638 lines
26 KiB
C++
638 lines
26 KiB
C++
/*******************************************************************************
|
|
Copyright (c) 2005-2009 David Williams
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
*******************************************************************************/
|
|
|
|
#include "PolyVox/Impl/Timer.h"
|
|
|
|
namespace PolyVox
|
|
{
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::MarchingCubesSurfaceExtractor(VolumeType* volData, Region region, MeshType* result, ControllerType controller, WrapMode eWrapMode, typename VolumeType::VoxelType tBorderValue)
|
|
:m_volData(volData)
|
|
,m_sampVolume(volData)
|
|
,m_meshCurrent(result)
|
|
,m_regSizeInVoxels(region)
|
|
,m_controller(controller)
|
|
,m_tThreshold(m_controller.getThreshold())
|
|
{
|
|
POLYVOX_THROW_IF(m_meshCurrent == nullptr, std::invalid_argument, "Provided mesh cannot be null");
|
|
//m_regSizeInVoxels.cropTo(m_volData->getEnclosingRegion());
|
|
m_regSizeInCells = m_regSizeInVoxels;
|
|
m_regSizeInCells.setUpperCorner(m_regSizeInCells.getUpperCorner() - Vector3DInt32(1,1,1));
|
|
|
|
m_sampVolume.setWrapMode(eWrapMode, tBorderValue);
|
|
}
|
|
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::execute()
|
|
{
|
|
Timer timer;
|
|
m_meshCurrent->clear();
|
|
|
|
const uint32_t uArrayWidth = m_regSizeInVoxels.getUpperX() - m_regSizeInVoxels.getLowerX() + 1;
|
|
const uint32_t uArrayHeight = m_regSizeInVoxels.getUpperY() - m_regSizeInVoxels.getLowerY() + 1;
|
|
|
|
//For edge indices
|
|
Array2DInt32 m_pPreviousVertexIndicesX(uArrayWidth, uArrayHeight);
|
|
Array2DInt32 m_pPreviousVertexIndicesY(uArrayWidth, uArrayHeight);
|
|
Array2DInt32 m_pPreviousVertexIndicesZ(uArrayWidth, uArrayHeight);
|
|
Array2DInt32 m_pCurrentVertexIndicesX(uArrayWidth, uArrayHeight);
|
|
Array2DInt32 m_pCurrentVertexIndicesY(uArrayWidth, uArrayHeight);
|
|
Array2DInt32 m_pCurrentVertexIndicesZ(uArrayWidth, uArrayHeight);
|
|
|
|
Array2DUint8 pPreviousBitmask(uArrayWidth, uArrayHeight);
|
|
Array2DUint8 pCurrentBitmask(uArrayWidth, uArrayHeight);
|
|
|
|
//Create a region corresponding to the first slice
|
|
m_regSlicePrevious = m_regSizeInVoxels;
|
|
Vector3DInt32 v3dUpperCorner = m_regSlicePrevious.getUpperCorner();
|
|
v3dUpperCorner.setZ(m_regSlicePrevious.getLowerZ()); //Set the upper z to the lower z to make it one slice thick.
