polyvox/source/SurfaceExtractors.cpp

803 lines
31 KiB
C++

#include "SurfaceExtractors.h"
#include "BlockVolume.h"
#include "GradientEstimators.h"
#include "IndexedSurfacePatch.h"
#include "MarchingCubesTables.h"
#include "Region.h"
#include "RegionGeometry.h"
#include "VolumeChangeTracker.h"
#include "BlockVolumeIterator.h"
using namespace boost;
namespace PolyVox
{
std::list<RegionGeometry> getChangedRegionGeometry(VolumeChangeTracker& volume)
{
std::list<Region> listChangedRegions;
volume.getChangedRegions(listChangedRegions);
std::list<RegionGeometry> listChangedRegionGeometry;
for(std::list<Region>::const_iterator iterChangedRegions = listChangedRegions.begin(); iterChangedRegions != listChangedRegions.end(); ++iterChangedRegions)
{
//Generate the surface
RegionGeometry regionGeometry;
regionGeometry.m_patchSingleMaterial = new IndexedSurfacePatch(false);
regionGeometry.m_patchMultiMaterial = new IndexedSurfacePatch(true);
regionGeometry.m_v3dRegionPosition = iterChangedRegions->getLowerCorner();
generateRoughMeshDataForRegion(volume.getVolumeData(), *iterChangedRegions, regionGeometry.m_patchSingleMaterial, regionGeometry.m_patchMultiMaterial);
genMultiFromSingle(regionGeometry.m_patchSingleMaterial, regionGeometry.m_patchMultiMaterial);
regionGeometry.m_bContainsSingleMaterialPatch = regionGeometry.m_patchSingleMaterial->getVertices().size() > 0;
regionGeometry.m_bContainsMultiMaterialPatch = regionGeometry.m_patchMultiMaterial->getVertices().size() > 0;
regionGeometry.m_bIsEmpty = ((regionGeometry.m_patchSingleMaterial->getVertices().size() == 0) && (regionGeometry.m_patchMultiMaterial->getIndices().size() == 0));
listChangedRegionGeometry.push_back(regionGeometry);
}
return listChangedRegionGeometry;
}
void genMultiFromSingle(IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch)
{
std::vector<SurfaceVertex>& vertices = singleMaterialPatch->m_vecVertices;
std::vector<boost::uint32_t>& indices = singleMaterialPatch->m_vecTriangleIndices;
if(vertices.size() == 0)
{
return;
}
for(boost::uint32_t ct = 0; ct < indices.size()-2; ct+=3)
{
if((vertices[indices[ct]].getMaterial() != vertices[indices[ct+1]].getMaterial()) || (vertices[indices[ct]].getMaterial() != vertices[indices[ct+2]].getMaterial()))
{
SurfaceVertex vert0 = vertices[indices[ct+0]];
SurfaceVertex vert1 = vertices[indices[ct+1]];
SurfaceVertex vert2 = vertices[indices[ct+2]];
float mat0 = vert0.getMaterial();
float mat1 = vert1.getMaterial();
float mat2 = vert2.getMaterial();
if((mat0 == mat1) && (mat1 == mat2))
{
exit(1);
}
vert0.setMaterial(mat0); vert0.setAlpha(1.0);
vert1.setMaterial(mat0); vert1.setAlpha(0.0);
vert2.setMaterial(mat0); vert2.setAlpha(0.0);
multiMaterialPatch->addTriangle(vert0, vert1, vert2);
vert0.setMaterial(mat1); vert0.setAlpha(0.0);
vert1.setMaterial(mat1); vert1.setAlpha(1.0);
vert2.setMaterial(mat1); vert2.setAlpha(0.0);
multiMaterialPatch->addTriangle(vert0, vert1, vert2);
