326 lines
14 KiB
C++
326 lines
14 KiB
C++
/*******************************************************************************
|
|
Copyright (c) 2005-2009 David Williams
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
*******************************************************************************/
|
|
|
|
#include "PolyVox/Impl/Timer.h"
|
|
|
|
namespace PolyVox
|
|
{
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::MarchingCubesSurfaceExtractor(VolumeType* volData, Region region, MeshType* result, ControllerType controller)
|
|
:m_volData(volData)
|
|
,m_sampVolume(volData)
|
|
,m_meshCurrent(result)
|
|
,m_regSizeInVoxels(region)
|
|
,m_controller(controller)
|
|
,m_tThreshold(m_controller.getThreshold())
|
|
{
|
|
POLYVOX_THROW_IF(m_meshCurrent == nullptr, std::invalid_argument, "Provided mesh cannot be null");
|
|
}
|
|
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::execute()
|
|
{
|
|
Timer timer;
|
|
m_meshCurrent->clear();
|
|
|
|
computeBitmaskForSlice();
|
|
|
|
m_meshCurrent->setOffset(m_regSizeInVoxels.getLowerCorner());
|
|
|
|
POLYVOX_LOG_TRACE("Marching cubes surface extraction took ", timer.elapsedTimeInMilliSeconds(),
|
|
"ms (Region size = ", m_regSizeInVoxels.getWidthInVoxels(), "x", m_regSizeInVoxels.getHeightInVoxels(),
|
|
"x", m_regSizeInVoxels.getDepthInVoxels(), ")");
|
|
}
|
|
|
|
template<typename VolumeType, typename MeshType, typename ControllerType>
|
|
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::computeBitmaskForSlice()
|
|
{
|
|
const uint32_t uArrayWidth = m_regSizeInVoxels.getUpperX() - m_regSizeInVoxels.getLowerX() + 2;
|
|
const uint32_t uArrayHeight = m_regSizeInVoxels.getUpperY() - m_regSizeInVoxels.getLowerY() + 2;
|
|
const uint32_t uArrayDepth = m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ() + 2;
|
|
|
|
//For edge indices
|
|
Array3DInt32 pIndicesX(uArrayWidth, uArrayHeight, uArrayDepth);
|
|
Array3DInt32 pIndicesY(uArrayWidth, uArrayHeight, uArrayDepth);
|
|
Array3DInt32 pIndicesZ(uArrayWidth, uArrayHeight, uArrayDepth);
|
|
|
|
memset(pIndicesX.getRawData(), 0xff, pIndicesX.getNoOfElements() * 4);
|
|
memset(pIndicesY.getRawData(), 0xff, pIndicesY.getNoOfElements() * 4);
|
|
memset(pIndicesZ.getRawData(), 0xff, pIndicesZ.getNoOfElements() * 4);
|
|
|
|
Array2DUint8 pCurrentBitmask(uArrayWidth, uArrayHeight);
|
|
Array2DUint8 pPreviousBitmask(uArrayWidth, uArrayHeight);
|
|
memset(pCurrentBitmask.getRawData(), 0x00, pCurrentBitmask.getNoOfElements());
|
|
memset(pPreviousBitmask.getRawData(), 0x00, pPreviousBitmask.getNoOfElements());
|
|
|
|
for (int32_t iZVolSpace = m_regSizeInVoxels.getLowerZ(); iZVolSpace <= m_regSizeInVoxels.getUpperZ(); iZVolSpace++)
|
|
{
|
|
const uint32_t uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerZ();
|
|
|
|
for (int32_t iYVolSpace = m_regSizeInVoxels.getLowerY(); iYVolSpace <= m_regSizeInVoxels.getUpperY(); iYVolSpace++)
|
|
{
|
|
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
|
|
|
m_sampVolume.setPosition(m_regSizeInVoxels.getLowerX(), iYVolSpace, iZVolSpace);
|
|
|
|
for (int32_t iXVolSpace = m_regSizeInVoxels.getLowerX(); iXVolSpace <= m_regSizeInVoxels.getUpperX(); iXVolSpace++)
|
|
{
|
|
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
|
|
|
uint8_t iCubeIndex = 0;
|
|
|
|
typename VolumeType::VoxelType v111 = m_sampVolume.peekVoxel0px0py0pz();
|
|
|
|
uint8_t iPreviousCubeIndexX = 0;
|
|
uint8_t iPreviousCubeIndexY = 0;
|
|
uint8_t iPreviousCubeIndexZ = 0;
|
|
|
|
if (uXRegSpace != 0) // Previous X is available
|
|
{
|
|
//x
|
|
iPreviousCubeIndexX = pCurrentBitmask(uXRegSpace - 1, uYRegSpace);
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
}
|
|
|
|
if (uYRegSpace != 0) // Previous Y is available
|
|
{
|
|
iPreviousCubeIndexY = pCurrentBitmask(uXRegSpace, uYRegSpace - 1);
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
}
|
|
|
|
if (uZRegSpace != 0) // Previous Z is available
|
|
{
|
|
iPreviousCubeIndexZ = pPreviousBitmask(uXRegSpace, uYRegSpace);
|
|
iPreviousCubeIndexZ >>= 4;
|
|
}
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128;
|
|
|
|
if (iCubeIndex != 0)
|
|
{
|
|
//Save the bitmask
|
|
pCurrentBitmask(uXRegSpace, uYRegSpace) = iCubeIndex;
|
|
}
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] != 0)
|
|
{
|
|
|
|
// These three might not have been sampled, as v111 is the only one we sample every iteration.