|
|
m_regSlicePrevious.setUpperCorner(v3dUpperCorner);
|
|
m_regSliceCurrent = m_regSlicePrevious;
|
|
|
|
uint32_t uNoOfNonEmptyCellsForSlice0 = 0;
|
|
uint32_t uNoOfNonEmptyCellsForSlice1 = 0;
|
|
|
|
//Process the first slice (previous slice not available)
|
|
computeBitmaskForSlice<false>(pPreviousBitmask, pCurrentBitmask);
|
|
uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells;
|
|
|
|
if(uNoOfNonEmptyCellsForSlice1 != 0)
|
|
{
|
|
memset(m_pCurrentVertexIndicesX.getRawData(), 0xff, m_pCurrentVertexIndicesX.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesY.getRawData(), 0xff, m_pCurrentVertexIndicesY.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesZ.getRawData(), 0xff, m_pCurrentVertexIndicesZ.getNoOfElements() * 4);
|
|
generateVerticesForSlice(pCurrentBitmask, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY, m_pCurrentVertexIndicesZ);
|
|
}
|
|
|
|
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
|
|
pPreviousBitmask.swap(pCurrentBitmask);
|
|
m_pPreviousVertexIndicesX.swap(m_pCurrentVertexIndicesX);
|
|
m_pPreviousVertexIndicesY.swap(m_pCurrentVertexIndicesY);
|
|
m_pPreviousVertexIndicesZ.swap(m_pCurrentVertexIndicesZ);
|
|
|
|
m_regSlicePrevious = m_regSliceCurrent;
|
|
m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
|
|
|
|
//Process the other slices (previous slice is available)
|
|
for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ(); uSlice++)
|
|
{
|
|
computeBitmaskForSlice<true>(pPreviousBitmask, pCurrentBitmask);
|
|
uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells;
|
|
|
|
if(uNoOfNonEmptyCellsForSlice1 != 0)
|
|
{
|
|
memset(m_pCurrentVertexIndicesX.getRawData(), 0xff, m_pCurrentVertexIndicesX.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesY.getRawData(), 0xff, m_pCurrentVertexIndicesY.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesZ.getRawData(), 0xff, m_pCurrentVertexIndicesZ.getNoOfElements() * 4);
|
|
generateVerticesForSlice(pCurrentBitmask, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY, m_pCurrentVertexIndicesZ);
|
|
}
|
|
|
|
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
|
|
{
|
|
generateIndicesForSlice(pPreviousBitmask, m_pPreviousVertexIndicesX, m_pPreviousVertexIndicesY, m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY);
|
|
}
|
|
|
|
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
|
|
pPreviousBitmask.swap(pCurrentBitmask);
|
|
m_pPreviousVertexIndicesX.swap(m_pCurrentVertexIndicesX);
|
|
m_pPreviousVertexIndicesY.swap(m_pCurrentVertexIndicesY);
|
|
m_pPreviousVertexIndicesZ.swap(m_pCurrentVertexIndicesZ);
|
|
|
|
m_regSlicePrevious = m_regSliceCurrent;
|
|
m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
|
|
}
|
|
|
|
m_meshCurrent->setOffset(m_regSizeInVoxels.getLowerCorner());
|
|
|
|
POLYVOX_LOG_TRACE("Marching cubes surface extraction took " << timer.elapsedTimeInMilliSeconds()
|
|
<< "ms (Region size = " << m_regSizeInVoxels.getWidthInVoxels() << "x" << m_regSizeInVoxels.getHeightInVoxels()
|
|
<< "x" << m_regSizeInVoxels.getDepthInVoxels() << ")");
|
|
}
|
|
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
template<bool isPrevZAvail>
|
|
uint32_t MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::computeBitmaskForSlice(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask)
|
|
{
|
|
m_uNoOfOccupiedCells = 0;
|
|
|
|
const int32_t iMaxXVolSpace = m_regSliceCurrent.getUpperX();
|
|
const int32_t iMaxYVolSpace = m_regSliceCurrent.getUpperY();
|
|
|
|
const int32_t iZVolSpace = m_regSliceCurrent.getLowerZ();
|
|
|
|
//Process the lower left corner
|
|
int32_t iYVolSpace = m_regSliceCurrent.getLowerY();
|
|
int32_t iXVolSpace = m_regSliceCurrent.getLowerX();
|
|
|
|
uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
|
uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
|
|
|
|
|
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
|
computeBitmaskForCell<false, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
|
|
|
|
//Process the edge where x is minimal.