vert0.setMaterial(mat2); vert0.setAlpha(0.0);
vert1.setMaterial(mat2); vert1.setAlpha(0.0);
vert2.setMaterial(mat2); vert2.setAlpha(1.0);
multiMaterialPatch->addTriangle(vert0, vert1, vert2);
/*vert0.setMaterial(vertices[indices[ct+1]].getMaterial()); vert0.setAlpha(0.0);
vert1.setMaterial(vertices[indices[ct+1]].getMaterial()); vert1.setAlpha(1.0);
vert2.setMaterial(vertices[indices[ct+1]].getMaterial()); vert2.setAlpha(0.0);
multiMaterialPatch->addTriangle(vert0, vert1, vert2);*/
/*vert0.setMaterial(vertices[indices[ct+2]].getMaterial()); vert0.setAlpha(0.0);
vert1.setMaterial(vertices[indices[ct+2]].getMaterial()); vert1.setAlpha(1.0);
vert2.setMaterial(vertices[indices[ct+2]].getMaterial()); vert2.setAlpha(0.0);
multiMaterialPatch->addTriangle(vert0, vert1, vert2);*/
//multiMaterialPatch->addTriangle(vert0Alpha0, vert1Alpha1, vert2Alpha0);
//multiMaterialPatch->addTriangle(vert0Alpha0, vert1Alpha0, vert2Alpha1);
/*SurfaceVertex v0 = vertices[indices[ct+0]]; v0.setMaterial(2.1); v0.setAlpha(1.0);
SurfaceVertex v1 = vertices[indices[ct+1]]; v1.setMaterial(2.1); v1.setAlpha(1.0);
SurfaceVertex v2 = vertices[indices[ct+2]]; v2.setMaterial(2.1); v2.setAlpha(1.0);
multiMaterialPatch->addTriangle(v0,v1,v2);*/
}
}
}
void generateRoughMeshDataForRegion(BlockVolume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch)
{
//When generating the mesh for a region we actually look one voxel outside it in the
// back, bottom, right direction. Protect against access violations by cropping region here
Region regVolume = volumeData->getEnclosingRegion();
regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1));
region.cropTo(regVolume);
//Offset from lower block corner
const Vector3DFloat offset = static_cast<Vector3DFloat>(region.getLowerCorner());
Vector3DFloat vertlist[12];
uint8_t vertMaterials[12];
BlockVolumeIterator<boost::uint8_t> volIter(*volumeData);
volIter.setValidRegion(region);
//////////////////////////////////////////////////////////////////////////
//Get mesh data
//////////////////////////////////////////////////////////////////////////
//Iterate over each cell in the region
for(volIter.setPosition(region.getLowerCorner().getX(),region.getLowerCorner().getY(), region.getLowerCorner().getZ());volIter.isValidForRegion();volIter.moveForwardInRegion())
{
//Current position
const uint16_t x = volIter.getPosX();
const uint16_t y = volIter.getPosY();
const uint16_t z = volIter.getPosZ();
//Voxels values
const uint8_t v000 = volIter.getVoxel();
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = 0;
if (v000 == 0) iCubeIndex |= 1;
if (v100 == 0) iCubeIndex |= 2;
if (v110 == 0) iCubeIndex |= 4;
if (v010 == 0) iCubeIndex |= 8;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 64;
if (v011 == 0) iCubeIndex |= 128;
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
vertlist[0].setX(x + 0.5f);
vertlist[0].setY(y);
vertlist[0].setZ(z);
vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max.
