
resultY &= 0xFF;
|
|
|
|
// Contatenate the bytes and return the result.
|
|
return (resultX << 8) | resultY;
|
|
}
|
|
|
|
inline Vector3DFloat decodeNormal(const uint16_t& encodedNormal)
|
|
{
|
|
// Extract the two bytes from the uint16_t.
|
|
uint16_t ux = (encodedNormal >> 8) & 0xFF;
|
|
uint16_t uy = (encodedNormal)& 0xFF;
|
|
|
|
// Convert to floats in the range [-1.0f, +1.0f].
|
|
float ex = ux / 127.5f - 1.0f;
|
|
float ey = uy / 127.5f - 1.0f;
|
|
|
|
// Reconstruct the origninal vector. This is a C++ implementation
|
|
// of Listing 2 of http://jcgt.org/published/0003/02/01/
|
|
float vx = ex;
|
|
float vy = ey;
|
|
float vz = 1.0f - std::abs(ex) - std::abs(ey);
|
|
|
|
if (vz < 0.0f)
|
|
{
|
|
float refX = ((1.0f - std::abs(vy)) * (vx >= 0.0f ? +1.0f : -1.0f));
|
|
float refY = ((1.0f - std::abs(vx)) * (vy >= 0.0f ? +1.0f : -1.0f));
|
|
vx = refX;
|
|
vy = refY;
|
|
}
|
|
|
|
// Normalise and return the result.
|
|
Vector3DFloat v(vx, vy, vz);
|
|
v.normalise();
|
|
return v;
|
|
}
|
|
|
|
template<typename DataType>
|
|
Vertex<DataType> decodeVertex(const MarchingCubesVertex<DataType>& marchingCubesVertex)
|
|
{
|
|
Vertex<DataType> result;
|
|
result.position = decodePosition(marchingCubesVertex.encodedPosition);
|
|
result.normal = decodeNormal(marchingCubesVertex.encodedNormal);
|
|
result.data = marchingCubesVertex.data; // Data is not encoded
|
|
return result;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Gradient estimation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template< typename Sampler, typename ControllerType>
|
|
Vector3DFloat computeCentralDifferenceGradient(const Sampler& volIter, ControllerType& controller)
|
|
{
|
|
//FIXME - Should actually use DensityType here, both in principle and because the maths may be
|
|
//faster (and to reduce casts). So it would be good to add a way to get DensityType from a voxel.
|
|
//But watch out for when the DensityType is unsigned and the difference could be negative.
|
|
float voxel1nx = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx0py0pz()));
|
|
float voxel1px = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px0py0pz()));
|
|
|
|
float voxel1ny = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1ny0pz()));
|
|
float voxel1py = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1py0pz()));
|
|
|
|
float voxel1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px0py1nz()));
|
|
float voxel1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px0py1pz()));
|
|
|
|
return Vector3DFloat
|
|
(
|
|
voxel1nx - voxel1px,
|
|
voxel1ny - voxel1py,
|
|
voxel1nz - voxel1pz
|
|
);
|
|
}
|
|
|
|
// This 'sobel' version of gradient estimation provides better (smoother) normals than the central difference version.
|
|
// Even with the 16-bit normal encoding it does seem to make a difference, so is probably worth keeping. However, there
|
|
// is no way to call it at the moment beyond modifying the main Marching Cubes function below to call this function
|
|
// instead of the central difference one. We should provide a way to control the normal generation method, perhaps
|
|
// including *no* normals incase the user wants to generate them afterwards (e.g. from the mesh).
|
|
template< typename Sampler, typename ControllerType>
|
|
Vector3DFloat computeSobelGradient(const Sampler& volIter, ControllerType& controller)
|
|
{
|
|
static const int weights[3][3][3] = { { { 2, 3, 2 }, { 3, 6, 3 }, { 2, 3, 2 } }, {
|
|
{ 3, 6, 3 }, { 6, 0, 6 }, { 3, 6, 3 } }, { { 2, 3, 2 }, { 3, 6, 3 }, { 2, 3, 2 } } };
|
|
|
|
//FIXME - Should actually use DensityType here, both in principle and because the maths may be
|
|
//faster (and to reduce casts). So it would be good to add a way to get DensityType from a voxel.
|
|
//But watch out for when the DensityType is unsigned and the difference could be negative.
