867 lines
35 KiB
C++
867 lines
35 KiB
C++
#include "SurfaceExtractor.h"
|
|
|
|
#include "IndexedSurfacePatch.h"
|
|
#include "PolyVoxImpl/MarchingCubesTables.h"
|
|
#include "SurfaceVertex.h"
|
|
|
|
namespace PolyVox
|
|
{
|
|
SurfaceExtractor::SurfaceExtractor(Volume<uint8_t>& volData)
|
|
:m_uLodLevel(0)
|
|
,m_volData(volData)
|
|
,m_iterVolume(volData)
|
|
{
|
|
}
|
|
|
|
uint8_t SurfaceExtractor::getLodLevel(void)
|
|
{
|
|
return m_uLodLevel;
|
|
}
|
|
|
|
void SurfaceExtractor::setLodLevel(uint8_t uLodLevel)
|
|
{
|
|
m_uLodLevel = uLodLevel;
|
|
}
|
|
|
|
POLYVOX_SHARED_PTR<IndexedSurfacePatch> SurfaceExtractor::extractSurfaceForRegion(Region region)
|
|
{
|
|
POLYVOX_SHARED_PTR<IndexedSurfacePatch> result(new IndexedSurfacePatch());
|
|
|
|
extractSurfaceImpl(&m_volData, m_uLodLevel, region, result.get());
|
|
|
|
result->m_Region = region;
|
|
|
|
return result;
|
|
}
|
|
|
|
uint32_t SurfaceExtractor::getIndex(uint32_t x, uint32_t y, uint32_t regionWidth)
|
|
{
|
|
return x + (y * (regionWidth+1));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Level 0
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*uint32_t SurfaceExtractor::computeBitmaskForSliceLevel0(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask)
|
|
{
|
|
uint32_t uNoOfNonEmptyCells = 0;
|
|
|
|
//Iterate over each cell in the region
|
|
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace++)
|
|
{
|
|
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace++)
|
|
{
|
|
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
|
//Current position
|
|
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
|
|
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
uint8_t iCubeIndex = 0;
|
|
|
|
if((uXVolSpace < volIter.getVolume().getWidth()-1) &&
|
|
(uYVolSpace < volIter.getVolume().getHeight()-1) &&
|
|
(uZVolSpace < volIter.getVolume().getDepth()-1))
|
|
{
|
|
bool isPrevXAvail = uXRegSpace > 0;
|
|
bool isPrevYAvail = uYRegSpace > 0;
|
|
bool isPrevZAvail = previousBitmask != 0;
|
|
|
|
if(isPrevZAvail)
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 160; //160 = 128+32
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
|
|
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
|
|
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
|
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iCubeIndex = iPreviousCubeIndexZ >> 4;
|
|
|
|
if (v001 == 0) iCubeIndex |= 16;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
else //previous Z not available
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
|
|
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
|
|
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
|
|
|
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY;
|
|
|
|
if (v010 == 0) iCubeIndex |= 4;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
|
|
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
|
|
|
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX;
|
|
|
|
if (v100 == 0) iCubeIndex |= 2;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
const uint8_t v000 = volIter.getVoxel();
|
|
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
|
|
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
|
|
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
|
|
|
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
|
|
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
|
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
|
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
|
|
|
if (v000 == 0) iCubeIndex |= 1;
|
|
if (v100 == 0) iCubeIndex |= 2;
|
|
if (v010 == 0) iCubeIndex |= 4;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v001 == 0) iCubeIndex |= 16;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else //We're at the edge of the volume - use bounds checking.
|
|
{
|
|
const uint8_t v000 = volIter.getVoxel();
|
|
const uint8_t v100 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace );
|
|
const uint8_t v010 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace );
|
|
const uint8_t v110 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace );
|
|
|
|
const uint8_t v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace , uZVolSpace+1);
|
|
const uint8_t v101 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace+1);
|
|
const uint8_t v011 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace+1);
|
|
const uint8_t v111 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1);
|
|
|
|
if (v000 == 0) iCubeIndex |= 1;
|
|
if (v100 == 0) iCubeIndex |= 2;
|
|
if (v010 == 0) iCubeIndex |= 4;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v001 == 0) iCubeIndex |= 16;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
|
|
//Save the bitmask
|
|
bitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = iCubeIndex;
|
|
|
|
if(edgeTable[iCubeIndex] != 0)
|
|
{
|
|
++uNoOfNonEmptyCells;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return uNoOfNonEmptyCells;
|
|
}*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Level 1
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void SurfaceExtractor::extractSurfaceImpl(Volume<uint8_t>* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch)
|
|
{
|
|
singleMaterialPatch->clear();
|
|
|
|
//For edge indices
|
|
//FIXME - do the slices need to be this big? Surely for a decimated mesh they can be smaller?