}
if (edgeTable[iCubeIndex] & 2)
{
vertlist[1].setX(x + 1.0f);
vertlist[1].setY(y + 0.5f);
vertlist[1].setZ(z);
vertMaterials[1] = v100 | v110;
}
if (edgeTable[iCubeIndex] & 4)
{
vertlist[2].setX(x + 0.5f);
vertlist[2].setY(y + 1.0f);
vertlist[2].setZ(z);
vertMaterials[2] = v010 | v110;
}
if (edgeTable[iCubeIndex] & 8)
{
vertlist[3].setX(x);
vertlist[3].setY(y + 0.5f);
vertlist[3].setZ(z);
vertMaterials[3] = v000 | v010;
}
if (edgeTable[iCubeIndex] & 16)
{
vertlist[4].setX(x + 0.5f);
vertlist[4].setY(y);
vertlist[4].setZ(z + 1.0f);
vertMaterials[4] = v001 | v101;
}
if (edgeTable[iCubeIndex] & 32)
{
vertlist[5].setX(x + 1.0f);
vertlist[5].setY(y + 0.5f);
vertlist[5].setZ(z + 1.0f);
vertMaterials[5] = v101 | v111;
}
if (edgeTable[iCubeIndex] & 64)
{
vertlist[6].setX(x + 0.5f);
vertlist[6].setY(y + 1.0f);
vertlist[6].setZ(z + 1.0f);
vertMaterials[6] = v011 | v111;
}
if (edgeTable[iCubeIndex] & 128)
{
vertlist[7].setX(x);
vertlist[7].setY(y + 0.5f);
vertlist[7].setZ(z + 1.0f);
vertMaterials[7] = v001 | v011;
}
if (edgeTable[iCubeIndex] & 256)
{
vertlist[8].setX(x);
vertlist[8].setY(y);
vertlist[8].setZ(z + 0.5f);
vertMaterials[8] = v000 | v001;
}
if (edgeTable[iCubeIndex] & 512)
{
vertlist[9].setX(x + 1.0f);
vertlist[9].setY(y);
vertlist[9].setZ(z + 0.5f);
vertMaterials[9] = v100 | v101;
}
if (edgeTable[iCubeIndex] & 1024)
{
vertlist[10].setX(x + 1.0f);
vertlist[10].setY(y + 1.0f);
vertlist[10].setZ(z + 0.5f);
vertMaterials[10] = v110 | v111;
}
if (edgeTable[iCubeIndex] & 2048)
{
vertlist[11].setX(x);
vertlist[11].setY(y + 1.0f);
vertlist[11].setZ(z + 0.5f);
vertMaterials[11] = v010 | v011;
}
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
{
//The three vertices forming a triangle
const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset;
const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset;
const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset;
//Cast to floats and divide by two.
//const Vector3DFloat vertex0AsFloat = (static_cast<Vector3DFloat>(vertex0) / 2.0f) - offset;
//const Vector3DFloat vertex1AsFloat = (static_cast<Vector3DFloat>(vertex1) / 2.0f) - offset;
//const Vector3DFloat vertex2AsFloat = (static_cast<Vector3DFloat>(vertex2) / 2.0f) - offset;
const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]];
const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]];
const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]];
//If all the materials are the same, we just need one triangle for that material with all the alphas set high.
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f);
singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}//For each triangle
}//For each cell
//FIXME - can it happen that we have no vertices or triangles? Should exit early?
//for(std::map<uint8_t, IndexedSurfacePatch*>::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch)
{
std::vector<SurfaceVertex>::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin();
while(iterSurfaceVertex != singleMaterialPatch->getVertices().end())
{
Vector3DFloat tempNormal = computeNormal(volumeData, static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
++iterSurfaceVertex;
}
iterSurfaceVertex = multiMaterialPatch->getVertices().begin();
while(iterSurfaceVertex != multiMaterialPatch->getVertices().end())
{
Vector3DFloat tempNormal = computeNormal(volumeData, static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
++iterSurfaceVertex;
}
uint16_t noOfRemovedVertices = 0;
//do
{
//noOfRemovedVertices = iterPatch->second.decimate();
}
//while(noOfRemovedVertices > 10); //We don't worry about the last few vertices - it's not worth the overhead of calling the function.
