Initial commit of source files

This commit is contained in:
Arun Raghavan
2011-09-15 08:08:41 +05:30
parent 87ca4f70f3
commit 35f5c9ced4
181 changed files with 42648 additions and 0 deletions

View File

@ -0,0 +1,3 @@
bjornv@webrtc.org
tina.legrand@webrtc.org
jan.skoglund@webrtc.org

View File

@ -0,0 +1,166 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This header file includes the inline functions in
// the fix point signal processing library.
#ifndef WEBRTC_SPL_SPL_INL_H_
#define WEBRTC_SPL_SPL_INL_H_
#ifdef WEBRTC_ARCH_ARM_V7A
#include "spl_inl_armv7.h"
#else
static __inline WebRtc_Word16 WebRtcSpl_AddSatW16(WebRtc_Word16 a,
WebRtc_Word16 b) {
WebRtc_Word32 s_sum = (WebRtc_Word32) a + (WebRtc_Word32) b;
if (s_sum > WEBRTC_SPL_WORD16_MAX)
s_sum = WEBRTC_SPL_WORD16_MAX;
else if (s_sum < WEBRTC_SPL_WORD16_MIN)
s_sum = WEBRTC_SPL_WORD16_MIN;
return (WebRtc_Word16)s_sum;
}
static __inline WebRtc_Word32 WebRtcSpl_AddSatW32(WebRtc_Word32 l_var1,
WebRtc_Word32 l_var2) {
WebRtc_Word32 l_sum;
// perform long addition
l_sum = l_var1 + l_var2;
// check for under or overflow
if (WEBRTC_SPL_IS_NEG(l_var1)) {
if (WEBRTC_SPL_IS_NEG(l_var2) && !WEBRTC_SPL_IS_NEG(l_sum)) {
l_sum = (WebRtc_Word32)0x80000000;
}
} else {
if (!WEBRTC_SPL_IS_NEG(l_var2) && WEBRTC_SPL_IS_NEG(l_sum)) {
l_sum = (WebRtc_Word32)0x7FFFFFFF;
}
}
return l_sum;
}
static __inline WebRtc_Word16 WebRtcSpl_SubSatW16(WebRtc_Word16 var1,
WebRtc_Word16 var2) {
WebRtc_Word32 l_diff;
WebRtc_Word16 s_diff;
// perform subtraction
l_diff = (WebRtc_Word32)var1 - (WebRtc_Word32)var2;
// default setting
s_diff = (WebRtc_Word16) l_diff;
// check for overflow
if (l_diff > (WebRtc_Word32)32767)
s_diff = (WebRtc_Word16)32767;
// check for underflow
if (l_diff < (WebRtc_Word32)-32768)
s_diff = (WebRtc_Word16)-32768;
return s_diff;
}
static __inline WebRtc_Word32 WebRtcSpl_SubSatW32(WebRtc_Word32 l_var1,
WebRtc_Word32 l_var2) {
WebRtc_Word32 l_diff;
// perform subtraction
l_diff = l_var1 - l_var2;
// check for underflow
if ((l_var1 < 0) && (l_var2 > 0) && (l_diff > 0))
l_diff = (WebRtc_Word32)0x80000000;
// check for overflow
if ((l_var1 > 0) && (l_var2 < 0) && (l_diff < 0))
l_diff = (WebRtc_Word32)0x7FFFFFFF;
return l_diff;
}
static __inline WebRtc_Word16 WebRtcSpl_GetSizeInBits(WebRtc_UWord32 n) {
int bits;
if (0xFFFF0000 & n) {
bits = 16;
} else {
bits = 0;
}
if (0x0000FF00 & (n >> bits)) bits += 8;
if (0x000000F0 & (n >> bits)) bits += 4;
if (0x0000000C & (n >> bits)) bits += 2;
if (0x00000002 & (n >> bits)) bits += 1;
if (0x00000001 & (n >> bits)) bits += 1;
return bits;
}
static __inline int WebRtcSpl_NormW32(WebRtc_Word32 a) {
int zeros;
if (a <= 0) a ^= 0xFFFFFFFF;
if (!(0xFFFF8000 & a)) {
zeros = 16;
} else {
zeros = 0;
}
if (!(0xFF800000 & (a << zeros))) zeros += 8;
if (!(0xF8000000 & (a << zeros))) zeros += 4;
if (!(0xE0000000 & (a << zeros))) zeros += 2;
if (!(0xC0000000 & (a << zeros))) zeros += 1;
return zeros;
}
static __inline int WebRtcSpl_NormU32(WebRtc_UWord32 a) {
int zeros;
if (a == 0) return 0;
if (!(0xFFFF0000 & a)) {
zeros = 16;
} else {
zeros = 0;
}
if (!(0xFF000000 & (a << zeros))) zeros += 8;
if (!(0xF0000000 & (a << zeros))) zeros += 4;
if (!(0xC0000000 & (a << zeros))) zeros += 2;
if (!(0x80000000 & (a << zeros))) zeros += 1;
return zeros;
}
static __inline int WebRtcSpl_NormW16(WebRtc_Word16 a) {
int zeros;
if (a <= 0) a ^= 0xFFFF;
if (!(0xFF80 & a)) {
zeros = 8;
} else {
zeros = 0;
}
if (!(0xF800 & (a << zeros))) zeros += 4;
if (!(0xE000 & (a << zeros))) zeros += 2;
if (!(0xC000 & (a << zeros))) zeros += 1;
return zeros;
}
#endif // WEBRTC_ARCH_ARM_V7A
#endif // WEBRTC_SPL_SPL_INL_H_

