I didn't apply the changes to a few macro-heavy files as Visual Studio removes all indentation from macros, whereas the indentation can be handy to see nesting.
353 lines
14 KiB
C++
353 lines
14 KiB
C++
/*******************************************************************************
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015 David Williams and Matthew Williams
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*******************************************************************************/
|
|
|
|
#include "Impl/ErrorHandling.h"
|
|
|
|
namespace PolyVox
|
|
{
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Using this function, a voxel is considered valid for the path if it is inside the
|
|
/// volume and if its density is below that returned by the voxel's getDensity() function.
|
|
/// \return true is the voxel is valid for the path
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template<typename VolumeType>
|
|
bool aStarDefaultVoxelValidator(const VolumeType* volData, const Vector3DInt32& v3dPos)
|
|
{
|
|
//Voxels are considered valid candidates for the path if they are inside the volume...
|
|
if (volData->getEnclosingRegion().containsPoint(v3dPos) == false)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// AStarPathfinder Class
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template<typename VolumeType>
|
|
AStarPathfinder<VolumeType>::AStarPathfinder(const AStarPathfinderParams<VolumeType>& params)
|
|
:m_params(params)
|
|
{
|
|
}
|
|
|
|
template<typename VolumeType>
|
|
void AStarPathfinder<VolumeType>::execute()
|
|
{
|
|
//Clear any existing nodes
|
|
allNodes.clear();
|
|
openNodes.clear();
|
|
closedNodes.clear();
|
|
|
|
//Clear the result
|
|
m_params.result->clear();
|
|
|
|
//Iterators to start and end node.
|
|
AllNodesContainer::iterator startNode = allNodes.insert(Node(m_params.start.getX(), m_params.start.getY(), m_params.start.getZ())).first;
|
|
AllNodesContainer::iterator endNode = allNodes.insert(Node(m_params.end.getX(), m_params.end.getY(), m_params.end.getZ())).first;
|
|
|
|
//Regarding the const_cast - normally you should not modify an object which is in an sdt::set.
|
|
//The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly,
|
|
//and changing the object directly can break the sorting. However, in our case we have provided a
|
|
//custom sort operator for the set which we know only uses the position to sort. Hence we can safely
|
|
//modify other properties of the object while it is in the set.
|
|
Node* tempStart = const_cast<Node*>(&(*startNode));
|
|
tempStart->gVal = 0;
|
|
tempStart->hVal = computeH(startNode->position, endNode->position);
|
|
|
|
Node* tempEnd = const_cast<Node*>(&(*endNode));
|
|
tempEnd->hVal = 0.0f;
|
|
|
|
openNodes.insert(startNode);
|
|
|
|
float fDistStartToEnd = (endNode->position - startNode->position).length();
|
|
m_fProgress = 0.0f;
|
|
if (m_params.progressCallback)
|
|
{
|
|
m_params.progressCallback(m_fProgress);
|
|
}
|
|
|
|
while ((openNodes.empty() == false) && (openNodes.getFirst() != endNode))
|
|
{
|
|
//Move the first node from open to closed.
|
|
current = openNodes.getFirst();
|
|
openNodes.removeFirst();
|
|
closedNodes.insert(current);
|
|
|
|
//Update the user on our progress
|
|
if (m_params.progressCallback)
|
|
{
|
|
const float fMinProgresIncreament = 0.001f;
|
|
float fDistCurrentToEnd = (endNode->position - current->position).length();
|
|
float fDistNormalised = fDistCurrentToEnd / fDistStartToEnd;
|
|
float fProgress = 1.0f - fDistNormalised;
|
|
if (fProgress >= m_fProgress + fMinProgresIncreament)
|
|
{
|
|
m_fProgress = fProgress;
|
|
m_params.progressCallback(m_fProgress);
|
|
}
|
|
}
|
|
|
|
//The distance from one cell to another connected by face, edge, or corner.
