Update code to current Chromium master

This corresponds to:

Chromium: 6555f9456074c0c0e5f7713564b978588ac04a5d
webrtc: c8b569e0a7ad0b369e15f0197b3a558699ec8efa
This commit is contained in:
Arun Raghavan
2015-11-04 10:07:52 +05:30
parent 9bc60d3e10
commit 34abadd258
108 changed files with 893 additions and 384 deletions

View File

@ -27,33 +27,21 @@ namespace {
// Alpha for the Kaiser Bessel Derived window.
const float kKbdAlpha = 1.5f;
// The minimum value a post-processing mask can take.
const float kMaskMinimum = 0.01f;
const float kSpeedOfSoundMeterSeconds = 343;
// For both target and interference angles, PI / 2 is perpendicular to the
// microphone array, facing forwards. The positive direction goes
// counterclockwise.
// The angle at which we amplify sound.
const float kTargetAngleRadians = static_cast<float>(M_PI) / 2.f;
// The minimum separation in radians between the target direction and an
// interferer scenario.
const float kMinAwayRadians = 0.2f;
// The angle at which we suppress sound. Suppression is symmetric around PI / 2
// radians, so sound is suppressed at both +|kInterfAngleRadians| and
// PI - |kInterfAngleRadians|. Since the beamformer is robust, this should
// suppress sound coming from close angles as well.
const float kInterfAngleRadians = static_cast<float>(M_PI) / 4.f;
// The separation between the target direction and the closest interferer
// scenario is proportional to this constant.
const float kAwaySlope = 0.008f;
// When calculating the interference covariance matrix, this is the weight for
// the weighted average between the uniform covariance matrix and the angled
// covariance matrix.
// Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance)
const float kBalance = 0.4f;
const float kHalfBeamWidthRadians = static_cast<float>(M_PI) * 20.f / 180.f;
// TODO(claguna): need comment here.
const float kBeamwidthConstant = 0.00002f;
const float kBalance = 0.95f;
// Alpha coefficients for mask smoothing.
const float kMaskTimeSmoothAlpha = 0.2f;
@ -64,17 +52,28 @@ const float kMaskFrequencySmoothAlpha = 0.6f;
const int kLowMeanStartHz = 200;
const int kLowMeanEndHz = 400;
const int kHighMeanStartHz = 3000;
const int kHighMeanEndHz = 5000;
// Range limiter for subtractive terms in the nominator and denominator of the
// postfilter expression. It handles the scenario mismatch between the true and
// model sources (target and interference).
const float kCutOffConstant = 0.9999f;
// Quantile of mask values which is used to estimate target presence.
const float kMaskQuantile = 0.7f;
// Mask threshold over which the data is considered signal and not interference.
const float kMaskTargetThreshold = 0.3f;
// It has to be updated every time the postfilter calculation is changed
// significantly.
// TODO(aluebs): Write a tool to tune the target threshold automatically based
// on files annotated with target and interference ground truth.
const float kMaskTargetThreshold = 0.01f;
// Time in seconds after which the data is considered interference if the mask
// does not pass |kMaskTargetThreshold|.
const float kHoldTargetSeconds = 0.25f;
// To compensate for the attenuation this algorithm introduces to the target
// signal. It was estimated empirically from a low-noise low-reverberation
// recording from broadside.
const float kCompensationGain = 2.f;
// Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is
// used; to accomplish this, we compute both multiplications in the same loop.
// The returned norm is clamped to be non-negative.
@ -179,13 +178,23 @@ std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) {
} // namespace
const float NonlinearBeamformer::kHalfBeamWidthRadians = DegreesToRadians(20.f);
// static
const size_t NonlinearBeamformer::kNumFreqBins;
NonlinearBeamformer::NonlinearBeamformer(
const std::vector<Point>& array_geometry)
: num_input_channels_(array_geometry.size()),
array_geometry_(GetCenteredArray(array_geometry)) {
const std::vector<Point>& array_geometry,
SphericalPointf target_direction)
: num_input_channels_(array_geometry.size()),
array_geometry_(GetCenteredArray(array_geometry)),
array_normal_(GetArrayNormalIfExists(array_geometry)),
min_mic_spacing_(GetMinimumSpacing(array_geometry)),
target_angle_radians_(target_direction.azimuth()),
away_radians_(std::min(
static_cast<float>(M_PI),
std::max(kMinAwayRadians,
kAwaySlope * static_cast<float>(M_PI) / min_mic_spacing_))) {
WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_);
}
@ -193,32 +202,12 @@ void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) {
chunk_length_ =
static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms));
sample_rate_hz_ = sample_rate_hz;
low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_);
low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_);
high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_);
high_mean_end_bin_ = Round(kHighMeanEndHz * kFftSize / sample_rate_hz_);
// These bin indexes determine the regions over which a mean is taken. This
// is applied as a constant value over the adjacent end "frequency correction"
// regions.