|
|
const float pVoxel1nx1ny1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx1ny1nz()));
|
|
const float pVoxel1nx1ny0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx1ny0pz()));
|
|
const float pVoxel1nx1ny1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx1ny1pz()));
|
|
const float pVoxel1nx0py1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx0py1nz()));
|
|
const float pVoxel1nx0py0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx0py0pz()));
|
|
const float pVoxel1nx0py1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx0py1pz()));
|
|
const float pVoxel1nx1py1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx1py1nz()));
|
|
const float pVoxel1nx1py0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx1py0pz()));
|
|
const float pVoxel1nx1py1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx1py1pz()));
|
|
|
|
const float pVoxel0px1ny1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1ny1nz()));
|
|
const float pVoxel0px1ny0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1ny0pz()));
|
|
const float pVoxel0px1ny1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1ny1pz()));
|
|
const float pVoxel0px0py1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px0py1nz()));
|
|
//const float pVoxel0px0py0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px0py0pz()));
|
|
const float pVoxel0px0py1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px0py1pz()));
|
|
const float pVoxel0px1py1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1py1nz()));
|
|
const float pVoxel0px1py0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1py0pz()));
|
|
const float pVoxel0px1py1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1py1pz()));
|
|
|
|
const float pVoxel1px1ny1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px1ny1nz()));
|
|
const float pVoxel1px1ny0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px1ny0pz()));
|
|
const float pVoxel1px1ny1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px1ny1pz()));
|
|
const float pVoxel1px0py1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px0py1nz()));
|
|
const float pVoxel1px0py0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px0py0pz()));
|
|
const float pVoxel1px0py1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px0py1pz()));
|
|
const float pVoxel1px1py1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px1py1nz()));
|
|
const float pVoxel1px1py0pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px1py0pz()));
|
|
const float pVoxel1px1py1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px1py1pz()));
|
|
|
|
const float xGrad(-weights[0][0][0] * pVoxel1nx1ny1nz -
|
|
weights[1][0][0] * pVoxel1nx1ny0pz - weights[2][0][0] *
|
|
pVoxel1nx1ny1pz - weights[0][1][0] * pVoxel1nx0py1nz -
|
|
weights[1][1][0] * pVoxel1nx0py0pz - weights[2][1][0] *
|
|
pVoxel1nx0py1pz - weights[0][2][0] * pVoxel1nx1py1nz -
|
|
weights[1][2][0] * pVoxel1nx1py0pz - weights[2][2][0] *
|
|
pVoxel1nx1py1pz + weights[0][0][2] * pVoxel1px1ny1nz +
|
|
weights[1][0][2] * pVoxel1px1ny0pz + weights[2][0][2] *
|
|
pVoxel1px1ny1pz + weights[0][1][2] * pVoxel1px0py1nz +
|
|
weights[1][1][2] * pVoxel1px0py0pz + weights[2][1][2] *
|
|
pVoxel1px0py1pz + weights[0][2][2] * pVoxel1px1py1nz +
|
|
weights[1][2][2] * pVoxel1px1py0pz + weights[2][2][2] *
|
|
pVoxel1px1py1pz);
|
|
|
|
const float yGrad(-weights[0][0][0] * pVoxel1nx1ny1nz -
|
|
weights[1][0][0] * pVoxel1nx1ny0pz - weights[2][0][0] *
|
|
pVoxel1nx1ny1pz + weights[0][2][0] * pVoxel1nx1py1nz +
|
|
weights[1][2][0] * pVoxel1nx1py0pz + weights[2][2][0] *
|
|
pVoxel1nx1py1pz - weights[0][0][1] * pVoxel0px1ny1nz -
|
|
weights[1][0][1] * pVoxel0px1ny0pz - weights[2][0][1] *
|
|
pVoxel0px1ny1pz + weights[0][2][1] * pVoxel0px1py1nz +
|
|
weights[1][2][1] * pVoxel0px1py0pz + weights[2][2][1] *
|
|
pVoxel0px1py1pz - weights[0][0][2] * pVoxel1px1ny1nz -
|
|
weights[1][0][2] * pVoxel1px1ny0pz - weights[2][0][2] *
|
|
pVoxel1px1ny1pz + weights[0][2][2] * pVoxel1px1py1nz +
|
|
weights[1][2][2] * pVoxel1px1py0pz + weights[2][2][2] *
|
|
pVoxel1px1py1pz);
|
|
|
|
const float zGrad(-weights[0][0][0] * pVoxel1nx1ny1nz +
|
|
weights[2][0][0] * pVoxel1nx1ny1pz - weights[0][1][0] *
|
|
pVoxel1nx0py1nz + weights[2][1][0] * pVoxel1nx0py1pz -
|
|
weights[0][2][0] * pVoxel1nx1py1nz + weights[2][2][0] *
|
|
pVoxel1nx1py1pz - weights[0][0][1] * pVoxel0px1ny1nz +
|
|
weights[2][0][1] * pVoxel0px1ny1pz - weights[0][1][1] *
|
|
pVoxel0px0py1nz + weights[2][1][1] * pVoxel0px0py1pz -
|
|
weights[0][2][1] * pVoxel0px1py1nz + weights[2][2][1] *
|
|
pVoxel0px1py1pz - weights[0][0][2] * pVoxel1px1ny1nz +
|
|
weights[2][0][2] * pVoxel1px1ny1pz - weights[0][1][2] *
|
|
pVoxel1px0py1nz + weights[2][1][2] * pVoxel1px0py1pz -
|
|
weights[0][2][2] * pVoxel1px1py1nz + weights[2][2][2] *
|
|
pVoxel1px1py1pz);
|
|
|
|
//Note: The above actually give gradients going from low density to high density.
