2008-06-08 19:08:35 +00:00

232 lines
7.3 KiB
C++

#pragma region License
/******************************************************************************
This file is part of the PolyVox library
Copyright (C) 2006 David Williams
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
******************************************************************************/
#pragma endregion
#pragma region Headers
#include "Block.h"
#include "Region.h"
#include "Vector.h"
#include <cassert>
#include <cstring> //For memcpy
#pragma endregion
namespace PolyVox
{
#pragma region Constructors/Destructors
template <typename VoxelType>
BlockVolume<VoxelType>::BlockVolume(boost::uint8_t uSideLengthPower, boost::uint8_t uBlockSideLengthPower)
:m_pBlocks(0)
{
//Check the volume size is sensible. This corresponds to a side length of 65536 voxels
if(uSideLengthPower > 16)
{
throw std::invalid_argument("Volume side length power must be less than or equal to 16");
}
//Compute the volume side length
m_uSideLengthPower = uSideLengthPower;
m_uSideLength = 0x01 << uSideLengthPower;
//Compute the block side length
m_uBlockSideLengthPower = uBlockSideLengthPower;
m_uBlockSideLength = 0x01 << uBlockSideLengthPower;
//Compute the side length in blocks
m_uSideLengthInBlocks = m_uSideLength / m_uBlockSideLength;
//Compute number of blocks in the volume
m_uNoOfBlocksInVolume = m_uSideLengthInBlocks * m_uSideLengthInBlocks * m_uSideLengthInBlocks;
//Create the blocks
m_pBlocks = new Block<VoxelType>*[m_uNoOfBlocksInVolume];
m_pIsShared = new bool[m_uNoOfBlocksInVolume];
m_pIsPotentiallySharable = new bool[m_uNoOfBlocksInVolume];
m_pHomogenousValue = new VoxelType[m_uNoOfBlocksInVolume];
for(boost::uint32_t i = 0; i < m_uNoOfBlocksInVolume; ++i)
{
m_pBlocks[i] = getHomogenousBlock(0); //new Block<VoxelType>(uBlockSideLengthPower);
m_pIsShared[i] = true;
m_pIsPotentiallySharable[i] = false;
m_pHomogenousValue[i] = 0;
}
}
template <typename VoxelType>
BlockVolume<VoxelType>::BlockVolume(const BlockVolume<VoxelType>& rhs)
{
*this = rhs;
}
template <typename VoxelType>
BlockVolume<VoxelType>::~BlockVolume()
{
for(boost::uint32_t i = 0; i < m_uNoOfBlocksInVolume; ++i)
{
delete m_pBlocks[i];
}
}
#pragma endregion
#pragma region Operators
template <typename VoxelType>
BlockVolume<VoxelType>& BlockVolume<VoxelType>::operator=(const BlockVolume& rhs)
{
if (this == &rhs)
{
return *this;
}
/*for(uint16_t i = 0; i < POLYVOX_NO_OF_BLOCKS_IN_VOLUME; ++i)
{
//FIXME - Add checking...
m_pBlocks[i] = SharedPtr<Block>(new Block);
}*/
for(uint32_t i = 0; i < m_uNoOfBlocksInVolume; ++i)
{
//I think this is OK... If a block is in the homogeneous array it's ref count will be greater
//than 1 as there will be the pointer in the volume and the pointer in the static homogeneous array.
/*if(rhs.m_pBlocks[i].unique())
{
m_pBlocks[i] = SharedPtr<Block>(new Block(*(rhs.m_pBlocks[i])));
}
else
{*/
//we have a block in the homogeneous array - just copy the pointer.