|
|
const float fFaceCost = sqrt_1;
|
|
const float fEdgeCost = sqrt_2;
|
|
const float fCornerCost = sqrt_3;
|
|
|
|
//Process the neighbours. Note the deliberate lack of 'break'
|
|
//statements, larger connectivities include smaller ones.
|
|
switch (m_params.connectivity)
|
|
{
|
|
case TwentySixConnected:
|
|
processNeighbour(current->position + arrayPathfinderCorners[0], current->gVal + fCornerCost);
|
|
processNeighbour(current->position + arrayPathfinderCorners[1], current->gVal + fCornerCost);
|
|
processNeighbour(current->position + arrayPathfinderCorners[2], current->gVal + fCornerCost);
|
|
processNeighbour(current->position + arrayPathfinderCorners[3], current->gVal + fCornerCost);
|
|
processNeighbour(current->position + arrayPathfinderCorners[4], current->gVal + fCornerCost);
|
|
processNeighbour(current->position + arrayPathfinderCorners[5], current->gVal + fCornerCost);
|
|
processNeighbour(current->position + arrayPathfinderCorners[6], current->gVal + fCornerCost);
|
|
processNeighbour(current->position + arrayPathfinderCorners[7], current->gVal + fCornerCost);
|
|
|
|
case EighteenConnected:
|
|
processNeighbour(current->position + arrayPathfinderEdges[0], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[1], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[2], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[3], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[4], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[5], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[6], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[7], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[8], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[9], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[10], current->gVal + fEdgeCost);
|
|
processNeighbour(current->position + arrayPathfinderEdges[11], current->gVal + fEdgeCost);
|
|
|
|
case SixConnected:
|
|
processNeighbour(current->position + arrayPathfinderFaces[0], current->gVal + fFaceCost);
|
|
processNeighbour(current->position + arrayPathfinderFaces[1], current->gVal + fFaceCost);
|
|
processNeighbour(current->position + arrayPathfinderFaces[2], current->gVal + fFaceCost);
|
|
processNeighbour(current->position + arrayPathfinderFaces[3], current->gVal + fFaceCost);
|
|
processNeighbour(current->position + arrayPathfinderFaces[4], current->gVal + fFaceCost);
|
|
processNeighbour(current->position + arrayPathfinderFaces[5], current->gVal + fFaceCost);
|
|
}
|
|
|
|
if (allNodes.size() > m_params.maxNumberOfNodes)
|
|
{
|
|
//We've reached the specified maximum number
|
|
//of nodes. Just give up on the search.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((openNodes.empty()) || (openNodes.getFirst() != endNode))
|
|
{
|
|
//In this case we failed to find a valid path.
|
|
POLYVOX_THROW(std::runtime_error, "No path found");
|
|
}
|
|
else
|
|
{
|
|
//Regarding the const_cast - normally you should not modify an object which is in an sdt::set.
|
|
//The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly,
|
|
//and changing the object directly can break the sorting. However, in our case we have provided a
|
|
//custom sort operator for the set which we know only uses the position to sort. Hence we can safely
|
|
//modify other properties of the object while it is in the set.
|
|
Node* n = const_cast<Node*>(&(*endNode));
|
|
while (n != 0)
|
|
{
|
|
m_params.result->push_front(n->position);
|
|
n = n->parent;
|
|
}
|
|
}
|
|
|
|
if (m_params.progressCallback)
|
|
{
|
|
m_params.progressCallback(1.0f);
|
|
}
|
|
}
|
|
|
|
template<typename VolumeType>
|
|
void AStarPathfinder<VolumeType>::processNeighbour(const Vector3DInt32& neighbourPos, float neighbourGVal)
|
|
{
|
|
bool bIsVoxelValidForPath = m_params.isVoxelValidForPath(m_params.volume, neighbourPos);
|
|
if (!bIsVoxelValidForPath)
|
|
{
|
|
return;
|
|
}
|
|
|
|
float cost = neighbourGVal;
|
|
|
|
std::pair<AllNodesContainer::iterator, bool> insertResult = allNodes.insert(Node(neighbourPos.getX(), neighbourPos.getY(), neighbourPos.getZ()));
|
|
AllNodesContainer::iterator neighbour = insertResult.first;
|
|
|
|
if (insertResult.second == true) //New node, compute h.