|
|
//For our normals we want the the other way around, so we switch the components as we return them.
|
|
return Vector3DFloat(-xGrad, -yGrad, -zGrad);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Surface extraction
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// This is probably the version of Marching Cubes extraction which you will want to use initially, at least
|
|
// until you determine you have a need for the extra functionality provied by extractMarchingCubesMeshCustom().
|
|
template< typename VolumeType, typename ControllerType >
|
|
Mesh<MarchingCubesVertex<typename VolumeType::VoxelType> > extractMarchingCubesMesh(VolumeType* volData, Region region, ControllerType controller)
|
|
{
|
|
Mesh<MarchingCubesVertex<typename VolumeType::VoxelType> > result;
|
|
extractMarchingCubesMeshCustom<VolumeType, Mesh<MarchingCubesVertex<typename VolumeType::VoxelType>, DefaultIndexType > >(volData, region, &result, controller);
|
|
return result;
|
|
}
|
|
|
|
// This version of the function performs the extraction into a user-provided mesh rather than allocating a mesh automatically.
|
|
// There are a few reasons why this might be useful to more advanced users:
|
|
//
|
|
// 1. It leaves the user in control of memory allocation and would allow them to implement e.g. a mesh pooling system.
|
|
// 2. The user-provided mesh could have a different index type (e.g. 16-bit indices) to reduce memory usage.
|
|
// 3. The user could provide a custom mesh class, e.g a thin wrapper around an OpenGL VBO to allow direct writing into this structure.
|
|
//
|
|
// We don't provide a default MeshType here. If the user doesn't want to provide a MeshType then it probably makes
|
|
// more sense to use the other variant of this function where the mesh is a return value rather than a parameter.
|
|
//
|
|
// Note: This function is called 'extractMarchingCubesMeshCustom' rather than 'extractMarchingCubesMesh' to avoid ambiguity when only three parameters
|
|
// are provided (would the third parameter be a controller or a mesh?). It seems this can be fixed by using enable_if/static_assert to emulate concepts,
|
|
// but this is relatively complex and I haven't done it yet. Could always add it later as another overload.
|
|
template< typename VolumeType, typename MeshType, typename ControllerType >
|
|
void extractMarchingCubesMeshCustom(VolumeType* volData, Region region, MeshType* result, ControllerType controller)
|
|
{
|
|
// Validate parameters
|
|
POLYVOX_THROW_IF(volData == nullptr, std::invalid_argument, "Provided volume cannot be null");
|
|
POLYVOX_THROW_IF(result == nullptr, std::invalid_argument, "Provided mesh cannot be null");
|
|
|
|
// For profiling this function
|
|
Timer timer;
|
|
|
|
// Performance note: Profiling indicates that simply adding vertices and indices to the std::vector is one
|
|
// of the bottlenecks when generating the mesh. Reserving space in advance helps here but is wasteful in the
|
|
// common case that no/few vertices are generated. Maybe it's worth reserving a couple of thousand or so?
|
|
// Alternatively, maybe the docs should suggest the user reserves some space in the mesh they pass in?
|
|
result->clear();
|
|
|
|
// Store some commonly used values for performance and convienience
|
|
const uint32_t uRegionWidthInVoxels = region.getWidthInVoxels();
|
|
const uint32_t uRegionHeightInVoxels = region.getHeightInVoxels();
|
|
const uint32_t uRegionDepthInVoxels = region.getDepthInVoxels();
|
|
|
|
typename ControllerType::DensityType tThreshold = controller.getThreshold();
|
|
|
|
// A naive implemetation of Marching Cubes might sample the eight corner voxels of every cell to determine the cell index.