}
//return singleMaterialPatch;
}
Vector3DFloat computeNormal(BlockVolume<uint8_t>* volumeData, const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod)
{
const float posX = position.getX();
const float posY = position.getY();
const float posZ = position.getZ();
const uint16_t floorX = static_cast<uint16_t>(posX);
const uint16_t floorY = static_cast<uint16_t>(posY);
const uint16_t floorZ = static_cast<uint16_t>(posZ);
//Check all corners are within the volume, allowing a boundary for gradient estimation
bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1);
bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1);
if((!lowerCornerInside) || (!upperCornerInside))
{
normalGenerationMethod = SIMPLE;
}
Vector3DFloat result;
BlockVolumeIterator<boost::uint8_t> volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create?
if(normalGenerationMethod == SOBEL)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const Vector3DFloat gradFloor = computeSobelGradient(volIter);
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX+1.0),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
}
if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY+1.0),static_cast<uint16_t>(posZ));
}
if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ+1.0));
}
const Vector3DFloat gradCeil = computeSobelGradient(volIter);
result = ((gradFloor + gradCeil) * -1.0f);
if(result.lengthSquared() < 0.0001)
{
//Operation failed - fall back on simple gradient estimation
normalGenerationMethod = SIMPLE;
}
}
if(normalGenerationMethod == CENTRAL_DIFFERENCE)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const Vector3DFloat gradFloor = computeCentralDifferenceGradient(volIter);
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX+1.0),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
}
if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY+1.0),static_cast<uint16_t>(posZ));
}
if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ+1.0));
}
const Vector3DFloat gradCeil = computeCentralDifferenceGradient(volIter);
result = ((gradFloor + gradCeil) * -1.0f);
if(result.lengthSquared() < 0.0001)
{
//Operation failed - fall back on simple gradient estimation
normalGenerationMethod = SIMPLE;
}
}
if(normalGenerationMethod == SIMPLE)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0;
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0;
result = Vector3DFloat(static_cast<float>(uFloor - uCeil),0.0,0.0);
}
else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0;
result = Vector3DFloat(0.0,static_cast<float>(uFloor - uCeil),0.0);
}
else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0;
result = Vector3DFloat(0.0, 0.0,static_cast<float>(uFloor - uCeil));
}
}
return result;
}
void generateSmoothMeshDataForRegion(BlockVolume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch)
{
//When generating the mesh for a region we actually look one voxel outside it in the
// back, bottom, right direction. Protect against access violations by cropping region here
Region regVolume = volumeData->getEnclosingRegion();
regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1));
region.cropTo(regVolume);
//Offset from lower block corner
const Vector3DFloat offset = static_cast<Vector3DFloat>(region.getLowerCorner());
Vector3DFloat vertlist[12];
uint8_t vertMaterials[12];
BlockVolumeIterator<boost::uint8_t> volIter(*volumeData);
volIter.setValidRegion(region);
const float threshold = 0.5f;
//////////////////////////////////////////////////////////////////////////
//Get mesh data
//////////////////////////////////////////////////////////////////////////
//Iterate over each cell in the region
for(volIter.setPosition(region.getLowerCorner().getX(),region.getLowerCorner().getY(), region.getLowerCorner().getZ());volIter.isValidForRegion();volIter.moveForwardInRegion())
{
//Current position
const uint16_t x = volIter.getPosX();
const uint16_t y = volIter.getPosY();
const uint16_t z = volIter.getPosZ();
//Voxels values
BlockVolumeIterator<boost::uint8_t> tempVolIter(*volumeData);
tempVolIter.setPosition(x,y,z);
const float v000 = tempVolIter.getAveragedVoxel(1);
tempVolIter.setPosition(x+1,y,z);
const float v100 = tempVolIter.getAveragedVoxel(1);
tempVolIter.setPosition(x,y+1,z);
const float v010 = tempVolIter.getAveragedVoxel(1);
tempVolIter.setPosition(x+1,y+1,z);
const float v110 = tempVolIter.getAveragedVoxel(1);
tempVolIter.setPosition(x,y,z+1);
const float v001 = tempVolIter.getAveragedVoxel(1);
tempVolIter.setPosition(x+1,y,z+1);
const float v101 = tempVolIter.getAveragedVoxel(1);
tempVolIter.setPosition(x,y+1,z+1);
const float v011 = tempVolIter.getAveragedVoxel(1);
tempVolIter.setPosition(x+1,y+1,z+1);
const float v111 = tempVolIter.getAveragedVoxel(1);
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = 0;
if (v000 < threshold) iCubeIndex |= 1;
if (v100 < threshold) iCubeIndex |= 2;
if (v110 < threshold) iCubeIndex |= 4;
if (v010 < threshold) iCubeIndex |= 8;
if (v001 < threshold) iCubeIndex |= 16;
if (v101 < threshold) iCubeIndex |= 32;
if (v111 < threshold) iCubeIndex |= 64;
if (v011 < threshold) iCubeIndex |= 128;
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
float a = v000;
float b = v100;
float val = (threshold-a)/(b-a);
vertlist[0].setX(x + val);
vertlist[0].setY(y);
vertlist[0].setZ(z);
vertMaterials[0] = 1;//v000 | v100; //Because one of these is 0, the or operation takes the max.