//
// low_mean_start_bin_ high_mean_start_bin_
// v v constant
// |----------------|--------|----------------|-------|----------------|
// constant ^ ^
// low_mean_end_bin_ high_mean_end_bin_
//
RTC_DCHECK_GT(low_mean_start_bin_, 0U);
RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_);
RTC_DCHECK_LT(low_mean_end_bin_, high_mean_end_bin_);
RTC_DCHECK_LT(high_mean_start_bin_, high_mean_end_bin_);
RTC_DCHECK_LT(high_mean_end_bin_, kNumFreqBins - 1);
high_pass_postfilter_mask_ = 1.f;
is_target_present_ = false;
hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize;
interference_blocks_count_ = hold_target_blocks_;
lapped_transform_.reset(new LappedTransform(num_input_channels_,
1,
chunk_length_,
@ -231,34 +220,88 @@ void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) {
final_mask_[i] = 1.f;
float freq_hz = (static_cast<float>(i) / kFftSize) * sample_rate_hz_;
wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds;
mask_thresholds_[i] = num_input_channels_ * num_input_channels_ *
kBeamwidthConstant * wave_numbers_[i] *
wave_numbers_[i];
}
// Initialize all nonadaptive values before looping through the frames.
InitDelaySumMasks();
InitTargetCovMats();
InitInterfCovMats();
InitLowFrequencyCorrectionRanges();
InitDiffuseCovMats();
AimAt(SphericalPointf(target_angle_radians_, 0.f, 1.f));
}
for (size_t i = 0; i < kNumFreqBins; ++i) {
rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]);
rpsiws_[i] = Norm(interf_cov_mats_[i], delay_sum_masks_[i]);
reflected_rpsiws_[i] =
Norm(reflected_interf_cov_mats_[i], delay_sum_masks_[i]);
// These bin indexes determine the regions over which a mean is taken. This is
// applied as a constant value over the adjacent end "frequency correction"
// regions.
//
// low_mean_start_bin_ high_mean_start_bin_
// v v constant
// |----------------|--------|----------------|-------|----------------|
// constant ^ ^
// low_mean_end_bin_ high_mean_end_bin_
//
void NonlinearBeamformer::InitLowFrequencyCorrectionRanges() {
low_mean_start_bin_ = Round(kLowMeanStartHz * kFftSize / sample_rate_hz_);
low_mean_end_bin_ = Round(kLowMeanEndHz * kFftSize / sample_rate_hz_);
RTC_DCHECK_GT(low_mean_start_bin_, 0U);
RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_);
}
void NonlinearBeamformer::InitHighFrequencyCorrectionRanges() {
const float kAliasingFreqHz =
kSpeedOfSoundMeterSeconds /
(min_mic_spacing_ * (1.f + std::abs(std::cos(target_angle_radians_))));
const float kHighMeanStartHz = std::min(0.5f * kAliasingFreqHz,
sample_rate_hz_ / 2.f);
const float kHighMeanEndHz = std::min(0.75f * kAliasingFreqHz,
sample_rate_hz_ / 2.f);
high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_);
high_mean_end_bin_ = Round(kHighMeanEndHz * kFftSize / sample_rate_hz_);
RTC_DCHECK_LT(low_mean_end_bin_, high_mean_end_bin_);
RTC_DCHECK_LT(high_mean_start_bin_, high_mean_end_bin_);
RTC_DCHECK_LT(high_mean_end_bin_, kNumFreqBins - 1);
}
void NonlinearBeamformer::InitInterfAngles() {
interf_angles_radians_.clear();
const Point target_direction = AzimuthToPoint(target_angle_radians_);
const Point clockwise_interf_direction =
AzimuthToPoint(target_angle_radians_ - away_radians_);
if (!array_normal_ ||
DotProduct(*array_normal_, target_direction) *
DotProduct(*array_normal_, clockwise_interf_direction) >=
0.f) {
// The target and clockwise interferer are in the same half-plane defined
// by the array.
interf_angles_radians_.push_back(target_angle_radians_ - away_radians_);
} else {
// Otherwise, the interferer will begin reflecting back at the target.