View File

@ -0,0 +1,122 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This header file includes the inline functions for ARM processors in
// the fix point signal processing library.
#ifndef WEBRTC_SPL_SPL_INL_ARMV7_H_
#define WEBRTC_SPL_SPL_INL_ARMV7_H_
static __inline WebRtc_Word32 WEBRTC_SPL_MUL_16_32_RSFT16(WebRtc_Word16 a,
WebRtc_Word32 b) {
WebRtc_Word32 tmp;
__asm__("smulwb %0, %1, %2":"=r"(tmp):"r"(b), "r"(a));
return tmp;
}
static __inline WebRtc_Word32 WEBRTC_SPL_MUL_32_32_RSFT32(WebRtc_Word16 a,
WebRtc_Word16 b,
WebRtc_Word32 c) {
WebRtc_Word32 tmp;
__asm__("pkhbt %0, %1, %2, lsl #16" : "=r"(tmp) : "r"(b), "r"(a));
__asm__("smmul %0, %1, %2":"=r"(tmp):"r"(tmp), "r"(c));
return tmp;
}
static __inline WebRtc_Word32 WEBRTC_SPL_MUL_32_32_RSFT32BI(WebRtc_Word32 a,
WebRtc_Word32 b) {
WebRtc_Word32 tmp;
__asm__("smmul %0, %1, %2":"=r"(tmp):"r"(a), "r"(b));
return tmp;
}
static __inline WebRtc_Word32 WEBRTC_SPL_MUL_16_16(WebRtc_Word16 a,
WebRtc_Word16 b) {
WebRtc_Word32 tmp;
__asm__("smulbb %0, %1, %2":"=r"(tmp):"r"(a), "r"(b));
return tmp;
}
static __inline WebRtc_Word16 WebRtcSpl_AddSatW16(WebRtc_Word16 a,
WebRtc_Word16 b) {
WebRtc_Word32 s_sum;
__asm__("qadd16 %0, %1, %2":"=r"(s_sum):"r"(a), "r"(b));
return (WebRtc_Word16) s_sum;
}
static __inline WebRtc_Word32 WebRtcSpl_AddSatW32(WebRtc_Word32 l_var1,
WebRtc_Word32 l_var2) {
WebRtc_Word32 l_sum;
__asm__("qadd %0, %1, %2":"=r"(l_sum):"r"(l_var1), "r"(l_var2));
return l_sum;
}
static __inline WebRtc_Word16 WebRtcSpl_SubSatW16(WebRtc_Word16 var1,
WebRtc_Word16 var2) {
WebRtc_Word32 s_sub;
__asm__("qsub16 %0, %1, %2":"=r"(s_sub):"r"(var1), "r"(var2));
return (WebRtc_Word16)s_sub;
}
static __inline WebRtc_Word32 WebRtcSpl_SubSatW32(WebRtc_Word32 l_var1,
WebRtc_Word32 l_var2) {
WebRtc_Word32 l_sub;
__asm__("qsub %0, %1, %2":"=r"(l_sub):"r"(l_var1), "r"(l_var2));
return l_sub;
}
static __inline WebRtc_Word16 WebRtcSpl_GetSizeInBits(WebRtc_UWord32 n) {
WebRtc_Word32 tmp;
__asm__("clz %0, %1":"=r"(tmp):"r"(n));
return (WebRtc_Word16)(32 - tmp);
}
static __inline int WebRtcSpl_NormW32(WebRtc_Word32 a) {
WebRtc_Word32 tmp;
if (a <= 0) a ^= 0xFFFFFFFF;
__asm__("clz %0, %1":"=r"(tmp):"r"(a));
return tmp - 1;
}
static __inline int WebRtcSpl_NormU32(WebRtc_UWord32 a) {
int tmp;
if (a == 0) return 0;
__asm__("clz %0, %1":"=r"(tmp):"r"(a));
return tmp;
}
static __inline int WebRtcSpl_NormW16(WebRtc_Word16 a) {
WebRtc_Word32 tmp;
if (a <= 0) a ^= 0xFFFFFFFF;
__asm__("clz %0, %1":"=r"(tmp):"r"(a));
return tmp - 17;
}
#endif // WEBRTC_SPL_SPL_INL_ARMV7_H_