}
if (edgeTable[iCubeIndex] & 2)
{
float a = v100;
float b = v110;
float val = (threshold-a)/(b-a);
vertlist[1].setX(x + 1.0f);
vertlist[1].setY(y + val);
vertlist[1].setZ(z);
vertMaterials[1] = 1;//v100 | v110;
}
if (edgeTable[iCubeIndex] & 4)
{
float a = v010;
float b = v110;
float val = (threshold-a)/(b-a);
vertlist[2].setX(x + val);
vertlist[2].setY(y + 1.0f);
vertlist[2].setZ(z);
vertMaterials[2] = 1;//v010 | v110;
}
if (edgeTable[iCubeIndex] & 8)
{
float a = v000;
float b = v010;
float val = (threshold-a)/(b-a);
vertlist[3].setX(x);
vertlist[3].setY(y + val);
vertlist[3].setZ(z);
vertMaterials[3] = 1;//v000 | v010;
}
if (edgeTable[iCubeIndex] & 16)
{
float a = v001;
float b = v101;
float val = (threshold-a)/(b-a);
vertlist[4].setX(x + val);
vertlist[4].setY(y);
vertlist[4].setZ(z + 1.0f);
vertMaterials[4] = 1;//v001 | v101;
}
if (edgeTable[iCubeIndex] & 32)
{
float a = v101;
float b = v111;
float val = (threshold-a)/(b-a);
vertlist[5].setX(x + 1.0f);
vertlist[5].setY(y + val);
vertlist[5].setZ(z + 1.0f);
vertMaterials[5] = 1;//v101 | v111;
}
if (edgeTable[iCubeIndex] & 64)
{
float a = v011;
float b = v111;
float val = (threshold-a)/(b-a);
vertlist[6].setX(x + val);
vertlist[6].setY(y + 1.0f);
vertlist[6].setZ(z + 1.0f);
vertMaterials[6] = 1;//v011 | v111;
}
if (edgeTable[iCubeIndex] & 128)
{
float a = v001;
float b = v011;
float val = (threshold-a)/(b-a);
vertlist[7].setX(x);
vertlist[7].setY(y + val);
vertlist[7].setZ(z + 1.0f);
vertMaterials[7] = 1;//v001 | v011;
}
if (edgeTable[iCubeIndex] & 256)
{
float a = v000;
float b = v001;
float val = (threshold-a)/(b-a);
vertlist[8].setX(x);
vertlist[8].setY(y);
vertlist[8].setZ(z + val);
vertMaterials[8] = 1;//v000 | v001;
}
if (edgeTable[iCubeIndex] & 512)
{
float a = v100;
float b = v101;
float val = (threshold-a)/(b-a);
vertlist[9].setX(x + 1.0f);
vertlist[9].setY(y);
vertlist[9].setZ(z + val);
vertMaterials[9] = 1;//v100 | v101;
}
if (edgeTable[iCubeIndex] & 1024)
{
float a = v110;
float b = v111;
float val = (threshold-a)/(b-a);
vertlist[10].setX(x + 1.0f);
vertlist[10].setY(y + 1.0f);
vertlist[10].setZ(z + val);
vertMaterials[10] = 1;//v110 | v111;
}
if (edgeTable[iCubeIndex] & 2048)
{
float a = v010;
float b = v011;
float val = (threshold-a)/(b-a);
vertlist[11].setX(x);
vertlist[11].setY(y + 1.0f);
vertlist[11].setZ(z + val);
vertMaterials[11] = 1;//v010 | v011;
}
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
{
//The three vertices forming a triangle
const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset;
const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset;
const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset;
const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]];
const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]];
const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]];
//If all the materials are the same, we just need one triangle for that material with all the alphas set high.
