polyvox/include/PolyVox/AStarPathfinder.inl
2015-12-26 21:45:41 +00:00

353 lines
14 KiB
C++

/*******************************************************************************
* The MIT License (MIT)
*
* Copyright (c) 2015 David Williams and Matthew Williams
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*******************************************************************************/
#include "Impl/ErrorHandling.h"
namespace PolyVox
{
////////////////////////////////////////////////////////////////////////////////
/// Using this function, a voxel is considered valid for the path if it is inside the
/// volume and if its density is below that returned by the voxel's getDensity() function.
/// \return true is the voxel is valid for the path
////////////////////////////////////////////////////////////////////////////////
template<typename VolumeType>
bool aStarDefaultVoxelValidator(const VolumeType* volData, const Vector3DInt32& v3dPos)
{
//Voxels are considered valid candidates for the path if they are inside the volume...
if(volData->getEnclosingRegion().containsPoint(v3dPos) == false)
{
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
// AStarPathfinder Class
////////////////////////////////////////////////////////////////////////////////
template<typename VolumeType>
AStarPathfinder<VolumeType>::AStarPathfinder(const AStarPathfinderParams<VolumeType>& params)
:m_params(params)
{
}
template<typename VolumeType>
void AStarPathfinder<VolumeType>::execute()
{
//Clear any existing nodes
allNodes.clear();
openNodes.clear();
closedNodes.clear();
//Clear the result
m_params.result->clear();
//Iterators to start and end node.
AllNodesContainer::iterator startNode = allNodes.insert(Node(m_params.start.getX(), m_params.start.getY(), m_params.start.getZ())).first;
AllNodesContainer::iterator endNode = allNodes.insert(Node(m_params.end.getX(), m_params.end.getY(), m_params.end.getZ())).first;
//Regarding the const_cast - normally you should not modify an object which is in an sdt::set.
//The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly,
//and changing the object directly can break the sorting. However, in our case we have provided a
//custom sort operator for the set which we know only uses the position to sort. Hence we can safely
//modify other properties of the object while it is in the set.
Node* tempStart = const_cast<Node*>(&(*startNode));
tempStart->gVal = 0;
tempStart->hVal = computeH(startNode->position, endNode->position);
Node* tempEnd = const_cast<Node*>(&(*endNode));
tempEnd->hVal = 0.0f;
openNodes.insert(startNode);
float fDistStartToEnd = (endNode->position - startNode->position).length();
m_fProgress = 0.0f;
if(m_params.progressCallback)
{
m_params.progressCallback(m_fProgress);
}
while((openNodes.empty() == false) && (openNodes.getFirst() != endNode))
{
//Move the first node from open to closed.
current = openNodes.getFirst();
openNodes.removeFirst();
closedNodes.insert(current);
//Update the user on our progress
if(m_params.progressCallback)
{
const float fMinProgresIncreament = 0.001f;
float fDistCurrentToEnd = (endNode->position - current->position).length();
float fDistNormalised = fDistCurrentToEnd / fDistStartToEnd;
float fProgress = 1.0f - fDistNormalised;
if(fProgress >= m_fProgress + fMinProgresIncreament)
{
m_fProgress = fProgress;
m_params.progressCallback(m_fProgress);
}
}
//The distance from one cell to another connected by face, edge, or corner.
const float fFaceCost = sqrt_1;
const float fEdgeCost = sqrt_2;
const float fCornerCost = sqrt_3;
//Process the neighbours. Note the deliberate lack of 'break'
//statements, larger connectivities include smaller ones.