|
|
// However, when processing the cells sequentially we cn observe that many of the voxels are shared with previous adjacent
|
|
// cells, and so we can obtain these by careful bit-shifting. These variables keep track of previous cells for this purpose.
|
|
// We don't clear the arrays because the algorithm ensures that we only read from elements we have previously written to.
|
|
uint8_t uPreviousCellIndex = 0;
|
|
Array1DUint8 pPreviousRowCellIndices(uRegionWidthInVoxels);
|
|
Array2DUint8 pPreviousSliceCellIndices(uRegionWidthInVoxels, uRegionHeightInVoxels);
|
|
|
|
// A given vertex may be shared by multiple triangles, so we need to keep track of the indices into the vertex array.
|
|
// We don't clear the arrays because the algorithm ensures that we only read from elements we have previously written to.
|
|
Array<2, Vector3DInt32> pIndices(uRegionWidthInVoxels, uRegionHeightInVoxels);
|
|
Array<2, Vector3DInt32> pPreviousIndices(uRegionWidthInVoxels, uRegionHeightInVoxels);
|
|
|
|
// A sampler pointing at the beginning of the region, which gets incremented to always point at the beginning of a slice.
|
|
typename VolumeType::Sampler startOfSlice(volData);
|
|
startOfSlice.setPosition(region.getLowerX(), region.getLowerY(), region.getLowerZ());
|
|
|
|
for (uint32_t uZRegSpace = 0; uZRegSpace < uRegionDepthInVoxels; uZRegSpace++)
|
|
{
|
|
// A sampler pointing at the beginning of the slice, which gets incremented to always point at the beginning of a row.
|
|
typename VolumeType::Sampler startOfRow = startOfSlice;
|
|
|
|
for (uint32_t uYRegSpace = 0; uYRegSpace < uRegionHeightInVoxels; uYRegSpace++)
|
|
{
|
|
// Copying a sampler which is already pointing at the correct location seems (slightly) faster than
|
|
// calling setPosition(). Therefore we make use of 'startOfRow' and 'startOfSlice' to reset the sampler.
|
|
typename VolumeType::Sampler sampler = startOfRow;
|
|
|
|
for (uint32_t uXRegSpace = 0; uXRegSpace < uRegionWidthInVoxels; uXRegSpace++)
|
|
{
|
|
// Note: In many cases the provided region will be (mostly) empty which means mesh vertices/indices
|
|
// are not generated and the only thing that is done for each cell is the computation of uCellIndex.
|
|
// It appears that retriving the voxel value is not so expensive and that it is the bitwise combining
|
|
// which actually carries the cost.
|
|
//
|
|
// If we really need to speed this up more then it may be possible to pack 4 8-bit cell indices into
|
|
// a single 32-bit value and then perform the bitwise logic on all four of them at the same time.
|
|
// However, this complicates the code and there would still be the cost of packing/unpacking so it's
|
|
// not clear if there is really a benefit. It's something to consider in the future.
|
|
|
|
// Each bit of the cell index specifies whether a given corner of the cell is above or below the threshold.
|
|
uint8_t uCellIndex = 0;
|
|
|
|
// Four bits of our cube index are obtained by looking at the cube index for
|
|
// the previous slice and copying four of those bits into their new positions.
|
|
uint8_t uPreviousCellIndexZ = pPreviousSliceCellIndices(uXRegSpace, uYRegSpace);
|
|
uPreviousCellIndexZ >>= 4;
|
|
uCellIndex |= uPreviousCellIndexZ;
|
|
|
|
// Two bits of our cube index are obtained by looking at the cube index for
|
|
// the previous row and copying two of those bits into their new positions.
|
|
uint8_t uPreviousCellIndexY = pPreviousRowCellIndices(uXRegSpace);
|
|
uPreviousCellIndexY &= 204; //204 = 128+64+8+4
|
|
uPreviousCellIndexY >>= 2;
|
|
uCellIndex |= uPreviousCellIndexY;
|
|
|
|
// One bit of our cube index are obtained by looking at the cube index for
|
|
// the previous cell and copying one of those bits into it's new position.