// Instead rotate it away 180 degrees.
interf_angles_radians_.push_back(target_angle_radians_ - away_radians_ +
M_PI);
}
const Point counterclock_interf_direction =
AzimuthToPoint(target_angle_radians_ + away_radians_);
if (!array_normal_ ||
DotProduct(*array_normal_, target_direction) *
DotProduct(*array_normal_, counterclock_interf_direction) >=
0.f) {
// The target and counter-clockwise interferer are in the same half-plane
// defined by the array.
interf_angles_radians_.push_back(target_angle_radians_ + away_radians_);
} else {
// Otherwise, the interferer will begin reflecting back at the target.
// Instead rotate it away 180 degrees.
interf_angles_radians_.push_back(target_angle_radians_ + away_radians_ -
M_PI);
}
}
void NonlinearBeamformer::InitDelaySumMasks() {
for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
delay_sum_masks_[f_ix].Resize(1, num_input_channels_);
CovarianceMatrixGenerator::PhaseAlignmentMasks(f_ix,
kFftSize,
sample_rate_hz_,
kSpeedOfSoundMeterSeconds,
array_geometry_,
kTargetAngleRadians,
&delay_sum_masks_[f_ix]);
CovarianceMatrixGenerator::PhaseAlignmentMasks(
f_ix, kFftSize, sample_rate_hz_, kSpeedOfSoundMeterSeconds,
array_geometry_, target_angle_radians_, &delay_sum_masks_[f_ix]);
complex_f norm_factor = sqrt(
ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix]));
@ -273,40 +316,53 @@ void NonlinearBeamformer::InitTargetCovMats() {
for (size_t i = 0; i < kNumFreqBins; ++i) {
target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]);
complex_f normalization_factor = target_cov_mats_[i].Trace();
target_cov_mats_[i].Scale(1.f / normalization_factor);
}
}
void NonlinearBeamformer::InitDiffuseCovMats() {
for (size_t i = 0; i < kNumFreqBins; ++i) {
uniform_cov_mat_[i].Resize(num_input_channels_, num_input_channels_);
CovarianceMatrixGenerator::UniformCovarianceMatrix(
wave_numbers_[i], array_geometry_, &uniform_cov_mat_[i]);
complex_f normalization_factor = uniform_cov_mat_[i].elements()[0][0];
uniform_cov_mat_[i].Scale(1.f / normalization_factor);
uniform_cov_mat_[i].Scale(1 - kBalance);
}
}
void NonlinearBeamformer::InitInterfCovMats() {
for (size_t i = 0; i < kNumFreqBins; ++i) {
interf_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
ComplexMatrixF uniform_cov_mat(num_input_channels_, num_input_channels_);
ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_);
interf_cov_mats_[i].clear();
for (size_t j = 0; j < interf_angles_radians_.size(); ++j) {
interf_cov_mats_[i].push_back(new ComplexMatrixF(num_input_channels_,
num_input_channels_));
ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_);
CovarianceMatrixGenerator::AngledCovarianceMatrix(
kSpeedOfSoundMeterSeconds,
interf_angles_radians_[j],
i,
kFftSize,
kNumFreqBins,
sample_rate_hz_,
array_geometry_,
&angled_cov_mat);
// Normalize matrices before averaging them.
complex_f normalization_factor = angled_cov_mat.elements()[0][0];
angled_cov_mat.Scale(1.f / normalization_factor);
// Weighted average of matrices.
angled_cov_mat.Scale(kBalance);
interf_cov_mats_[i][j]->Add(uniform_cov_mat_[i], angled_cov_mat);
}
}
}
CovarianceMatrixGenerator::UniformCovarianceMatrix(wave_numbers_[i],
array_geometry_,
&uniform_cov_mat);
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSoundMeterSeconds,
kInterfAngleRadians,
i,
kFftSize,
kNumFreqBins,
sample_rate_hz_,
array_geometry_,
&angled_cov_mat);
// Normalize matrices before averaging them.
complex_f normalization_factor = uniform_cov_mat.Trace();
uniform_cov_mat.Scale(1.f / normalization_factor);
normalization_factor = angled_cov_mat.Trace();
angled_cov_mat.Scale(1.f / normalization_factor);
// Average matrices.