|
|
{
|
|
Node* tempNeighbour = const_cast<Node*>(&(*neighbour));
|
|
tempNeighbour->hVal = computeH(neighbour->position, m_params.end);
|
|
}
|
|
|
|
OpenNodesContainer::iterator openIter = openNodes.find(neighbour);
|
|
if (openIter != openNodes.end())
|
|
{
|
|
if (cost < neighbour->gVal)
|
|
{
|
|
openNodes.remove(openIter);
|
|
openIter = openNodes.end();
|
|
}
|
|
}
|
|
|
|
//TODO - Nodes could keep track of if they are in open or closed? And a pointer to where they are?
|
|
ClosedNodesContainer::iterator closedIter = closedNodes.find(neighbour);
|
|
if (closedIter != closedNodes.end())
|
|
{
|
|
if (cost < neighbour->gVal)
|
|
{
|
|
//Probably shouldn't happen?
|
|
closedNodes.remove(closedIter);
|
|
closedIter = closedNodes.end();
|
|
}
|
|
}
|
|
|
|
if ((openIter == openNodes.end()) && (closedIter == closedNodes.end()))
|
|
{
|
|
//Regarding the const_cast - normally you should not modify an object which is in an sdt::set.
|
|
//The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly,
|
|
//and changing the object directly can break the sorting. However, in our case we have provided a
|
|
//custom sort operator for the set which we know only uses the position to sort. Hence we can safely
|
|
//modify other properties of the object while it is in the set.
|
|
Node* temp = const_cast<Node*>(&(*neighbour));
|
|
temp->gVal = cost;
|
|
openNodes.insert(neighbour);
|
|
temp->parent = const_cast<Node*>(&(*current));
|
|
}
|
|
}
|
|
|
|
template<typename VolumeType>
|
|
float AStarPathfinder<VolumeType>::SixConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b)
|
|
{
|
|
//This is the only heuristic I'm sure of - just use the manhatten distance for the 6-connected case.
|
|
uint32_t faceSteps = std::abs(a.getX() - b.getX()) + std::abs(a.getY() - b.getY()) + std::abs(a.getZ() - b.getZ());
|
|
|
|
return faceSteps * 1.0f;
|
|
}
|
|
|
|
template<typename VolumeType>
|
|
float AStarPathfinder<VolumeType>::EighteenConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b)
|
|
{
|
|
//I'm not sure of the correct heuristic for the 18-connected case, so I'm just letting it fall through to the
|
|
//6-connected case. This means 'h' will be bigger than it should be, resulting in a faster path which may not
|
|
//actually be the shortest one. If you have a correct heuristic for the 18-connected case then please let me know.
|
|
|
|
return SixConnectedCost(a, b);
|
|
}
|
|
|
|
template<typename VolumeType>
|
|
float AStarPathfinder<VolumeType>::TwentySixConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b)
|
|
{
|
|
//Can't say I'm certain about this heuristic - if anyone has
|
|
//a better idea of what it should be then please let me know.
|
|
uint32_t array[3];
|
|
array[0] = std::abs(a.getX() - b.getX());
|
|
array[1] = std::abs(a.getY() - b.getY());
|
|
array[2] = std::abs(a.getZ() - b.getZ());
|
|
|
|
//Maybe this is better implemented directly
|
|
//using three compares and two swaps... but not
|
|
//until the profiler says so.