|
|
//FIXME - Instead of region.width()+2 we used to use POLYVOX_REGION_SIDE_LENGTH+1
|
|
//Normally POLYVOX_REGION_SIDE_LENGTH is the same as region.width() (often 32) but at the
|
|
//edges of the volume it is 1 smaller. Need to think what values really belong here.
|
|
int32_t* vertexIndicesX0 = new int32_t[(region.width()+8) * (region.height()+8)];
|
|
int32_t* vertexIndicesY0 = new int32_t[(region.width()+8) * (region.height()+8)];
|
|
int32_t* vertexIndicesZ0 = new int32_t[(region.width()+8) * (region.height()+8)];
|
|
int32_t* vertexIndicesX1 = new int32_t[(region.width()+8) * (region.height()+8)];
|
|
int32_t* vertexIndicesY1 = new int32_t[(region.width()+8) * (region.height()+8)];
|
|
int32_t* vertexIndicesZ1 = new int32_t[(region.width()+8) * (region.height()+8)];
|
|
|
|
//Cell bitmasks
|
|
uint8_t* bitmask0 = new uint8_t[(region.width()+8) * (region.height()+8)];
|
|
uint8_t* bitmask1 = new uint8_t[(region.width()+8) * (region.height()+8)];
|
|
|
|
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
|
|
|
//When generating the mesh for a region we actually look outside it in the
|
|
// back, bottom, right direction. Protect against access violations by cropping region here
|
|
Region regVolume = volumeData->getEnclosingRegion();
|
|
if(uLevel > 0)
|
|
{
|
|
regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(2*uStepSize-1,2*uStepSize-1,2*uStepSize-1));
|
|
}
|
|
region.cropTo(regVolume);
|
|
|
|
//Offset from volume corner
|
|
const Vector3DFloat offset = static_cast<Vector3DFloat>(region.getLowerCorner());
|
|
|
|
//Create a region corresponding to the first slice
|
|
Region regSlice0(region);
|
|
Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner();
|
|
v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
|
|
regSlice0.setUpperCorner(v3dUpperCorner);
|
|
|
|
//Iterator to access the volume data
|
|
VolumeSampler<uint8_t> volIter(*volumeData);
|
|
|
|
//Compute bitmask for initial slice
|
|
uint32_t uNoOfNonEmptyCellsForSlice0 = computeBitmaskForSlice(volIter, uLevel, regSlice0, offset, bitmask0, 0);
|
|
if(uNoOfNonEmptyCellsForSlice0 != 0)
|
|
{
|
|
//If there were some non-empty cells then generate initial slice vertices for them
|
|
generateVerticesForSlice(volIter, uLevel, regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0);
|
|
}
|
|
|
|
for(uint32_t uSlice = 1; ((uSlice <= region.depth()) && (uSlice + offset.getZ() <= regVolume.getUpperCorner().getZ())); uSlice += uStepSize)
|
|
{
|
|
Region regSlice1(regSlice0);
|
|
regSlice1.shift(Vector3DInt32(0,0,uStepSize));
|
|
|
|
uint32_t uNoOfNonEmptyCellsForSlice1 = computeBitmaskForSlice(volIter, uLevel, regSlice1, offset, bitmask1, bitmask0);
|
|
|
|
if(uNoOfNonEmptyCellsForSlice1 != 0)
|
|
{
|
|
generateVerticesForSlice(volIter, uLevel, regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
|
|
}
|
|
|
|
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
|
|
{
|
|
generateIndicesForSlice(volIter, uLevel, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
|
|
}
|
|
|
|
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
|
|
std::swap(bitmask0, bitmask1);
|
|
std::swap(vertexIndicesX0, vertexIndicesX1);
|
|
std::swap(vertexIndicesY0, vertexIndicesY1);
|
|
std::swap(vertexIndicesZ0, vertexIndicesZ1);
|
|
|
|
regSlice0 = regSlice1;
|
|
}
|
|
|
|
delete[] bitmask0;
|
|
delete[] bitmask1;
|
|
delete[] vertexIndicesX0;
|
|
delete[] vertexIndicesX1;
|
|
delete[] vertexIndicesY0;
|
|
delete[] vertexIndicesY1;
|
|
delete[] vertexIndicesZ0;
|
|
delete[] vertexIndicesZ1;
|
|
|
|
|
|
/*std::vector<SurfaceVertex>::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin();
|
|
while(iterSurfaceVertex != singleMaterialPatch->getVertices().end())
|
|
{
|
|
Vector3DFloat tempNormal = computeDecimatedNormal(volumeData, static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
|
|
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
|
|
++iterSurfaceVertex;
|
|
}*/
|
|
}
|
|
|
|
uint32_t SurfaceExtractor::computeBitmaskForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask)
|
|
{
|
|
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
|
uint32_t uNoOfNonEmptyCells = 0;
|
|
|
|
//Iterate over each cell in the region
|
|
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace += uStepSize)
|
|
{
|
|
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace += uStepSize)
|
|
{
|
|
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
|
//Current position
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
|
|
|
const uint16_t uXRegSpace = uXVolSpace - offset.getX();
|
|
const uint16_t uYRegSpace = uYVolSpace - offset.getY();
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
uint8_t iCubeIndex = 0;
|
|
|
|
if((uXVolSpace < volIter.getVolume().getWidth()-uStepSize) &&
|
|
(uYVolSpace < volIter.getVolume().getHeight()-uStepSize) &&
|
|
(uZVolSpace < volIter.getVolume().getDepth()-uStepSize))
|
|
{
|
|
bool isPrevXAvail = uXRegSpace > 0;
|
|
bool isPrevYAvail = uYRegSpace > 0;
|
|
bool isPrevZAvail = previousBitmask != 0;
|
|
|
|
if(isPrevZAvail)
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 128;
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
|
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 160; //160 = 128+32
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
|
|
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+uStepSize);
|
|
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
|
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
iCubeIndex = iPreviousCubeIndexZ >> 4;
