polyvox/library/PolyVoxCore/source/SurfaceExtractor.cpp

731 lines
27 KiB
C++

#include "SurfaceExtractor.h"
#include "IndexedSurfacePatch.h"
#include "PolyVoxImpl/MarchingCubesTables.h"
#include "SurfaceVertex.h"
namespace PolyVox
{
SurfaceExtractor::SurfaceExtractor(Volume<uint8_t>& volData)
:m_uLodLevel(0)
,m_volData(volData)
,m_sampVolume(&volData)
{
}
uint8_t SurfaceExtractor::getLodLevel(void)
{
return m_uLodLevel;
}
void SurfaceExtractor::setLodLevel(uint8_t uLodLevel)
{
m_uLodLevel = uLodLevel;
//Step size is 2^uLodLevel
m_uStepSize = 1 << uLodLevel;
}
POLYVOX_SHARED_PTR<IndexedSurfacePatch> SurfaceExtractor::extractSurfaceForRegion(Region region)
{
m_regInputUncropped = region;
//When generating the mesh for a region we actually look outside it in the
// back, bottom, right direction. Protect against access violations by cropping region here
m_regVolumeCropped = m_volData.getEnclosingRegion();
m_regInputUncropped.cropTo(m_regVolumeCropped);
m_regVolumeCropped.setUpperCorner(m_regVolumeCropped.getUpperCorner() - Vector3DInt16(2*m_uStepSize-1,2*m_uStepSize-1,2*m_uStepSize-1));
m_regInputCropped = region;
m_regInputCropped.cropTo(m_regVolumeCropped);
m_ispCurrent = new IndexedSurfacePatch();
m_uRegionWidth = m_regInputCropped.width();
m_uRegionHeight = m_regInputCropped.height();
m_uScratchPadWidth = m_uRegionWidth+m_uStepSize+8;
m_uScratchPadHeight = m_uRegionHeight+m_uStepSize+8;
//For edge indices
m_pPreviousVertexIndicesX = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight];
m_pPreviousVertexIndicesY = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight];
m_pPreviousVertexIndicesZ = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight];
m_pCurrentVertexIndicesX = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight];
m_pCurrentVertexIndicesY = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight];
m_pCurrentVertexIndicesZ = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight];
//Cell bitmasks
m_pPreviousBitmask = new uint8_t[m_uScratchPadWidth * m_uScratchPadHeight];
m_pCurrentBitmask = new uint8_t[m_uScratchPadWidth * m_uScratchPadHeight];
//Create a region corresponding to the first slice
m_regSlicePrevious = m_regInputCropped;
Vector3DInt16 v3dUpperCorner = m_regSlicePrevious.getUpperCorner();
v3dUpperCorner.setZ(m_regSlicePrevious.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
m_regSlicePrevious.setUpperCorner(v3dUpperCorner);
m_regSliceCurrent = m_regSlicePrevious;
switch(m_uLodLevel)
{
case 0:
extractSurfaceImpl<0>();
break;
case 1:
extractSurfaceImpl<1>();
break;
case 2:
extractSurfaceImpl<2>();
break;
}
delete[] m_pPreviousBitmask;
delete[] m_pCurrentBitmask;
delete[] m_pPreviousVertexIndicesX;
delete[] m_pCurrentVertexIndicesX;
delete[] m_pPreviousVertexIndicesY;
delete[] m_pCurrentVertexIndicesY;
delete[] m_pPreviousVertexIndicesZ;
delete[] m_pCurrentVertexIndicesZ;
m_ispCurrent->m_Region = m_regInputUncropped;
return POLYVOX_SHARED_PTR<IndexedSurfacePatch>(m_ispCurrent);
}
template<uint8_t uLodLevel>
void SurfaceExtractor::extractSurfaceImpl(void)
{
uint32_t uNoOfNonEmptyCellsForSlice0 = 0;
uint32_t uNoOfNonEmptyCellsForSlice1 = 0;
//Process the first slice (previous slice not available)
computeBitmaskForSlice<false, uLodLevel>();
uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells;
if(uNoOfNonEmptyCellsForSlice1 != 0)
{
memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
generateVerticesForSlice();
}
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
std::swap(m_pPreviousBitmask, m_pCurrentBitmask);
std::swap(m_pPreviousVertexIndicesX, m_pCurrentVertexIndicesX);
std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY);
std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ);
m_regSlicePrevious = m_regSliceCurrent;
m_regSliceCurrent.shift(Vector3DInt16(0,0,m_uStepSize));
//Process the other slices (previous slice is available)
for(uint32_t uSlice = 1; uSlice <= m_regInputCropped.depth(); uSlice += m_uStepSize)
{
computeBitmaskForSlice<true, uLodLevel>();
uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells;
if(uNoOfNonEmptyCellsForSlice1 != 0)
{
memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
generateVerticesForSlice();
}
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
{
generateIndicesForSlice();
}
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
std::swap(m_pPreviousBitmask, m_pCurrentBitmask);
std::swap(m_pPreviousVertexIndicesX, m_pCurrentVertexIndicesX);
std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY);
std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ);
m_regSlicePrevious = m_regSliceCurrent;