|
|
std::sort(&array[0], &array[3]);
|
|
|
|
uint32_t cornerSteps = array[0];
|
|
uint32_t edgeSteps = array[1] - array[0];
|
|
uint32_t faceSteps = array[2] - array[1];
|
|
|
|
return cornerSteps * sqrt_3 + edgeSteps * sqrt_2 + faceSteps * sqrt_1;
|
|
}
|
|
|
|
template<typename VolumeType>
|
|
float AStarPathfinder<VolumeType>::computeH(const Vector3DInt32& a, const Vector3DInt32& b)
|
|
{
|
|
float hVal;
|
|
|
|
switch (m_params.connectivity)
|
|
{
|
|
case TwentySixConnected:
|
|
hVal = TwentySixConnectedCost(a, b);
|
|
break;
|
|
case EighteenConnected:
|
|
hVal = EighteenConnectedCost(a, b);
|
|
break;
|
|
case SixConnected:
|
|
hVal = SixConnectedCost(a, b);
|
|
break;
|
|
default:
|
|
POLYVOX_THROW(std::invalid_argument, "Connectivity parameter has an unrecognised value.");
|
|
}
|
|
|
|
//Sanity checks in debug mode. These can come out eventually, but I
|
|
//want to make sure that the heuristics I've come up with make sense.
|
|
POLYVOX_ASSERT((a - b).length() <= TwentySixConnectedCost(a, b), "A* heuristic error.");
|
|
POLYVOX_ASSERT(TwentySixConnectedCost(a, b) <= EighteenConnectedCost(a, b), "A* heuristic error.");
|
|
POLYVOX_ASSERT(EighteenConnectedCost(a, b) <= SixConnectedCost(a, b), "A* heuristic error.");
|
|
|
|
//Apply the bias to the computed h value;
|
|
hVal *= m_params.hBias;
|
|
|
|
//Having computed hVal, we now apply some random bias to break ties.
|
|
//This needs to be deterministic on the input position. This random
|
|
//bias means it is much les likely that two paths are exactly the same
|
|
//length, and so far fewer nodes must be expanded to find the shortest path.
|
|
//See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S12
|
|
|
|
//Note that if the hash is zero we can have differences between the Linux vs. Windows
|
|
//(or perhaps GCC vs. VS) versions of the code. This is probably because of the way
|
|
//sorting inside the std::set works (i.e. one system swaps values which are identical
|
|
//while the other one doesn't - both approaches are valid). For the same reason we want
|
|
//to make sure that position (x,y,z) has a differnt hash from e.g. position (x,z,y).
|
|
uint32_t aX = (a.getX() << 16) & 0x00FF0000;
|
|
uint32_t aY = (a.getY() << 8) & 0x0000FF00;
|
|
uint32_t aZ = (a.getZ()) & 0x000000FF;
|
|
uint32_t hashVal = hash(aX | aY | aZ);
|
|
|
|
//Stop hashVal going over 65535, and divide by 1000000 to make sure it is small.
|
|
hashVal &= 0x0000FFFF;
|
|
float fHash = hashVal / 1000000.0f;
|
|
|
|
//Apply the hash and return
|
|
hVal += fHash;
|
|
return hVal;
|
|
}
|
|
|
|
// Robert Jenkins' 32 bit integer hash function
|
|
// http://www.burtleburtle.net/bob/hash/integer.html
|
|
template<typename VolumeType>
|
|
uint32_t AStarPathfinder<VolumeType>::hash(uint32_t a)
|
|
{
|
|
a = (a + 0x7ed55d16) + (a << 12);
|
|
a = (a ^ 0xc761c23c) ^ (a >> 19);
|
|
a = (a + 0x165667b1) + (a << 5);
|
|
a = (a + 0xd3a2646c) ^ (a << 9);
|
|
a = (a + 0xfd7046c5) + (a << 3);
|
|
a = (a ^ 0xb55a4f09) ^ (a >> 16);
|
|
return a;
|
|
}
|
|
}
|