|
|
|
|
if (v001 == 0) iCubeIndex |= 16;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
else //previous Z not available
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
|
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
|
|
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace);
|
|
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
|
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY;
|
|
|
|
if (v010 == 0) iCubeIndex |= 4;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace);
|
|
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
|
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
|
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX;
|
|
|
|
if (v100 == 0) iCubeIndex |= 2;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
|
const uint8_t v000 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace);
|
|
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace);
|
|
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
|
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+uStepSize);
|
|
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
|
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
|
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
|
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
if (v000 == 0) iCubeIndex |= 1;
|
|
if (v100 == 0) iCubeIndex |= 2;
|
|
if (v010 == 0) iCubeIndex |= 4;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v001 == 0) iCubeIndex |= 16;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(uLevel == 0)
|
|
{
|
|
const uint8_t v000 = volIter.getVoxel();
|
|
const uint8_t v100 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace );
|
|
const uint8_t v010 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace );
|
|
const uint8_t v110 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace );
|
|
|
|
const uint8_t v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace , uZVolSpace+1);
|
|
const uint8_t v101 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace+1);
|
|
const uint8_t v011 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace+1);
|
|
const uint8_t v111 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1);
|
|
|
|
if (v000 == 0) iCubeIndex |= 1;
|
|
if (v100 == 0) iCubeIndex |= 2;
|
|
if (v010 == 0) iCubeIndex |= 4;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v001 == 0) iCubeIndex |= 16;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
else
|
|
{
|
|
const uint8_t v000 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace+1, uYVolSpace , uZVolSpace );
|
|
const uint8_t v100 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace , uYVolSpace+1, uZVolSpace );
|
|
const uint8_t v010 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace+1, uYVolSpace+1, uZVolSpace );
|
|
const uint8_t v110 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
|
|
volIter.setPosition(uXVolSpace , uYVolSpace , uZVolSpace+1);
|
|
const uint8_t v001 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace+1, uYVolSpace , uZVolSpace+1);
|
|
const uint8_t v101 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace , uYVolSpace+1, uZVolSpace+1);
|
|
const uint8_t v011 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
volIter.setPosition(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1);
|
|
const uint8_t v111 = volIter.getSubSampledVoxelWithBoundsCheck(uLevel);
|
|
|
|
if (v000 == 0) iCubeIndex |= 1;
|
|
if (v100 == 0) iCubeIndex |= 2;
|
|
if (v010 == 0) iCubeIndex |= 4;
|
|
if (v110 == 0) iCubeIndex |= 8;
|
|
if (v001 == 0) iCubeIndex |= 16;
|
|
if (v101 == 0) iCubeIndex |= 32;
|
|
if (v011 == 0) iCubeIndex |= 64;
|
|
if (v111 == 0) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
|
|
//Save the bitmask
|
|
bitmask[getIndex(uXRegSpace,uYVolSpace- offset.getY(), regSlice.width()+1)] = iCubeIndex;
|
|
|
|
if(edgeTable[iCubeIndex] != 0)
|
|
{
|
|
++uNoOfNonEmptyCells;
|
|
}
|
|
|
|
}//For each cell
|
|
}
|
|
|
|
return uNoOfNonEmptyCells;
|
|
}
|
|
|
|
void SurfaceExtractor::generateVerticesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[])
|
|
{
|
|
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
|
|
|
//Iterate over each cell in the region
|
|
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace += uStepSize)
|
|
{
|
|
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace += uStepSize)
|
|
{
|
|
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
|
|
|
//Current position
|
|
const uint16_t uXRegSpace = uXVolSpace - offset.getX();
|
|
const uint16_t uYRegSpace = uYVolSpace - offset.getY();
|
|
const uint16_t uZRegSpace = uZVolSpace - offset.getZ();
|
|
|
|
//Current position
|
|
//const uint16_t z = regSlice.getLowerCorner().getZ();
|
|
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
|
const uint8_t v000 = volIter.getSubSampledVoxel(uLevel);
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
uint8_t iCubeIndex = bitmask[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)];
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (edgeTable[iCubeIndex] & 1)
|
|
{
|
|
if(uXVolSpace != regSlice.getUpperCorner().getX())
|
|
{
|
|
volIter.setPosition(uXVolSpace + uStepSize,uYVolSpace,uZVolSpace);
|
|
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
|
|
const Vector3DFloat v3dPosition(uXVolSpace - offset.getX() + 0.5f * uStepSize, uYVolSpace - offset.getY(), uZVolSpace - offset.getZ());
|
|
const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0);
|
|
const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max.