|
|
typename VolumeType::VoxelType v110 = m_sampVolume.peekVoxel0px0py1nz();
|
|
typename VolumeType::VoxelType v101 = m_sampVolume.peekVoxel0px1ny0pz();
|
|
typename VolumeType::VoxelType v011 = m_sampVolume.peekVoxel1nx0py0pz();
|
|
|
|
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if ((edgeTable[iCubeIndex] & 64) && (uXRegSpace > 0))
|
|
{
|
|
m_sampVolume.moveNegativeX();
|
|
POLYVOX_ASSERT(v011 != v111, "Attempting to insert vertex between two voxels with the same value");
|
|
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v011)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v011));
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
|
|
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
|
|
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v011, v111, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
|
|
|
|
m_sampVolume.movePositiveX();
|
|
}
|
|
if ((edgeTable[iCubeIndex] & 32) && (uYRegSpace > 0))
|
|
{
|
|
m_sampVolume.moveNegativeY();
|
|
POLYVOX_ASSERT(v101 != v111, "Attempting to insert vertex between two voxels with the same value");
|
|
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v101)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v101));
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
|
|
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
|
|
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v101, v111, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
|
|
|
|
m_sampVolume.movePositiveY();
|
|
}
|
|
if ((edgeTable[iCubeIndex] & 1024) && (uZRegSpace > 0))
|
|
{
|
|
m_sampVolume.moveNegativeZ();
|
|
POLYVOX_ASSERT(v110 != v111, "Attempting to insert vertex between two voxels with the same value");
|
|
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v110)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v110));
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
|
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
|
|
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
|
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
|
{
|
|
v3dNormal.normalise();
|
|
}
|
|
|
|
// Allow the controller to decide how the material should be derived from the voxels.
|
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v110, v111, fInterp);
|
|
|
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
surfaceVertex.data = uMaterial;
|
|
|
|
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
|
|
|
|
m_sampVolume.movePositiveZ();
|
|
}
|
|
|
|
// Now output the indices. For the first row, column or slice there aren't
|
|
// any (the region size in cells is one less than the region size in voxels)
|
|
if ((uXRegSpace != 0) && (uYRegSpace != 0) && (uZRegSpace != 0))
|
|
{
|
|
|
|
int32_t indlist[12];
|
|
|
|
m_sampVolume.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] != 0)
|
|
{
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (edgeTable[iCubeIndex] & 1)
|
|
{
|
|
indlist[0] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace - 1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2)
|
|
{
|
|
indlist[1] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace - 1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 4)
|
|
{
|
|
indlist[2] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace - 1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 8)
|
|
{
|
|
indlist[3] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace - 1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 16)
|
|
{
|
|
indlist[4] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 32)
|
|
{
|
|
indlist[5] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 64)
|
|
{
|
|
indlist[6] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 128)
|
|
{
|
|
indlist[7] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 256)
|
|
{
|
|
indlist[8] = pIndicesZ(uXRegSpace - 1, uYRegSpace - 1, uZRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 512)
|
|
{
|
|
indlist[9] = pIndicesZ(uXRegSpace, uYRegSpace - 1, uZRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 1024)
|
|
{
|
|
indlist[10] = pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2048)
|
|
{
|
|
indlist[11] = pIndicesZ(uXRegSpace - 1, uYRegSpace, uZRegSpace);
|
|
}
|
|
|
|
for (int i = 0; triTable[iCubeIndex][i] != -1; i += 3)
|
|
{
|
|
const int32_t ind0 = indlist[triTable[iCubeIndex][i]];
|
|
const int32_t ind1 = indlist[triTable[iCubeIndex][i + 1]];
|
|
const int32_t ind2 = indlist[triTable[iCubeIndex][i + 2]];
|
|
|
|
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
|
|
{
|
|
m_meshCurrent->addTriangle(ind0, ind1, ind2);
|
|
}
|
|
} // For each triangle
|
|
}
|
|
}
|
|
} // For each cell
|
|
m_sampVolume.movePositiveX();
|
|
} // For X
|
|
} // For Y
|
|
|
|
pPreviousBitmask.swap(pCurrentBitmask);
|
|
memset(pCurrentBitmask.getRawData(), 0x00, pCurrentBitmask.getNoOfElements());
|
|
} // For Z
|
|
}
|
|
}
|