switch(m_params.connectivity)
{
case TwentySixConnected:
processNeighbour(current->position + arrayPathfinderCorners[0], current->gVal + fCornerCost);
processNeighbour(current->position + arrayPathfinderCorners[1], current->gVal + fCornerCost);
processNeighbour(current->position + arrayPathfinderCorners[2], current->gVal + fCornerCost);
processNeighbour(current->position + arrayPathfinderCorners[3], current->gVal + fCornerCost);
processNeighbour(current->position + arrayPathfinderCorners[4], current->gVal + fCornerCost);
processNeighbour(current->position + arrayPathfinderCorners[5], current->gVal + fCornerCost);
processNeighbour(current->position + arrayPathfinderCorners[6], current->gVal + fCornerCost);
processNeighbour(current->position + arrayPathfinderCorners[7], current->gVal + fCornerCost);
case EighteenConnected:
processNeighbour(current->position + arrayPathfinderEdges[ 0], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 1], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 2], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 3], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 4], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 5], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 6], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 7], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 8], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 9], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[10], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[11], current->gVal + fEdgeCost);
case SixConnected:
processNeighbour(current->position + arrayPathfinderFaces[0], current->gVal + fFaceCost);
processNeighbour(current->position + arrayPathfinderFaces[1], current->gVal + fFaceCost);
processNeighbour(current->position + arrayPathfinderFaces[2], current->gVal + fFaceCost);
processNeighbour(current->position + arrayPathfinderFaces[3], current->gVal + fFaceCost);
processNeighbour(current->position + arrayPathfinderFaces[4], current->gVal + fFaceCost);
processNeighbour(current->position + arrayPathfinderFaces[5], current->gVal + fFaceCost);
}
if(allNodes.size() > m_params.maxNumberOfNodes)
{
//We've reached the specified maximum number
//of nodes. Just give up on the search.
break;
}
}
if((openNodes.empty()) || (openNodes.getFirst() != endNode))
{
//In this case we failed to find a valid path.
POLYVOX_THROW(std::runtime_error, "No path found");
}
else
{
//Regarding the const_cast - normally you should not modify an object which is in an sdt::set.
//The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly,
//and changing the object directly can break the sorting. However, in our case we have provided a
//custom sort operator for the set which we know only uses the position to sort. Hence we can safely
//modify other properties of the object while it is in the set.
Node* n = const_cast<Node*>(&(*endNode));
while(n != 0)
{
m_params.result->push_front(n->position);
n = n->parent;
}
}
if(m_params.progressCallback)
{
m_params.progressCallback(1.0f);
}
}
template<typename VolumeType>
void AStarPathfinder<VolumeType>::processNeighbour(const Vector3DInt32& neighbourPos, float neighbourGVal)
{
bool bIsVoxelValidForPath = m_params.isVoxelValidForPath(m_params.volume, neighbourPos);
if(!bIsVoxelValidForPath)
{
return;
}
float cost = neighbourGVal;
std::pair<AllNodesContainer::iterator, bool> insertResult = allNodes.insert(Node(neighbourPos.getX(), neighbourPos.getY(), neighbourPos.getZ()));
AllNodesContainer::iterator neighbour = insertResult.first;
if(insertResult.second == true) //New node, compute h.
{
Node* tempNeighbour = const_cast<Node*>(&(*neighbour));
tempNeighbour -> hVal = computeH(neighbour->position, m_params.end);
}
OpenNodesContainer::iterator openIter = openNodes.find(neighbour);
if(openIter != openNodes.end())
{
if(cost < neighbour->gVal)
{
openNodes.remove(openIter);
openIter = openNodes.end();
}
}
//TODO - Nodes could keep track of if they are in open or closed? And a pointer to where they are?
ClosedNodesContainer::iterator closedIter = closedNodes.find(neighbour);
if(closedIter != closedNodes.end())
{
if(cost < neighbour->gVal)
{
//Probably shouldn't happen?
closedNodes.remove(closedIter);
closedIter = closedNodes.end();
}
}
if((openIter == openNodes.end()) && (closedIter == closedNodes.end()))
{
//Regarding the const_cast - normally you should not modify an object which is in an sdt::set.
//The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly,
//and changing the object directly can break the sorting. However, in our case we have provided a
//custom sort operator for the set which we know only uses the position to sort. Hence we can safely
//modify other properties of the object while it is in the set.
