142 lines
6.1 KiB
C++
142 lines
6.1 KiB
C++
/*******************************************************************************
|
|
Copyright (c) 2005-2009 David Williams
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
*******************************************************************************/
|
|
|
|
#include "Array.h"
|
|
#include "Raycast.h"
|
|
#include "LargeVolume.h"
|
|
|
|
#include "PolyVoxImpl/RandomUnitVectors.h"
|
|
#include "PolyVoxImpl/RandomVectors.h"
|
|
|
|
namespace PolyVox
|
|
{
|
|
template <typename VoxelType>
|
|
AmbientOcclusionCalculator<VoxelType>::AmbientOcclusionCalculator(LargeVolume<VoxelType>* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement)
|
|
:m_region(region)
|
|
,m_sampVolume(volInput)
|
|
,m_volInput(volInput)
|
|
,m_arrayResult(arrayResult)
|
|
,m_fRayLength(fRayLength)
|
|
,m_uNoOfSamplesPerOutputElement(uNoOfSamplesPerOutputElement)
|
|
{
|
|
//Make sure that the size of the volume is an exact multiple of the size of the array.
|
|
assert(m_volInput->getWidth() % arrayResult->getDimension(0) == 0);
|
|
assert(m_volInput->getHeight() % arrayResult->getDimension(1) == 0);
|
|
assert(m_volInput->getDepth() % arrayResult->getDimension(2) == 0);
|
|
|
|
//Our initial indices. It doesn't matter exactly what we set here, but the code below makes
|
|
//sure they are different for different regions which helps reduce tiling patterns is the results.
|
|
mRandomUnitVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
|
|
mRandomVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
|
|
|
|
//This value helps us jump around in the array a bit more, so the
|
|
//nth 'random' value isn't always followed by the n+1th 'random' value.
|
|
mIndexIncreament = 1;
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
AmbientOcclusionCalculator<VoxelType>::~AmbientOcclusionCalculator()
|
|
{
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
void AmbientOcclusionCalculator<VoxelType>::execute(void)
|
|
{
|
|
const int iRatioX = m_volInput->getWidth() / m_arrayResult->getDimension(0);
|
|
const int iRatioY = m_volInput->getHeight() / m_arrayResult->getDimension(1);
|
|
const int iRatioZ = m_volInput->getDepth() / m_arrayResult->getDimension(2);
|
|
const int iRatioMax = std::max(std::max(iRatioX, iRatioY), iRatioZ);
|
|
|
|
const float fRatioX = iRatioX;
|
|
const float fRatioY = iRatioY;
|
|
const float fRatioZ = iRatioZ;
|
|
const float fRatioMax = iRatioMax;
|
|
const Vector3DFloat v3dRatio(fRatioX, fRatioY, fRatioZ);
|
|
|
|
const float fHalfRatioX = fRatioX * 0.5f;
|
|
const float fHalfRatioY = fRatioY * 0.5f;
|
|
const float fHalfRatioZ = fRatioZ * 0.5f;
|
|
const float fHalfRatioMax = fRatioMax * 0.5f;
|
|
const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ);
|
|
|
|
const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
|
|
|
|
RaycastResult raycastResult;
|
|
Raycast<VoxelType> raycast(m_volInput, Vector3DFloat(0.0f,0.0f,0.0f), Vector3DFloat(1.0f,1.0f,1.0f), raycastResult);
|
|
|
|
//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
|
|
for(uint16_t z = m_region.getLowerCorner().getZ(); z <= m_region.getUpperCorner().getZ(); z += iRatioZ)
|
|
{
|
|
for(uint16_t y = m_region.getLowerCorner().getY(); y <= m_region.getUpperCorner().getY(); y += iRatioY)
|
|
{
|
|
for(uint16_t x = m_region.getLowerCorner().getX(); x <= m_region.getUpperCorner().getX(); x += iRatioX)
|
|
{
|
|
//Compute a start position corresponding to
|
|
//the centre of the cell in the output array.
|
|
Vector3DFloat v3dStart(x, y, z);
|
|
v3dStart -= v3dOffset;
|
|
v3dStart += v3dHalfRatio;
|
|
|
|
//Keep track of how many rays did not hit anything
|
|
uint8_t uVisibleDirections = 0;
|
|
|
|
for(int ct = 0; ct < m_uNoOfSamplesPerOutputElement; ct++)
|
|
{
|
|
//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
|
|
//This jitter value moves our sample point from the center of the array cell to somewhere else in the array cell
|
|
Vector3DFloat v3dJitter = randomVectors[(mRandomVectorIndex += (++mIndexIncreament)) % 1019]; //Prime number helps avoid repetition on sucessive loops.
|
|
v3dJitter *= v3dHalfRatio;
|
|
const Vector3DFloat v3dRayStart = v3dStart + v3dJitter;
|
|
|
|
Vector3DFloat v3dRayDirection = randomUnitVectors[(mRandomUnitVectorIndex += (++mIndexIncreament)) % 1021]; //Differenct prime number.
|
|
v3dRayDirection *= m_fRayLength;
|
|
|
|
raycast.setStart(v3dRayStart);
|
|
raycast.setDirection(v3dRayDirection);
|
|
raycast.execute();
|
|
|
|
if(raycastResult.foundIntersection == false)
|
|
{
|
|
++uVisibleDirections;
|
|
}
|
|
}
|
|
|
|
float fVisibility;
|
|
if(m_uNoOfSamplesPerOutputElement == 0)
|
|
{
|
|
//The user might request zero samples (I've done this in the past while debugging - I don't want to
|
|
//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.
|
|
fVisibility = 1.0f;
|
|
}
|
|
else
|
|
{
|
|
fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(m_uNoOfSamplesPerOutputElement);
|
|
assert((fVisibility >= 0.0f) && (fVisibility <= 1.0f));
|
|
}
|
|
|
|
(*m_arrayResult)[z / iRatioZ][y / iRatioY][x / iRatioX] = static_cast<uint8_t>(255.0f * fVisibility);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} |