View File

@ -0,0 +1,103 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_AutoCorrToReflCoef().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_AutoCorrToReflCoef(G_CONST WebRtc_Word32 *R, int use_order, WebRtc_Word16 *K)
{
int i, n;
WebRtc_Word16 tmp;
G_CONST WebRtc_Word32 *rptr;
WebRtc_Word32 L_num, L_den;
WebRtc_Word16 *acfptr, *pptr, *wptr, *p1ptr, *w1ptr, ACF[WEBRTC_SPL_MAX_LPC_ORDER],
P[WEBRTC_SPL_MAX_LPC_ORDER], W[WEBRTC_SPL_MAX_LPC_ORDER];
// Initialize loop and pointers.
acfptr = ACF;
rptr = R;
pptr = P;
p1ptr = &P[1];
w1ptr = &W[1];
wptr = w1ptr;
// First loop; n=0. Determine shifting.
tmp = WebRtcSpl_NormW32(*R);
*acfptr = (WebRtc_Word16)((*rptr++ << tmp) >> 16);
*pptr++ = *acfptr++;
// Initialize ACF, P and W.
for (i = 1; i <= use_order; i++)
{
*acfptr = (WebRtc_Word16)((*rptr++ << tmp) >> 16);
*wptr++ = *acfptr;
*pptr++ = *acfptr++;
}
// Compute reflection coefficients.
for (n = 1; n <= use_order; n++, K++)
{
tmp = WEBRTC_SPL_ABS_W16(*p1ptr);
if (*P < tmp)
{
for (i = n; i <= use_order; i++)
*K++ = 0;
return;
}
// Division: WebRtcSpl_div(tmp, *P)
*K = 0;
if (tmp != 0)
{
L_num = tmp;
L_den = *P;
i = 15;
while (i--)
{
(*K) <<= 1;
L_num <<= 1;
if (L_num >= L_den)
{
L_num -= L_den;
(*K)++;
}
}
if (*p1ptr > 0)
*K = -*K;
}
// Last iteration; don't do Schur recursion.
if (n == use_order)
return;
// Schur recursion.
pptr = P;
wptr = w1ptr;
tmp = (WebRtc_Word16)(((WebRtc_Word32)*p1ptr * (WebRtc_Word32)*K + 16384) >> 15);
*pptr = WEBRTC_SPL_ADD_SAT_W16( *pptr, tmp );
pptr++;
for (i = 1; i <= use_order - n; i++)
{
tmp = (WebRtc_Word16)(((WebRtc_Word32)*wptr * (WebRtc_Word32)*K + 16384) >> 15);
*pptr = WEBRTC_SPL_ADD_SAT_W16( *(pptr+1), tmp );
pptr++;
tmp = (WebRtc_Word16)(((WebRtc_Word32)*pptr * (WebRtc_Word32)*K + 16384) >> 15);
*wptr = WEBRTC_SPL_ADD_SAT_W16( *wptr, tmp );
wptr++;
}
}
}