Node* temp = const_cast<Node*>(&(*neighbour));
temp->gVal = cost;
openNodes.insert(neighbour);
temp->parent = const_cast<Node*>(&(*current));
}
}
template<typename VolumeType>
float AStarPathfinder<VolumeType>::SixConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b)
{
//This is the only heuristic I'm sure of - just use the manhatten distance for the 6-connected case.
uint32_t faceSteps = std::abs(a.getX()-b.getX()) + std::abs(a.getY()-b.getY()) + std::abs(a.getZ()-b.getZ());
return faceSteps * 1.0f;
}
template<typename VolumeType>
float AStarPathfinder<VolumeType>::EighteenConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b)
{
//I'm not sure of the correct heuristic for the 18-connected case, so I'm just letting it fall through to the
//6-connected case. This means 'h' will be bigger than it should be, resulting in a faster path which may not
//actually be the shortest one. If you have a correct heuristic for the 18-connected case then please let me know.
return SixConnectedCost(a,b);
}
template<typename VolumeType>
float AStarPathfinder<VolumeType>::TwentySixConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b)
{
//Can't say I'm certain about this heuristic - if anyone has
//a better idea of what it should be then please let me know.
uint32_t array[3];
array[0] = std::abs(a.getX() - b.getX());
array[1] = std::abs(a.getY() - b.getY());
array[2] = std::abs(a.getZ() - b.getZ());
//Maybe this is better implemented directly
//using three compares and two swaps... but not
//until the profiler says so.
std::sort(&array[0], &array[3]);
uint32_t cornerSteps = array[0];
uint32_t edgeSteps = array[1] - array[0];
uint32_t faceSteps = array[2] - array[1];
return cornerSteps * sqrt_3 + edgeSteps * sqrt_2 + faceSteps * sqrt_1;
}
template<typename VolumeType>
float AStarPathfinder<VolumeType>::computeH(const Vector3DInt32& a, const Vector3DInt32& b)
{
float hVal;
switch(m_params.connectivity)
{
case TwentySixConnected:
hVal = TwentySixConnectedCost(a, b);
break;
case EighteenConnected:
hVal = EighteenConnectedCost(a, b);
break;
case SixConnected:
hVal = SixConnectedCost(a, b);
break;
default:
POLYVOX_THROW(std::invalid_argument, "Connectivity parameter has an unrecognised value.");
}
//Sanity checks in debug mode. These can come out eventually, but I
//want to make sure that the heuristics I've come up with make sense.
POLYVOX_ASSERT((a-b).length() <= TwentySixConnectedCost(a,b), "A* heuristic error.");
POLYVOX_ASSERT(TwentySixConnectedCost(a,b) <= EighteenConnectedCost(a,b), "A* heuristic error.");
POLYVOX_ASSERT(EighteenConnectedCost(a,b) <= SixConnectedCost(a,b), "A* heuristic error.");
//Apply the bias to the computed h value;
hVal *= m_params.hBias;
//Having computed hVal, we now apply some random bias to break ties.
//This needs to be deterministic on the input position. This random
//bias means it is much les likely that two paths are exactly the same
//length, and so far fewer nodes must be expanded to find the shortest path.
//See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S12
//Note that if the hash is zero we can have differences between the Linux vs. Windows
//(or perhaps GCC vs. VS) versions of the code. This is probably because of the way
//sorting inside the std::set works (i.e. one system swaps values which are identical
//while the other one doesn't - both approaches are valid). For the same reason we want
//to make sure that position (x,y,z) has a differnt hash from e.g. position (x,z,y).
uint32_t aX = (a.getX() << 16) & 0x00FF0000;
uint32_t aY = (a.getY() << 8) & 0x0000FF00;
uint32_t aZ = (a.getZ() ) & 0x000000FF;
uint32_t hashVal = hash(aX | aY | aZ);
//Stop hashVal going over 65535, and divide by 1000000 to make sure it is small.
hashVal &= 0x0000FFFF;
float fHash = hashVal / 1000000.0f;
//Apply the hash and return
hVal += fHash;
return hVal;
}
// Robert Jenkins' 32 bit integer hash function
// http://www.burtleburtle.net/bob/hash/integer.html
template<typename VolumeType>
uint32_t AStarPathfinder<VolumeType>::hash( uint32_t a)
{
a = (a+0x7ed55d16) + (a<<12);
a = (a^0xc761c23c) ^ (a>>19);
a = (a+0x165667b1) + (a<<5);
a = (a+0xd3a2646c) ^ (a<<9);
a = (a+0xfd7046c5) + (a<<3);
a = (a^0xb55a4f09) ^ (a>>16);
return a;
}
}