|
|
uint8_t UPreviousCellIndexX = uPreviousCellIndex;
|
|
UPreviousCellIndexX &= 170; //170 = 128+32+8+2
|
|
UPreviousCellIndexX >>= 1;
|
|
uCellIndex |= UPreviousCellIndexX;
|
|
|
|
// The last bit of our cube index is obtained by looking
|
|
// at the relevant voxel and comparing it to the threshold
|
|
typename VolumeType::VoxelType v111 = sampler.getVoxel();
|
|
if (controller.convertToDensity(v111) < tThreshold) uCellIndex |= 128;
|
|
|
|
// The current value becomes the previous value, ready for the next iteration.
|
|
uPreviousCellIndex = uCellIndex;
|
|
pPreviousRowCellIndices(uXRegSpace) = uCellIndex;
|
|
pPreviousSliceCellIndices(uXRegSpace, uYRegSpace) = uCellIndex;
|
|
|
|
// 12 bits of uEdge determine whether a vertex is placed on each of the 12 edges of the cell.
|
|
uint16_t uEdge = edgeTable[uCellIndex];
|
|
|
|
// Test whether any vertices and indices should be generated for the current cell (i.e. it is occupied).
|
|
// Performance note: This condition is usually false because most cells in a volume are completely above
|
|
// or below the threshold and hence unoccupied. However, even when it is always false (testing on an empty
|
|
// volume) it still incurs significant overhead, probably because the code is large and bloats the for loop
|
|
// which contains it. On my empty volume test case the code as given runs in 34ms, but if I replace the
|
|
// condition with 'false' it runs in 24ms and gives the same output (i.e. none).
|
|
//
|
|
// An improvement is to move the code into a seperate function which does speed things up (30ms), but this
|
|
// is messy as the function needs to be passed about 10 differnt parameters, probably adding some overhead
|
|
// in its self. This does indeed seem to slow down the case when cells are occupied, by about 10-20%.
|
|
//
|
|
// Overall I don't know the right solution, but I'm leaving the code as-is to avoid making it messy. If we
|
|
// can reduce the number of parameters which need to be passed then it might be worth moving it into a
|
|
// function, or otherwise it may simply be worth trying to shorten the code (e.g. adding other function
|
|
// calls). For now we will leave it as-is, until we have more information from real-world profiling.
|
|
if (uEdge != 0)
|
|
{
|
|
auto v111Density = controller.convertToDensity(v111);
|
|
|
|
// Performance note: Computing normals is one of the bottlencks in the mesh generation process. The
|
|
// central difference approach actually samples the same voxel more than once as we call it on two
|
|
// adjacent voxels. Perhaps we could expand this and eliminate dupicates in the future. Alternatively,
|
|
// we could compute vertex normals from adjacent face normals instead of via central differencing,
|
|
// but not for vertices on the edge of the region (as this causes visual discontinities).
|
|
const Vector3DFloat n111 = computeCentralDifferenceGradient(sampler, controller);
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if ((uEdge & 64) && (uXRegSpace > 0))
|
|
{
|
|
sampler.moveNegativeX();
|
|
typename VolumeType::VoxelType v011 = sampler.getVoxel();
|
|
auto v011Density = controller.convertToDensity(v011);
|
|
const float fInterp = static_cast<float>(tThreshold - v011Density) / static_cast<float>(v111Density - v011Density);
|
|
|
|
// Compute the position
|
|
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
|
|
|
|
// Compute the normal
|
|
const Vector3DFloat n011 = computeCentralDifferenceGradient(sampler, controller);
|
|
Vector3DFloat v3dNormal = (n111*fInterp) + (n011*(1 - fInterp));
|
|
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v011, v111, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
|
pIndices(uXRegSpace, uYRegSpace).setX(uLastVertexIndex);
|
|
|
|
sampler.movePositiveX();
|
|
}
|
|
if ((uEdge & 32) && (uYRegSpace > 0))
|
|
{
|
|
sampler.moveNegativeY();
|
|