|
|
iXVolSpace = m_regSliceCurrent.getLowerX();
|
|
m_sampVolume.setPosition(iXVolSpace, m_regSliceCurrent.getLowerY(), iZVolSpace);
|
|
for(iYVolSpace = m_regSliceCurrent.getLowerY() + 1; iYVolSpace <= iMaxYVolSpace; iYVolSpace++)
|
|
{
|
|
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
|
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
|
|
|
m_sampVolume.movePositiveY();
|
|
|
|
computeBitmaskForCell<false, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
|
|
}
|
|
|
|
//Process the edge where y is minimal.
|
|
iYVolSpace = m_regSliceCurrent.getLowerY();
|
|
m_sampVolume.setPosition(m_regSliceCurrent.getLowerX(), iYVolSpace, iZVolSpace);
|
|
for(iXVolSpace = m_regSliceCurrent.getLowerX() + 1; iXVolSpace <= iMaxXVolSpace; iXVolSpace++)
|
|
{
|
|
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
|
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
|
|
|
m_sampVolume.movePositiveX();
|
|
|
|
computeBitmaskForCell<true, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
|
|
}
|
|
|
|
//Process all remaining elemnents of the slice. In this case, previous x and y values are always available
|
|
for(iYVolSpace = m_regSliceCurrent.getLowerY() + 1; iYVolSpace <= iMaxYVolSpace; iYVolSpace++)
|
|
{
|
|
m_sampVolume.setPosition(m_regSliceCurrent.getLowerX(), iYVolSpace, iZVolSpace);
|
|
for(iXVolSpace = m_regSliceCurrent.getLowerX() + 1; iXVolSpace <= iMaxXVolSpace; iXVolSpace++)
|
|
{
|
|
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
|
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
|
|
|
m_sampVolume.movePositiveX();
|
|
|
|
computeBitmaskForCell<true, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
|
|
}
|
|
}
|
|
|
|
return m_uNoOfOccupiedCells;
|
|
}
|
|
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail>
|
|
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::computeBitmaskForCell(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask, uint32_t uXRegSpace, uint32_t uYRegSpace)
|
|
{
|
|
uint8_t iCubeIndex = 0;
|
|
|
|
typename VolumeType::VoxelType v000;
|
|
typename VolumeType::VoxelType v100;
|
|
typename VolumeType::VoxelType v010;
|
|
typename VolumeType::VoxelType v110;
|
|
typename VolumeType::VoxelType v001;
|
|
typename VolumeType::VoxelType v101;
|
|
typename VolumeType::VoxelType v011;
|
|
typename VolumeType::VoxelType v111;
|
|
|
|
if(isPrevZAvail)
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask(uXRegSpace, uYRegSpace);
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask(uXRegSpace, uYRegSpace - 1);
|
|
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask(uXRegSpace - 1, uYRegSpace);
|
|
iPreviousCubeIndexX &= 128;
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask(uXRegSpace, uYRegSpace);
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask(uXRegSpace, uYRegSpace - 1);
|
|
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64;
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask(uXRegSpace, uYRegSpace);
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask(uXRegSpace - 1, uYRegSpace);
|
|
iPreviousCubeIndexX &= 160; //160 = 128+32
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
|
|
|
|
if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32;
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v001 = m_sampVolume.peekVoxel0px0py1pz();
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask(uXRegSpace, uYRegSpace);
|
|
iCubeIndex = iPreviousCubeIndexZ >> 4;
|
|
|
|
if (m_controller.convertToDensity(v001) < m_tThreshold) iCubeIndex |= 16;
|
|
if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32;
|
|
if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64;
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
else //previous Z not available
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask(uXRegSpace, uYRegSpace - 1);
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask(uXRegSpace - 1, uYRegSpace);
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
|
|
|
|
if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8;
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v010 = m_sampVolume.peekVoxel0px1py0pz();
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask(uXRegSpace, uYRegSpace - 1);