m_regSliceCurrent.shift(Vector3DInt16(0,0,m_uStepSize));
}
//A final slice just to close of the volume
m_regSliceCurrent.shift(Vector3DInt16(0,0,-m_uStepSize));
if(m_regSliceCurrent.getLowerCorner().getZ() == m_regVolumeCropped.getUpperCorner().getZ())
{
memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
generateIndicesForSlice();
}
}
template<bool isPrevZAvail, uint8_t uLodLevel>
uint32_t SurfaceExtractor::computeBitmaskForSlice(void)
{
m_uNoOfOccupiedCells = 0;
const uint16_t uMaxXVolSpace = m_regSliceCurrent.getUpperCorner().getX();
const uint16_t uMaxYVolSpace = m_regSliceCurrent.getUpperCorner().getY();
uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
uZRegSpace = uZVolSpace - m_regInputCropped.getLowerCorner().getZ();
//Process the lower left corner
uYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
uXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX();
uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY();
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
computeBitmaskForCell<false, false, isPrevZAvail, uLodLevel>();
//Process the edge where x is minimal.
uXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
m_sampVolume.setPosition(uXVolSpace, m_regSliceCurrent.getLowerCorner().getY(), uZVolSpace);
for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize)
{
uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX();
uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY();
if(uLodLevel == 0)
{
m_sampVolume.movePositiveY();
}
else
{
m_sampVolume.setPosition(uXVolSpace, uYVolSpace, uZVolSpace);
}
computeBitmaskForCell<false, true, isPrevZAvail, uLodLevel>();
}
//Process the edge where y is minimal.
uYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), uYVolSpace, uZVolSpace);
for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize)
{
uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX();
uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY();
if(uLodLevel == 0)
{
m_sampVolume.movePositiveX();
}
else
{
m_sampVolume.setPosition(uXVolSpace, uYVolSpace, uZVolSpace);
}
computeBitmaskForCell<true, false, isPrevZAvail, uLodLevel>();
}
//Process all remaining elemnents of the slice. In this case, previous x and y values are always available
for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize)
{
m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), uYVolSpace, uZVolSpace);
for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize)
{
uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX();
uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY();
if(uLodLevel == 0)
{
m_sampVolume.movePositiveX();
}
else
{
m_sampVolume.setPosition(uXVolSpace, uYVolSpace, uZVolSpace);
}
computeBitmaskForCell<true, true, isPrevZAvail, uLodLevel>();
}
}
return m_uNoOfOccupiedCells;
}
template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail, uint8_t uLodLevel>
void SurfaceExtractor::computeBitmaskForCell(void)
{
uint8_t iCubeIndex = 0;
uint8_t v000 = 0;
uint8_t v100 = 0;
uint8_t v010 = 0;
uint8_t v110 = 0;
uint8_t v001 = 0;
uint8_t v101 = 0;
uint8_t v011 = 0;
uint8_t v111 = 0;
if(isPrevZAvail)
{
if(isPrevYAvail)
{
if(isPrevXAvail)
{
if(uLodLevel == 0)
{
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
//z
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)];
iPreviousCubeIndexY &= 192; //192 = 128 + 64
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)];
iPreviousCubeIndexX &= 128;
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
if(uLodLevel == 0)
{
v011 = m_sampVolume.peekVoxel0px1py1pz();
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v011 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
//z
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)];
iPreviousCubeIndexY &= 192; //192 = 128 + 64
iPreviousCubeIndexY >>= 2;
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
else //previous Y not available
{
if(isPrevXAvail)
{
if(uLodLevel == 0)
{
v101 = m_sampVolume.peekVoxel1px0py1pz();
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize);
v101 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
//z
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)];
iPreviousCubeIndexZ >>= 4;
//x
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)];
iPreviousCubeIndexX &= 160; //160 = 128+32
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
if(uLodLevel == 0)
{
v001 = m_sampVolume.peekVoxel0px0py1pz();
v101 = m_sampVolume.peekVoxel1px0py1pz();
v011 = m_sampVolume.peekVoxel0px1py1pz();
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize);
v001 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize);