typename VolumeType::VoxelType v101 = sampler.getVoxel();
|
|
auto v101Density = controller.convertToDensity(v101);
|
|
const float fInterp = static_cast<float>(tThreshold - v101Density) / static_cast<float>(v111Density - v101Density);
|
|
|
|
// Compute the position
|
|
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
|
|
|
|
// Compute the normal
|
|
const Vector3DFloat n101 = computeCentralDifferenceGradient(sampler, controller);
|
|
Vector3DFloat v3dNormal = (n111*fInterp) + (n101*(1 - fInterp));
|
|
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v101, v111, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
|
pIndices(uXRegSpace, uYRegSpace).setY(uLastVertexIndex);
|
|
|
|
sampler.movePositiveY();
|
|
}
|
|
if ((uEdge & 1024) && (uZRegSpace > 0))
|
|
{
|
|
sampler.moveNegativeZ();
|
|
typename VolumeType::VoxelType v110 = sampler.getVoxel();
|
|
auto v110Density = controller.convertToDensity(v110);
|
|
const float fInterp = static_cast<float>(tThreshold - v110Density) / static_cast<float>(v111Density - v110Density);
|
|
|
|
// Compute the position
|
|
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
|
|
|
|
// Compute the normal
|
|
const Vector3DFloat n110 = computeCentralDifferenceGradient(sampler, controller);
|
|
Vector3DFloat v3dNormal = (n111*fInterp) + (n110*(1 - fInterp));
|
|
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v110, v111, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
|
pIndices(uXRegSpace, uYRegSpace).setZ(uLastVertexIndex);
|
|
|
|
sampler.movePositiveZ();
|
|
}
|
|
|
|
// Now output the indices. For the first row, column or slice there aren't
|
|
// any (the region size in cells is one less than the region size in voxels)
|
|
if ((uXRegSpace != 0) && (uYRegSpace != 0) && (uZRegSpace != 0))
|
|
{
|
|
|
|
int32_t indlist[12];
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (uEdge & 1)
|
|
{
|
|
indlist[0] = pPreviousIndices(uXRegSpace, uYRegSpace - 1).getX();
|
|
}
|
|
if (uEdge & 2)
|
|
{
|
|
indlist[1] = pPreviousIndices(uXRegSpace, uYRegSpace).getY();
|
|
}
|
|
if (uEdge & 4)
|
|
{
|
|
indlist[2] = pPreviousIndices(uXRegSpace, uYRegSpace).getX();
|
|
}
|
|
if (uEdge & 8)
|
|
{
|
|
indlist[3] = pPreviousIndices(uXRegSpace - 1, uYRegSpace).getY();
|
|
}
|
|
if (uEdge & 16)
|
|
{
|
|
indlist[4] = pIndices(uXRegSpace, uYRegSpace - 1).getX();
|
|
}
|
|
if (uEdge & 32)
|
|
{
|
|
indlist[5] = pIndices(uXRegSpace, uYRegSpace).getY();
|
|
}
|
|
if (uEdge & 64)
|
|
{
|
|
indlist[6] = pIndices(uXRegSpace, uYRegSpace).getX();
|
|
}
|
|
if (uEdge & 128)
|
|
{
|
|
indlist[7] = pIndices(uXRegSpace - 1, uYRegSpace).getY();
|
|
}
|
|
if (uEdge & 256)
|
|
{
|
|
indlist[8] = pIndices(uXRegSpace - 1, uYRegSpace - 1).getZ();
|
|
}
|
|
if (uEdge & 512)
|
|
{
|
|
indlist[9] = pIndices(uXRegSpace, uYRegSpace - 1).getZ();
|
|
}
|
|
if (uEdge & 1024)
|
|
{
|
|
indlist[10] = pIndices(uXRegSpace, uYRegSpace).getZ();
|
|
}
|
|
if (uEdge & 2048)
|
|
{
|
|
indlist[11] = pIndices(uXRegSpace - 1, uYRegSpace).getZ();
|
|
}
|
|
|
|
for (int i = 0; triTable[uCellIndex][i] != -1; i += 3)
|
|
{
|
|
const int32_t ind0 = indlist[triTable[uCellIndex][i]];
|
|
const int32_t ind1 = indlist[triTable[uCellIndex][i + 1]];
|
|
const int32_t ind2 = indlist[triTable[uCellIndex][i + 2]];
|
|
|
|
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
|
|
{
|
|
result->addTriangle(ind0, ind1, ind2);
|
|
}
|
|
} // For each triangle
|
|
}
|
|
} // For each cell
|
|
sampler.movePositiveX();
|
|
} // For X
|
|
startOfRow.movePositiveY();
|
|
} // For Y
|
|
startOfSlice.movePositiveZ();
|
|
|
|
pIndices.swap(pPreviousIndices);
|
|
} // For Z
|
|
|
|
result->setOffset(region.getLowerCorner());
|
|
|
|
POLYVOX_LOG_TRACE("Marching cubes surface extraction took ", timer.elapsedTimeInMilliSeconds(),
|
|
"ms (Region size = ", region.getWidthInVoxels(), "x", region.getHeightInVoxels(),
|
|
"x", region.getDepthInVoxels(), ")");
|
|
}
|
|
}
|