164 lines
7.1 KiB
C++
164 lines
7.1 KiB
C++
/*******************************************************************************
|
|
Copyright (c) 2005-2009 David Williams
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
*******************************************************************************/
|
|
|
|
#include "OpenGLWidget.h"
|
|
|
|
#include "PolyVoxCore/CubicSurfaceExtractor.h"
|
|
#include "PolyVoxCore/MarchingCubesSurfaceExtractor.h"
|
|
#include "PolyVoxCore/Mesh.h"
|
|
#include "PolyVoxCore/SimpleVolume.h"
|
|
|
|
#include <QApplication>
|
|
|
|
//Use the PolyVox namespace
|
|
using namespace PolyVox;
|
|
|
|
void createSphereInVolume(SimpleVolume<uint8_t>& volData, float fRadius)
|
|
{
|
|
//This vector hold the position of the center of the volume
|
|
Vector3DFloat v3dVolCenter(volData.getWidth() / 2, volData.getHeight() / 2, volData.getDepth() / 2);
|
|
|
|
//This three-level for loop iterates over every voxel in the volume
|
|
for (int z = 0; z < volData.getDepth(); z++)
|
|
{
|
|
for (int y = 0; y < volData.getHeight(); y++)
|
|
{
|
|
for (int x = 0; x < volData.getWidth(); x++)
|
|
{
|
|
//Store our current position as a vector...
|
|
Vector3DFloat v3dCurrentPos(x,y,z);
|
|
//And compute how far the current position is from the center of the volume
|
|
float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
|
|
|
|
uint8_t uVoxelValue = 0;
|
|
|
|
//If the current voxel is less than 'radius' units from the center then we make it solid.
|
|
if(fDistToCenter <= fRadius)
|
|
{
|
|
//Our new voxel value
|
|
uVoxelValue = 255;
|
|
}
|
|
|
|
//Wrte the voxel value into the volume
|
|
volData.setVoxelAt(x, y, z, uVoxelValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
OpenGLMeshData buildOpenGLMeshData(const PolyVox::Mesh< PolyVox::Vertex< uint8_t > >& surfaceMesh, const PolyVox::Vector3DInt32& translation = PolyVox::Vector3DInt32(0, 0, 0), float scale = 1.0f)
|
|
{
|
|
// Convienient access to the vertices and indices
|
|
const auto& vecIndices = surfaceMesh.getIndices();
|
|
const auto& vecVertices = surfaceMesh.getVertices();
|
|
|
|
// This struct holds the OpenGL properties (buffer handles, etc) which will be used
|
|
// to render our mesh. We copy the data from the PolyVox mesh into this structure.
|
|
OpenGLMeshData meshData;
|
|
|
|
// Create the VAO for the mesh
|
|
glGenVertexArrays(1, &(meshData.vertexArrayObject));
|
|
glBindVertexArray(meshData.vertexArrayObject);
|
|
|
|
// The GL_ARRAY_BUFFER will contain the list of vertex positions
|
|
glGenBuffers(1, &(meshData.vertexBuffer));
|
|
glBindBuffer(GL_ARRAY_BUFFER, meshData.vertexBuffer);
|
|
glBufferData(GL_ARRAY_BUFFER, vecVertices.size() * sizeof(Vertex< uint8_t >), vecVertices.data(), GL_STATIC_DRAW);
|
|
|
|
// and GL_ELEMENT_ARRAY_BUFFER will contain the indices
|
|
glGenBuffers(1, &(meshData.indexBuffer));
|
|
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, meshData.indexBuffer);
|
|
glBufferData(GL_ELEMENT_ARRAY_BUFFER, vecIndices.size() * sizeof(uint32_t), vecIndices.data(), GL_STATIC_DRAW);
|
|
|
|
// Every surface extractor outputs valid positions for the vertices, so tell OpenGL how these are laid out
|
|
glEnableVertexAttribArray(0); // Attrib '0' is the vertex positions
|
|
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex< uint8_t >), (GLvoid*)(offsetof(Vertex< uint8_t >, position))); //take the first 3 floats from every sizeof(decltype(vecVertices)::value_type)
|
|
|
|
// Some surface extractors also generate normals, so tell OpenGL how these are laid out. If a surface extractor
|
|
// does not generate normals then nonsense values are written into the buffer here and sghould be ignored by the
|
|
// shader. This is mostly just to simplify this example code - in a real application you will know whether your
|
|
// chosen surface extractor generates normals and can skip uploading them if not.
|
|
glEnableVertexAttribArray(1); // Attrib '1' is the vertex normals.
|
|
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex< uint8_t >), (GLvoid*)(offsetof(Vertex< uint8_t >, normal)));
|
|
|
|
// Finally a surface extractor will probably output additional data. This is highly application dependant. For this example code
|
|
// we're just uploading it as a set of bytes which we can read individually, but real code will want to do something specialised here.
|
|
glEnableVertexAttribArray(2); //We're talking about shader attribute '2'
|
|
GLint size = (std::min)(sizeof(uint8_t), size_t(4)); // Can't upload more that 4 components (vec4 is GLSL's biggest type)
|
|
glVertexAttribIPointer(2, size, GL_UNSIGNED_BYTE, sizeof(Vertex< uint8_t >), (GLvoid*)(offsetof(Vertex< uint8_t >, data)));
|
|
|
|
// We're done uploading and can now unbind.
|
|
glBindVertexArray(0);
|
|
|
|
// A few additional properties can be copied across for use during rendering.
|
|
meshData.noOfIndices = vecIndices.size();
|
|
meshData.translation = QVector3D(translation.getX(), translation.getY(), translation.getZ());
|
|
meshData.scale = scale;
|
|
|
|
return meshData;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
//Create and show the Qt OpenGL window
|
|
QApplication app(argc, argv);
|
|
OpenGLWidget openGLWidget(0);
|
|
openGLWidget.show();
|
|
|
|
QSharedPointer<QGLShaderProgram> shader(new QGLShaderProgram);
|
|
|
|
if (!shader->addShaderFromSourceFile(QGLShader::Vertex, ":/decode.vert"))
|
|
{
|
|
std::cerr << shader->log().toStdString() << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (!shader->addShaderFromSourceFile(QGLShader::Fragment, ":/decode.frag"))
|
|
{
|
|
std::cerr << shader->log().toStdString() << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
openGLWidget.setShader(shader);
|
|
|
|
//Create an empty volume and then place a sphere in it
|
|
SimpleVolume<uint8_t> volData(PolyVox::Region(Vector3DInt32(0,0,0), Vector3DInt32(63, 63, 63)));
|
|
createSphereInVolume(volData, 30);
|
|
|
|
// Extract the surface for the specified region of the volume. Uncomment the line for the kind of surface extraction you want to see.
|
|
auto mesh = extractCubicMesh(&volData, volData.getEnclosingRegion());
|
|
//auto mesh = extractMarchingCubesMesh(&volData, volData.getEnclosingRegion());
|
|
|
|
// The surface extractor outputs the mesh in an efficient compressed format which is not directly suitable for rendering. The easiest approach is to
|
|
// decode this on the CPU as shown below, though more advanced applications can upload the compressed mesh to the GPU and decompress in shader code.
|
|
auto decodedMesh = decode(mesh);
|
|
|
|
//Pass the surface to the OpenGL window
|
|
OpenGLMeshData meshData = buildOpenGLMeshData(decodedMesh);
|
|
openGLWidget.addMeshData(meshData);
|
|
|
|
openGLWidget.setViewableRegion(volData.getEnclosingRegion());
|
|
|
|
//Run the message pump.
|
|
return app.exec();
|
|
} |