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY;
|
|
|
|
if (m_controller.convertToDensity(v010) < m_tThreshold) iCubeIndex |= 4;
|
|
if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8;
|
|
if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64;
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v100 = m_sampVolume.peekVoxel1px0py0pz();
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask(uXRegSpace - 1, uYRegSpace);
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX;
|
|
|
|
if (m_controller.convertToDensity(v100) < m_tThreshold) iCubeIndex |= 2;
|
|
if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8;
|
|
if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32;
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v000 = m_sampVolume.getVoxel();
|
|
v100 = m_sampVolume.peekVoxel1px0py0pz();
|
|
v010 = m_sampVolume.peekVoxel0px1py0pz();
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
|
|
v001 = m_sampVolume.peekVoxel0px0py1pz();
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
if (m_controller.convertToDensity(v000) < m_tThreshold) iCubeIndex |= 1;
|
|
if (m_controller.convertToDensity(v100) < m_tThreshold) iCubeIndex |= 2;
|
|
if (m_controller.convertToDensity(v010) < m_tThreshold) iCubeIndex |= 4;
|
|
if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8;
|
|
if (m_controller.convertToDensity(v001) < m_tThreshold) iCubeIndex |= 16;
|
|
if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32;
|
|
if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64;
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Save the bitmask
|
|
pCurrentBitmask(uXRegSpace, uYRegSpace) = iCubeIndex;
|
|
|
|
if(edgeTable[iCubeIndex] != 0)
|
|
{
|
|
++m_uNoOfOccupiedCells;
|
|
}
|
|
}
|
|
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateVerticesForSlice(const Array2DUint8& pCurrentBitmask,
|
|
Array2DInt32& m_pCurrentVertexIndicesX,
|
|
Array2DInt32& m_pCurrentVertexIndicesY,
|
|
Array2DInt32& m_pCurrentVertexIndicesZ)
|
|
{
|
|
const int32_t iZVolSpace = m_regSliceCurrent.getLowerZ();
|
|
|
|
//Iterate over each cell in the region
|
|
for(int32_t iYVolSpace = m_regSliceCurrent.getLowerY(); iYVolSpace <= m_regSliceCurrent.getUpperY(); iYVolSpace++)
|
|
{
|
|
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
|
|
|
for(int32_t iXVolSpace = m_regSliceCurrent.getLowerX(); iXVolSpace <= m_regSliceCurrent.getUpperX(); iXVolSpace++)
|
|
{
|
|
//Current position
|
|
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
const uint8_t iCubeIndex = pCurrentBitmask(uXRegSpace, uYRegSpace);
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
//Check whether the generated vertex will lie on the edge of the region
|
|
|
|
|
|
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
|
const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
|
|
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (edgeTable[iCubeIndex] & 1)
|
|
{
|
|
m_sampVolume.movePositiveX();
|
|
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
|
|
POLYVOX_ASSERT(v000 != v100, "Attempting to insert vertex between two voxels with the same value");
|
|
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerZ()));
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
|
|
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1-fInterp));
|
|
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if(v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v100, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
m_pCurrentVertexIndicesX(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY()) = uLastVertexIndex;
|
|
|
|
m_sampVolume.moveNegativeX();
|
|
}
|
|
if (edgeTable[iCubeIndex] & 8)
|
|
{
|
|
m_sampVolume.movePositiveY();
|
|
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
|
|
POLYVOX_ASSERT(v000 != v010, "Attempting to insert vertex between two voxels with the same value");
|
|
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()));
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
|
|
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1-fInterp));
|
|
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if(v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v010, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
