polyvox/library/PolyVoxCore/source/MeshDecimator.cpp
2011-04-20 23:25:32 +01:00

158 lines
7.6 KiB
C++

#include "MeshDecimator.h"
#include "SurfaceMesh.h"
namespace PolyVox
{
template<>
POLYVOX_API void MeshDecimator<PositionMaterial>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
{
vecVertexMetadata.clear();
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
//Initialise the metadata
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
vecVertexMetadata[ct].normal.setElements(0,0,0);
vecVertexMetadata[ct].isOnMaterialEdge = false;
vecVertexMetadata[ct].isOnRegionFace.reset();
}
//Identify duplicate vertices, as they lie on the material edge. To do this we convert into integers and sort
//(first on z, then y, then x). They should be mostly in order as this is the order they come out of the
//CubicSurfaceExtractor in. Duplicates are now neighbours in the resulting list so just scan through for pairs.
std::vector<IntVertex> intVertices;
intVertices.reserve(m_pOutputMesh->m_vecVertices.size());
for(int ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
{
const Vector3DFloat& floatPos = m_pOutputMesh->m_vecVertices[ct].position;
IntVertex intVertex(static_cast<uint32_t>(floatPos.getX()), static_cast<uint32_t>(floatPos.getY()), static_cast<uint32_t>(floatPos.getZ()), ct);
intVertices.push_back(intVertex);
}
//Do the sorting so that duplicate become neighbours
sort(intVertices.begin(), intVertices.end());
//Find neighbours which are duplicates.
for(int ct = 0; ct < intVertices.size() - 1; ct++)
{
const IntVertex& v0 = intVertices[ct+0];
const IntVertex& v1 = intVertices[ct+1];
if((v0.x == v1.x) && (v0.y == v1.y) && (v0.z == v1.z))
{
vecVertexMetadata[v0.index].isOnMaterialEdge = true;
vecVertexMetadata[v1.index].isOnMaterialEdge = true;
}
}
//Compute an approcimation to the normal, used when deciding if an edge can collapse.
for(int ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
{
Vector3DFloat sumOfNormals(0.0f,0.0f,0.0f);
for(vector<uint32_t>::const_iterator iter = trianglesUsingVertex[ct].cbegin(); iter != trianglesUsingVertex[ct].cend(); iter++)
{
sumOfNormals += m_vecTriangles[*iter].normal;
}
vecVertexMetadata[ct].normal = sumOfNormals;
vecVertexMetadata[ct].normal.normalise();
}
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
Region regTransformed = m_pOutputMesh->m_Region;
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int32_t>(-1));
//Plus and minus X
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
//Plus and minus Y
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
//Plus and minus Z
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
}
}
template<>
POLYVOX_API void MeshDecimator<PositionMaterialNormal>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
{
vecVertexMetadata.clear();
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
//Initialise the metadata
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
vecVertexMetadata[ct].isOnRegionFace.reset();
vecVertexMetadata[ct].isOnMaterialEdge = false;
vecVertexMetadata[ct].normal = m_pOutputMesh->m_vecVertices[ct].normal;
}
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
Region regTransformed = m_pOutputMesh->m_Region;
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int32_t>(-1));
//Plus and minus X
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
//Plus and minus Y
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
//Plus and minus Z
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
}
//If all three vertices have the same material then we are not on a material edge. If any vertex has a different
//material then all three vertices are on a material edge. E.g. If one vertex has material 'a' and the other two
//have material 'b', then the two 'b's are still on an edge (with 'a') even though they are the same as eachother.
for(int ct = 0; ct < m_vecTriangles.size(); ct++)
{
uint32_t v0 = m_vecTriangles[ct].v0;
uint32_t v1 = m_vecTriangles[ct].v1;
uint32_t v2 = m_vecTriangles[ct].v2;
bool allMatch =
(m_pOutputMesh->m_vecVertices[v0].material == m_pOutputMesh->m_vecVertices[v1].material) &&
(m_pOutputMesh->m_vecVertices[v1].material == m_pOutputMesh->m_vecVertices[v2].material);
if(!allMatch)
{
vecVertexMetadata[v0].isOnMaterialEdge = true;
vecVertexMetadata[v1].isOnMaterialEdge = true;
vecVertexMetadata[v2].isOnMaterialEdge = true;
}
}
}
template<>
POLYVOX_API bool MeshDecimator<PositionMaterialNormal>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
{
if(m_vecInitialVertexMetadata[uSrc].normal.dot(m_vecInitialVertexMetadata[uDst].normal) < m_fMinDotProductForCollapse)
{
return false;
}
//With the marching cubes surface we honour the user specified threshold
return !collapseChangesFaceNormals(uSrc, uDst, m_fMinDotProductForCollapse);
}
template<>
POLYVOX_API bool MeshDecimator<PositionMaterial>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
{
//We don't actually use the normal here, because we want to allow face
//vertices to collapse onto edge vertices. Simply checking whether anything
//has flipped has proved to be the most robust approach, though rather slow.
//It's not sufficient to just check the normals, there can be holes in the middle
//of the mesh for example.
//User specified threshold is not used for cubic surface, any
//movement is too much (but allow for floating point error).
return !collapseChangesFaceNormals(uSrc, uDst, 0.999f);
}
}