|
|
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
|
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
|
vertexIndicesX[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
|
|
}
|
|
}
|
|
if (edgeTable[iCubeIndex] & 8)
|
|
{
|
|
if(uYVolSpace != regSlice.getUpperCorner().getY())
|
|
{
|
|
volIter.setPosition(uXVolSpace,uYVolSpace + uStepSize,uZVolSpace);
|
|
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
|
|
const Vector3DFloat v3dPosition(uXVolSpace - offset.getX(), uYVolSpace - offset.getY() + 0.5f * uStepSize, uZVolSpace - offset.getZ());
|
|
const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0);
|
|
const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max.
|
|
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
|
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
|
vertexIndicesY[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
|
|
}
|
|
}
|
|
if (edgeTable[iCubeIndex] & 256)
|
|
{
|
|
//if(z != regSlice.getUpperCorner.getZ())
|
|
{
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace + uStepSize);
|
|
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
|
|
const Vector3DFloat v3dPosition(uXVolSpace - offset.getX(), uYVolSpace - offset.getY(), uZVolSpace - offset.getZ() + 0.5f * uStepSize);
|
|
const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f);
|
|
const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max.
|
|
const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
|
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
|
vertexIndicesZ[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
|
|
}
|
|
}
|
|
}//For each cell
|
|
}
|
|
}
|
|
|
|
void SurfaceExtractor::generateIndicesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[])
|
|
{
|
|
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
|
uint32_t indlist[12];
|
|
|
|
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace < regSlice.getUpperCorner().getY(); uYVolSpace += uStepSize)
|
|
{
|
|
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace < regSlice.getUpperCorner().getX(); uXVolSpace += uStepSize)
|
|
{
|
|
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
|
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
|
|
|
//Current position
|
|
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
|
|
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
|
|
const uint16_t uZRegSpace = volIter.getPosZ() - offset.getZ();
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
uint8_t iCubeIndex = bitmask0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (edgeTable[iCubeIndex] & 1)
|
|
{
|
|
indlist[0] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[0] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2)
|
|
{
|
|
indlist[1] = vertexIndicesY0[getIndex(uXRegSpace+uStepSize,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[1] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 4)
|
|
{
|
|
indlist[2] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace+uStepSize, regSlice.width()+1)];
|
|
assert(indlist[2] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 8)
|
|
{
|
|
indlist[3] = vertexIndicesY0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[3] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 16)
|
|
{
|
|
indlist[4] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[4] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 32)
|
|
{
|
|
indlist[5] = vertexIndicesY1[getIndex(uXRegSpace+uStepSize,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[5] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 64)
|
|
{
|
|
indlist[6] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace+uStepSize, regSlice.width()+1)];
|
|
assert(indlist[6] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 128)
|
|
{
|
|
indlist[7] = vertexIndicesY1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[7] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 256)
|
|
{
|
|
indlist[8] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[8] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 512)
|
|
{
|
|
indlist[9] = vertexIndicesZ0[getIndex(uXRegSpace+uStepSize,uYRegSpace, regSlice.width()+1)];
|
|
assert(indlist[9] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 1024)
|
|
{
|
|
indlist[10] = vertexIndicesZ0[getIndex(uXRegSpace+uStepSize,uYRegSpace+uStepSize, regSlice.width()+1)];
|
|
assert(indlist[10] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2048)
|
|
{
|
|
indlist[11] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace+uStepSize, regSlice.width()+1)];
|
|
assert(indlist[11] != -1);
|
|
}
|
|
|
|
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
|
|
{
|
|
uint32_t ind0 = indlist[triTable[iCubeIndex][i ]];
|
|
uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
|
|
uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
|
|
|
|
singleMaterialPatch->addTriangle(ind0, ind1, ind2);
|
|
}//For each triangle
|
|
}//For each cell
|
|
}
|
|
}
|
|
} |