/*if((material0 == material1) && (material1 == material2))
{*/
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f);
singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
/*}
else if(material0 == material1)
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}
else if(material0 == material2)
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}
else if(material1 == material2)
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}
else
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}*/
}//For each triangle
}//For each cell
//FIXME - can it happen that we have no vertices or triangles? Should exit early?
//for(std::map<uint8_t, IndexedSurfacePatch*>::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch)
{
std::vector<SurfaceVertex>::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin();
while(iterSurfaceVertex != singleMaterialPatch->getVertices().end())
{
Vector3DFloat tempNormal = computeSmoothNormal(volumeData, static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
++iterSurfaceVertex;
}
iterSurfaceVertex = multiMaterialPatch->getVertices().begin();
while(iterSurfaceVertex != multiMaterialPatch->getVertices().end())
{
Vector3DFloat tempNormal = computeSmoothNormal(volumeData, static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
++iterSurfaceVertex;
}
}
}
Vector3DFloat computeSmoothNormal(BlockVolume<uint8_t>* volumeData, const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod)
{
const float posX = position.getX();
const float posY = position.getY();
const float posZ = position.getZ();
const uint16_t floorX = static_cast<uint16_t>(posX);
const uint16_t floorY = static_cast<uint16_t>(posY);
const uint16_t floorZ = static_cast<uint16_t>(posZ);
//Check all corners are within the volume, allowing a boundary for gradient estimation
bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1);
bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1);
if((!lowerCornerInside) || (!upperCornerInside))
{
normalGenerationMethod = SIMPLE;
}
Vector3DFloat result;
BlockVolumeIterator<boost::uint8_t> volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create?
if(normalGenerationMethod == SOBEL)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const Vector3DFloat gradFloor = computeSobelGradient(volIter);
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX+1.0),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
}
if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY+1.0),static_cast<uint16_t>(posZ));
}
if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ+1.0));
}
const Vector3DFloat gradCeil = computeSobelGradient(volIter);
result = ((gradFloor + gradCeil) * -1.0f);
if(result.lengthSquared() < 0.0001)
{
//Operation failed - fall back on simple gradient estimation
normalGenerationMethod = SIMPLE;
}
}
if(normalGenerationMethod == CENTRAL_DIFFERENCE)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const Vector3DFloat gradFloor = computeSmoothCentralDifferenceGradient(volIter);
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX+1.0),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
}
if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY+1.0),static_cast<uint16_t>(posZ));
}
if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ+1.0));
}
const Vector3DFloat gradCeil = computeSmoothCentralDifferenceGradient(volIter);
result = ((gradFloor + gradCeil) * -1.0f);
if(result.lengthSquared() < 0.0001)
{
//Operation failed - fall back on simple gradient estimation
normalGenerationMethod = SIMPLE;
}
}
if(normalGenerationMethod == SIMPLE)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0;
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0;
result = Vector3DFloat(static_cast<float>(uFloor - uCeil),0.0,0.0);
}
else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0;
result = Vector3DFloat(0.0,static_cast<float>(uFloor - uCeil),0.0);
}
else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0;
result = Vector3DFloat(0.0, 0.0,static_cast<float>(uFloor - uCeil));
}
}
return result;
}
}