v101 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v011 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
//z
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)];
iCubeIndex = iPreviousCubeIndexZ >> 4;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
}
else //previous Z not available
{
if(isPrevYAvail)
{
if(isPrevXAvail)
{
if(uLodLevel == 0)
{
v110 = m_sampVolume.peekVoxel1px1py0pz();
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace);
v110 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
//y
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
if (v110 == 0) iCubeIndex |= 8;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
if(uLodLevel == 0)
{
v010 = m_sampVolume.peekVoxel0px1py0pz();
v110 = m_sampVolume.peekVoxel1px1py0pz();
v011 = m_sampVolume.peekVoxel0px1py1pz();
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace);
v010 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace);
v110 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v011 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
//y
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
iCubeIndex = iPreviousCubeIndexY;
if (v010 == 0) iCubeIndex |= 4;
if (v110 == 0) iCubeIndex |= 8;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
else //previous Y not available
{
if(isPrevXAvail)
{
if(uLodLevel == 0)
{
v100 = m_sampVolume.peekVoxel1px0py0pz();
v110 = m_sampVolume.peekVoxel1px1py0pz();
v101 = m_sampVolume.peekVoxel1px0py1pz();
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace);
v100 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace);
v110 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize);
v101 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
//x
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX;
if (v100 == 0) iCubeIndex |= 2;
if (v110 == 0) iCubeIndex |= 8;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
if(uLodLevel == 0)
{
v000 = m_sampVolume.getVoxel();
v100 = m_sampVolume.peekVoxel1px0py0pz();
v010 = m_sampVolume.peekVoxel0px1py0pz();
v110 = m_sampVolume.peekVoxel1px1py0pz();
v001 = m_sampVolume.peekVoxel0px0py1pz();
v101 = m_sampVolume.peekVoxel1px0py1pz();
v011 = m_sampVolume.peekVoxel0px1py1pz();
v111 = m_sampVolume.peekVoxel1px1py1pz();
}
else
{
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
v000 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace);
v100 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace);
v010 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace);
v110 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize);
v001 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize);
v101 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v011 = m_sampVolume.getSubSampledVoxel(uLodLevel);
m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize);
v111 = m_sampVolume.getSubSampledVoxel(uLodLevel);
}
if (v000 == 0) iCubeIndex |= 1;
if (v100 == 0) iCubeIndex |= 2;
if (v010 == 0) iCubeIndex |= 4;
if (v110 == 0) iCubeIndex |= 8;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
}
//Save the bitmask
m_pCurrentBitmask[getIndex(uXRegSpace,uYVolSpace- m_regInputCropped.getLowerCorner().getY())] = iCubeIndex;
if(edgeTable[iCubeIndex] != 0)
{
++m_uNoOfOccupiedCells;
}
}
void SurfaceExtractor::generateVerticesForSlice()
{
//Iterate over each cell in the region
for(uint16_t uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); uYVolSpace <= m_regSliceCurrent.getUpperCorner().getY(); uYVolSpace += m_uStepSize)
{
for(uint16_t uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); uXVolSpace <= m_regSliceCurrent.getUpperCorner().getX(); uXVolSpace += m_uStepSize)
{
uint16_t uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
//Current position
const uint16_t uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX();
const uint16_t uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY();
const uint16_t uZRegSpace = uZVolSpace - m_regInputCropped.getLowerCorner().getZ();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace)];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
const uint8_t v000 = m_sampVolume.getSubSampledVoxel(m_uLodLevel);
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
m_sampVolume.setPosition(uXVolSpace + m_uStepSize,uYVolSpace,uZVolSpace);
const uint8_t v100 = m_sampVolume.getSubSampledVoxel(m_uLodLevel);
const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX() + 0.5f * m_uStepSize, uYVolSpace - m_regInputCropped.getLowerCorner().getY(), uZVolSpace - m_regInputCropped.getLowerCorner().getZ());
const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0);
const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max.