m_pBlocks[i] = rhs.m_pBlocks[i];
//}
}
return *this;
}
#pragma endregion
#pragma region Getters
template <typename VoxelType>
Region BlockVolume<VoxelType>::getEnclosingRegion(void) const
{
return Region(Vector3DInt32(0,0,0), Vector3DInt32(m_uSideLength-1,m_uSideLength-1,m_uSideLength-1));
}
template <typename VoxelType>
boost::uint16_t BlockVolume<VoxelType>::getSideLength(void) const
{
return m_uSideLength;
}
template <typename VoxelType>
VoxelType BlockVolume<VoxelType>::getVoxelAt(boost::uint16_t uXPos, boost::uint16_t uYPos, boost::uint16_t uZPos) const
{
assert(uXPos < getSideLength());
assert(uYPos < getSideLength());
assert(uZPos < getSideLength());
const uint16_t blockX = uXPos >> m_uBlockSideLengthPower;
const uint16_t blockY = uYPos >> m_uBlockSideLengthPower;
const uint16_t blockZ = uZPos >> m_uBlockSideLengthPower;
const uint16_t xOffset = uXPos - (blockX << m_uBlockSideLengthPower);
const uint16_t yOffset = uYPos - (blockY << m_uBlockSideLengthPower);
const uint16_t zOffset = uZPos - (blockZ << m_uBlockSideLengthPower);
const Block<VoxelType>* block = m_pBlocks
[
blockX +
blockY * m_uSideLengthInBlocks +
blockZ * m_uSideLengthInBlocks * m_uSideLengthInBlocks
];
return block->getVoxelAt(xOffset,yOffset,zOffset);
}
template <typename VoxelType>
VoxelType BlockVolume<VoxelType>::getVoxelAt(const Vector3DUint16& v3dPos) const
{
assert(v3dPos.getX() < m_uSideLength);
assert(v3dPos.getY() < m_uSideLength);
assert(v3dPos.getZ() < m_uSideLength);
return getVoxelAt(v3dPos.getX(), v3dPos.getY(), v3dPos.getZ());
}
#pragma endregion
#pragma region Other
template <typename VoxelType>
bool BlockVolume<VoxelType>::containsPoint(const Vector3DFloat& pos, float boundary) const
{
return (pos.getX() <= m_uSideLength - 1 - boundary)
&& (pos.getY() <= m_uSideLength - 1 - boundary)
&& (pos.getZ() <= m_uSideLength - 1 - boundary)
&& (pos.getX() >= boundary)
&& (pos.getY() >= boundary)
&& (pos.getZ() >= boundary);
}
template <typename VoxelType>
bool BlockVolume<VoxelType>::containsPoint(const Vector3DInt32& pos, boost::uint16_t boundary) const
{
return (pos.getX() <= m_uSideLength - 1 - boundary)
&& (pos.getY() <= m_uSideLength - 1 - boundary)
&& (pos.getZ() <= m_uSideLength - 1 - boundary)
&& (pos.getX() >= boundary)
&& (pos.getY() >= boundary)
&& (pos.getZ() >= boundary);
}
template <typename VoxelType>
BlockVolumeIterator<VoxelType> BlockVolume<VoxelType>::firstVoxel(void)
{
BlockVolumeIterator<VoxelType> iter(*this);
iter.setPosition(0,0,0);
return iter;
}
template <typename VoxelType>
void BlockVolume<VoxelType>::idle(boost::uint32_t uAmount)
{
}
template <typename VoxelType>
BlockVolumeIterator<VoxelType> BlockVolume<VoxelType>::lastVoxel(void)
{
BlockVolumeIterator<VoxelType> iter(*this);
iter.setPosition(m_uSideLength-1,m_uSideLength-1,m_uSideLength-1);
return iter;
}
#pragma endregion
#pragma region Private Implementation
template <typename VoxelType>
Block<VoxelType>* BlockVolume<VoxelType>::getHomogenousBlock(VoxelType tHomogenousValue) const
{
typename std::map<VoxelType, Block<VoxelType>*>::iterator iterResult = m_pHomogenousBlocks.find(tHomogenousValue);
if(iterResult == m_pHomogenousBlocks.end())
{
Block<VoxelType>* pBlock = new Block<VoxelType>(m_uBlockSideLengthPower);
pBlock->fill(tHomogenousValue);
m_pHomogenousBlocks.insert(std::make_pair(tHomogenousValue, pBlock));
return pBlock;
}
return iterResult->second;
}
#pragma endregion
}