uniform_cov_mat.Scale(1 - kBalance);
angled_cov_mat.Scale(kBalance);
interf_cov_mats_[i].Add(uniform_cov_mat, angled_cov_mat);
reflected_interf_cov_mats_[i].PointwiseConjugate(interf_cov_mats_[i]);
void NonlinearBeamformer::NormalizeCovMats() {
for (size_t i = 0; i < kNumFreqBins; ++i) {
rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]);
rpsiws_[i].clear();
for (size_t j = 0; j < interf_angles_radians_.size(); ++j) {
rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i]));
}
}
}
@ -322,28 +378,32 @@ void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input,
const float ramp_increment =
(high_pass_postfilter_mask_ - old_high_pass_mask) /
input.num_frames_per_band();
// Apply delay and sum and post-filter in the time domain. WARNING: only works
// because delay-and-sum is not frequency dependent.
// Apply the smoothed high-pass mask to the first channel of each band.
// This can be done because the effct of the linear beamformer is negligible
// compared to the post-filter.
for (size_t i = 1; i < input.num_bands(); ++i) {
float smoothed_mask = old_high_pass_mask;
for (size_t j = 0; j < input.num_frames_per_band(); ++j) {
smoothed_mask += ramp_increment;
// Applying the delay and sum (at zero degrees, this is equivalent to
// averaging).
float sum = 0.f;
for (int k = 0; k < input.num_channels(); ++k) {
sum += input.channels(i)[k][j];
}
output->channels(i)[0][j] = sum / input.num_channels() * smoothed_mask;
output->channels(i)[0][j] = input.channels(i)[0][j] * smoothed_mask;
}
}
}
void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) {
target_angle_radians_ = target_direction.azimuth();
InitHighFrequencyCorrectionRanges();
InitInterfAngles();
InitDelaySumMasks();
InitTargetCovMats();
InitInterfCovMats();
NormalizeCovMats();
}
bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) {
// If more than half-beamwidth degrees away from the beam's center,
// you are out of the beam.
return fabs(spherical_point.azimuth() - kTargetAngleRadians) <
return fabs(spherical_point.azimuth() - target_angle_radians_) <
kHalfBeamWidthRadians;
}
@ -376,17 +436,19 @@ void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input,
rmw *= rmw;
float rmw_r = rmw.real();
new_mask_[i] = CalculatePostfilterMask(interf_cov_mats_[i],
rpsiws_[i],
new_mask_[i] = CalculatePostfilterMask(*interf_cov_mats_[i][0],
rpsiws_[i][0],
ratio_rxiw_rxim,
rmw_r,
mask_thresholds_[i]);
new_mask_[i] *= CalculatePostfilterMask(reflected_interf_cov_mats_[i],
reflected_rpsiws_[i],
ratio_rxiw_rxim,
rmw_r,
mask_thresholds_[i]);
rmw_r);
for (size_t j = 1; j < interf_angles_radians_.size(); ++j) {
float tmp_mask = CalculatePostfilterMask(*interf_cov_mats_[i][j],
rpsiws_[i][j],
ratio_rxiw_rxim,
rmw_r);
if (tmp_mask < new_mask_[i]) {
new_mask_[i] = tmp_mask;
}
}
}
ApplyMaskTimeSmoothing();
@ -401,24 +463,16 @@ float NonlinearBeamformer::CalculatePostfilterMask(
const ComplexMatrixF& interf_cov_mat,
float rpsiw,
float ratio_rxiw_rxim,
float rmw_r,
float mask_threshold) {
float rmw_r) {
float rpsim = Norm(interf_cov_mat, eig_m_);
// Find lambda.
float ratio = 0.f;
if (rpsim > 0.f) {
ratio = rpsiw / rpsim;
}
float numerator = rmw_r - ratio;
float denominator = ratio_rxiw_rxim - ratio;
float mask = 1.f;
if (denominator > mask_threshold) {
float lambda = numerator / denominator;
mask = std::max(lambda * ratio_rxiw_rxim / rmw_r, kMaskMinimum);
}
return mask;
return (1.f - std::min(kCutOffConstant, ratio / rmw_r)) /
(1.f - std::min(kCutOffConstant, ratio / ratio_rxiw_rxim));
}
void NonlinearBeamformer::ApplyMasks(const complex_f* const* input,
@ -433,7 +487,7 @@ void NonlinearBeamformer::ApplyMasks(const complex_f* const* input,
output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix];
}
output_channel[f_ix] *= final_mask_[f_ix];
output_channel[f_ix] *= kCompensationGain * final_mask_[f_ix];
}
}