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex);
m_pCurrentVertexIndicesX[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex;
}
if (edgeTable[iCubeIndex] & 8)
{
m_sampVolume.setPosition(uXVolSpace,uYVolSpace + m_uStepSize,uZVolSpace);
const uint8_t v010 = m_sampVolume.getSubSampledVoxel(m_uLodLevel);
const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX(), uYVolSpace - m_regInputCropped.getLowerCorner().getY() + 0.5f * m_uStepSize, uZVolSpace - m_regInputCropped.getLowerCorner().getZ());
const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0);
const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max.
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex);
m_pCurrentVertexIndicesY[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex;
}
if (edgeTable[iCubeIndex] & 256)
{
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace + m_uStepSize);
const uint8_t v001 = m_sampVolume.getSubSampledVoxel(m_uLodLevel);
const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX(), uYVolSpace - m_regInputCropped.getLowerCorner().getY(), uZVolSpace - m_regInputCropped.getLowerCorner().getZ() + 0.5f * m_uStepSize);
const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f);
const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max.
const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex);
m_pCurrentVertexIndicesZ[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex;
}
}//For each cell
}
}
void SurfaceExtractor::generateIndicesForSlice()
{
int32_t indlist[12];
for(int i = 0; i < 12; i++)
{
indlist[i] = -1;
}
for(uint16_t uYVolSpace = m_regSlicePrevious.getLowerCorner().getY(); uYVolSpace < m_regInputUncropped.getUpperCorner().getY(); uYVolSpace += m_uStepSize)
{
for(uint16_t uXVolSpace = m_regSlicePrevious.getLowerCorner().getX(); uXVolSpace < m_regInputUncropped.getUpperCorner().getX(); uXVolSpace += m_uStepSize)
{
uint16_t uZVolSpace = m_regSlicePrevious.getLowerCorner().getZ();
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
//Current position
const uint16_t uXRegSpace = m_sampVolume.getPosX() - m_regInputCropped.getLowerCorner().getX();
const uint16_t uYRegSpace = m_sampVolume.getPosY() - m_regInputCropped.getLowerCorner().getY();
const uint16_t uZRegSpace = m_sampVolume.getPosZ() - m_regInputCropped.getLowerCorner().getZ();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
indlist[0] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace)];
//assert(indlist[0] != -1);
}
if (edgeTable[iCubeIndex] & 2)
{
indlist[1] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)];
//assert(indlist[1] != -1);
}
if (edgeTable[iCubeIndex] & 4)
{
indlist[2] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)];
//assert(indlist[2] != -1);
}
if (edgeTable[iCubeIndex] & 8)
{
indlist[3] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace,uYRegSpace)];
//assert(indlist[3] != -1);
}
if (edgeTable[iCubeIndex] & 16)
{
indlist[4] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace)];
//assert(indlist[4] != -1);
}
if (edgeTable[iCubeIndex] & 32)
{
indlist[5] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)];
//assert(indlist[5] != -1);
}
if (edgeTable[iCubeIndex] & 64)
{
indlist[6] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)];
//assert(indlist[6] != -1);
}
if (edgeTable[iCubeIndex] & 128)
{
indlist[7] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace,uYRegSpace)];
//assert(indlist[7] != -1);
}
if (edgeTable[iCubeIndex] & 256)
{
indlist[8] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace)];
//assert(indlist[8] != -1);
}
if (edgeTable[iCubeIndex] & 512)
{
indlist[9] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)];
//assert(indlist[9] != -1);
}
if (edgeTable[iCubeIndex] & 1024)
{
indlist[10] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace+m_uStepSize)];
//assert(indlist[10] != -1);
}
if (edgeTable[iCubeIndex] & 2048)
{
indlist[11] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)];
//assert(indlist[11] != -1);
}
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
{
int32_t ind0 = indlist[triTable[iCubeIndex][i ]];
int32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
int32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
if((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
{
assert(ind0 >= 0);
assert(ind1 >= 0);
assert(ind2 >= 0);
assert(ind0 < 1000000);
assert(ind1 < 1000000);
assert(ind2 < 1000000);
m_ispCurrent->addTriangle(ind0, ind1, ind2);
}
}//For each triangle
}//For each cell
}
}
}