View File

@ -0,0 +1,141 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_AutoCorrelation().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
int WebRtcSpl_AutoCorrelation(G_CONST WebRtc_Word16* in_vector,
int in_vector_length,
int order,
WebRtc_Word32* result,
int* scale)
{
WebRtc_Word32 sum;
int i, j;
WebRtc_Word16 smax; // Sample max
G_CONST WebRtc_Word16* xptr1;
G_CONST WebRtc_Word16* xptr2;
WebRtc_Word32* resultptr;
int scaling = 0;
#ifdef _ARM_OPT_
#pragma message("NOTE: _ARM_OPT_ optimizations are used")
WebRtc_Word16 loops4;
#endif
if (order < 0)
order = in_vector_length;
// Find the max. sample
smax = WebRtcSpl_MaxAbsValueW16(in_vector, in_vector_length);
// In order to avoid overflow when computing the sum we should scale the samples so that
// (in_vector_length * smax * smax) will not overflow.
if (smax == 0)
{
scaling = 0;
} else
{
int nbits = WebRtcSpl_GetSizeInBits(in_vector_length); // # of bits in the sum loop
int t = WebRtcSpl_NormW32(WEBRTC_SPL_MUL(smax, smax)); // # of bits to normalize smax
if (t > nbits)
{
scaling = 0;
} else
{
scaling = nbits - t;
}
}
resultptr = result;
// Perform the actual correlation calculation
for (i = 0; i < order + 1; i++)
{
int loops = (in_vector_length - i);
sum = 0;
xptr1 = in_vector;
xptr2 = &in_vector[i];
#ifndef _ARM_OPT_
for (j = loops; j > 0; j--)
{
sum += WEBRTC_SPL_MUL_16_16_RSFT(*xptr1++, *xptr2++, scaling);
}
#else
loops4 = (loops >> 2) << 2;
if (scaling == 0)
{
for (j = 0; j < loops4; j = j + 4)
{
sum += WEBRTC_SPL_MUL_16_16(*xptr1, *xptr2);
xptr1++;
xptr2++;
sum += WEBRTC_SPL_MUL_16_16(*xptr1, *xptr2);
xptr1++;
xptr2++;
sum += WEBRTC_SPL_MUL_16_16(*xptr1, *xptr2);
xptr1++;
xptr2++;
sum += WEBRTC_SPL_MUL_16_16(*xptr1, *xptr2);
xptr1++;
xptr2++;
}
for (j = loops4; j < loops; j++)
{
sum += WEBRTC_SPL_MUL_16_16(*xptr1, *xptr2);
xptr1++;
xptr2++;
}
}
else
{
for (j = 0; j < loops4; j = j + 4)
{
sum += WEBRTC_SPL_MUL_16_16_RSFT(*xptr1, *xptr2, scaling);
xptr1++;
xptr2++;
sum += WEBRTC_SPL_MUL_16_16_RSFT(*xptr1, *xptr2, scaling);
xptr1++;
xptr2++;
sum += WEBRTC_SPL_MUL_16_16_RSFT(*xptr1, *xptr2, scaling);
xptr1++;
xptr2++;
sum += WEBRTC_SPL_MUL_16_16_RSFT(*xptr1, *xptr2, scaling);
xptr1++;
xptr2++;
}
for (j = loops4; j < loops; j++)
{
sum += WEBRTC_SPL_MUL_16_16_RSFT(*xptr1, *xptr2, scaling);
xptr1++;
xptr2++;
}
}
#endif
*resultptr++ = sum;
}
*scale = scaling;
return order + 1;
}

View File

@ -0,0 +1,51 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_ComplexBitReverse().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_ComplexBitReverse(WebRtc_Word16 frfi[], int stages)
{
int mr, nn, n, l, m;
WebRtc_Word16 tr, ti;
n = 1 << stages;
mr = 0;
nn = n - 1;
// decimation in time - re-order data
for (m = 1; m <= nn; ++m)
{
l = n;
do
{
l >>= 1;
} while (mr + l > nn);
mr = (mr & (l - 1)) + l;
if (mr <= m)
continue;
tr = frfi[2 * m];
frfi[2 * m] = frfi[2 * mr];
frfi[2 * mr] = tr;
ti = frfi[2 * m + 1];
frfi[2 * m + 1] = frfi[2 * mr + 1];
frfi[2 * mr + 1] = ti;
}
}