m_pCurrentVertexIndicesY(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY()) = uLastVertexIndex;
|
|
|
|
m_sampVolume.moveNegativeY();
|
|
}
|
|
if (edgeTable[iCubeIndex] & 256)
|
|
{
|
|
m_sampVolume.movePositiveZ();
|
|
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
|
|
POLYVOX_ASSERT(v000 != v001, "Attempting to insert vertex between two voxels with the same value");
|
|
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()) + fInterp);
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
|
|
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1-fInterp));
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if(v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v001, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
m_pCurrentVertexIndicesZ(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY()) = uLastVertexIndex;
|
|
|
|
m_sampVolume.moveNegativeZ();
|
|
}
|
|
}//For each cell
|
|
}
|
|
}
|
|
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateIndicesForSlice(const Array2DUint8& pPreviousBitmask,
|
|
const Array2DInt32& m_pPreviousVertexIndicesX,
|
|
const Array2DInt32& m_pPreviousVertexIndicesY,
|
|
const Array2DInt32& m_pPreviousVertexIndicesZ,
|
|
const Array2DInt32& m_pCurrentVertexIndicesX,
|
|
const Array2DInt32& m_pCurrentVertexIndicesY)
|
|
{
|
|
int32_t indlist[12];
|
|
for(int i = 0; i < 12; i++)
|
|
{
|
|
indlist[i] = -1;
|
|
}
|
|
|
|
const int32_t iZVolSpace = m_regSlicePrevious.getLowerZ();
|
|
|
|
for(int32_t iYVolSpace = m_regSlicePrevious.getLowerY(); iYVolSpace <= m_regSizeInCells.getUpperY(); iYVolSpace++)
|
|
{
|
|
for(int32_t iXVolSpace = m_regSlicePrevious.getLowerX(); iXVolSpace <= m_regSizeInCells.getUpperX(); iXVolSpace++)
|
|
{
|
|
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
|
|
|
//Current position
|
|
const uint32_t uXRegSpace = m_sampVolume.getPosition().getX() - m_regSizeInVoxels.getLowerX();
|
|
const uint32_t uYRegSpace = m_sampVolume.getPosition().getY() - m_regSizeInVoxels.getLowerY();
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
const uint8_t iCubeIndex = pPreviousBitmask(uXRegSpace, uYRegSpace);
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (edgeTable[iCubeIndex] & 1)
|
|
{
|
|
indlist[0] = m_pPreviousVertexIndicesX(uXRegSpace, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2)
|
|
{
|
|
indlist[1] = m_pPreviousVertexIndicesY(uXRegSpace + 1, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 4)
|
|
{
|
|
indlist[2] = m_pPreviousVertexIndicesX(uXRegSpace, uYRegSpace + 1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 8)
|
|
{
|
|
indlist[3] = m_pPreviousVertexIndicesY(uXRegSpace, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 16)
|
|
{
|
|
indlist[4] = m_pCurrentVertexIndicesX(uXRegSpace, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 32)
|
|
{
|
|
indlist[5] = m_pCurrentVertexIndicesY(uXRegSpace + 1, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 64)
|
|
{
|
|
indlist[6] = m_pCurrentVertexIndicesX(uXRegSpace, uYRegSpace + 1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 128)
|
|
{
|
|
indlist[7] = m_pCurrentVertexIndicesY(uXRegSpace, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 256)
|
|
{
|
|
indlist[8] = m_pPreviousVertexIndicesZ(uXRegSpace, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 512)
|
|
{
|
|
indlist[9] = m_pPreviousVertexIndicesZ(uXRegSpace + 1, uYRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 1024)
|
|
{
|
|
indlist[10] = m_pPreviousVertexIndicesZ(uXRegSpace + 1, uYRegSpace + 1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2048)
|
|
{
|
|
indlist[11] = m_pPreviousVertexIndicesZ(uXRegSpace, uYRegSpace + 1);
|
|
}
|
|
|
|
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
|
|
{
|
|
const int32_t ind0 = indlist[triTable[iCubeIndex][i ]];
|
|
const int32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
|
|
const int32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
|
|
|
|
if((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
|
|
{
|
|
m_meshCurrent->addTriangle(ind0, ind1, ind2);
|
|
}
|
|
}//For each triangle
|
|
}//For each cell
|
|
}
|
|
}
|
|
}
|