View File

@ -0,0 +1,150 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_ComplexFFT().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
#define CFFTSFT 14
#define CFFTRND 1
#define CFFTRND2 16384
int WebRtcSpl_ComplexFFT(WebRtc_Word16 frfi[], int stages, int mode)
{
int i, j, l, k, istep, n, m;
WebRtc_Word16 wr, wi;
WebRtc_Word32 tr32, ti32, qr32, qi32;
/* The 1024-value is a constant given from the size of WebRtcSpl_kSinTable1024[],
* and should not be changed depending on the input parameter 'stages'
*/
n = 1 << stages;
if (n > 1024)
return -1;
l = 1;
k = 10 - 1; /* Constant for given WebRtcSpl_kSinTable1024[]. Do not change
depending on the input parameter 'stages' */
if (mode == 0)
{
// mode==0: Low-complexity and Low-accuracy mode
while (l < n)
{
istep = l << 1;
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* WebRtcSpl_kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = WebRtcSpl_kSinTable1024[j + 256];
wi = -WebRtcSpl_kSinTable1024[j];
for (i = m; i < n; i += istep)
{
j = i + l;
tr32 = WEBRTC_SPL_RSHIFT_W32((WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j])
- WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j + 1])), 15);
ti32 = WEBRTC_SPL_RSHIFT_W32((WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j + 1])
+ WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j])), 15);
qr32 = (WebRtc_Word32)frfi[2 * i];
qi32 = (WebRtc_Word32)frfi[2 * i + 1];
frfi[2 * j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qr32 - tr32, 1);
frfi[2 * j + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qi32 - ti32, 1);
frfi[2 * i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qr32 + tr32, 1);
frfi[2 * i + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qi32 + ti32, 1);
}
}
--k;
l = istep;
}
} else
{
// mode==1: High-complexity and High-accuracy mode
while (l < n)
{
istep = l << 1;
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* WebRtcSpl_kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = WebRtcSpl_kSinTable1024[j + 256];
wi = -WebRtcSpl_kSinTable1024[j];
#ifdef WEBRTC_ARCH_ARM_V7A
WebRtc_Word32 wri;
WebRtc_Word32 frfi_r;
__asm__("pkhbt %0, %1, %2, lsl #16" : "=r"(wri) :
"r"((WebRtc_Word32)wr), "r"((WebRtc_Word32)wi));
#endif
for (i = m; i < n; i += istep)
{
j = i + l;
#ifdef WEBRTC_ARCH_ARM_V7A
__asm__("pkhbt %0, %1, %2, lsl #16" : "=r"(frfi_r) :
"r"((WebRtc_Word32)frfi[2*j]), "r"((WebRtc_Word32)frfi[2*j +1]));
__asm__("smlsd %0, %1, %2, %3" : "=r"(tr32) :
"r"(wri), "r"(frfi_r), "r"(CFFTRND));
__asm__("smladx %0, %1, %2, %3" : "=r"(ti32) :
"r"(wri), "r"(frfi_r), "r"(CFFTRND));
#else
tr32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j])
- WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j + 1]) + CFFTRND;
ti32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j + 1])
+ WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j]) + CFFTRND;
#endif
tr32 = WEBRTC_SPL_RSHIFT_W32(tr32, 15 - CFFTSFT);
ti32 = WEBRTC_SPL_RSHIFT_W32(ti32, 15 - CFFTSFT);
qr32 = ((WebRtc_Word32)frfi[2 * i]) << CFFTSFT;
qi32 = ((WebRtc_Word32)frfi[2 * i + 1]) << CFFTSFT;
frfi[2 * j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(
(qr32 - tr32 + CFFTRND2), 1 + CFFTSFT);
frfi[2 * j + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(
(qi32 - ti32 + CFFTRND2), 1 + CFFTSFT);
frfi[2 * i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(
(qr32 + tr32 + CFFTRND2), 1 + CFFTSFT);
frfi[2 * i + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(
(qi32 + ti32 + CFFTRND2), 1 + CFFTSFT);
}
}
--k;
l = istep;
}
}
return 0;
}

View File

@ -0,0 +1,161 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_ComplexIFFT().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
#define CIFFTSFT 14
#define CIFFTRND 1
int WebRtcSpl_ComplexIFFT(WebRtc_Word16 frfi[], int stages, int mode)
{
int i, j, l, k, istep, n, m, scale, shift;
WebRtc_Word16 wr, wi;
WebRtc_Word32 tr32, ti32, qr32, qi32;
WebRtc_Word32 tmp32, round2;
/* The 1024-value is a constant given from the size of WebRtcSpl_kSinTable1024[],
* and should not be changed depending on the input parameter 'stages'
*/
n = 1 << stages;
if (n > 1024)
return -1;
scale = 0;
l = 1;
k = 10 - 1; /* Constant for given WebRtcSpl_kSinTable1024[]. Do not change
depending on the input parameter 'stages' */
while (l < n)
{
// variable scaling, depending upon data
shift = 0;
round2 = 8192;
tmp32 = (WebRtc_Word32)WebRtcSpl_MaxAbsValueW16(frfi, 2 * n);
if (tmp32 > 13573)
{
shift++;
scale++;
round2 <<= 1;
}
if (tmp32 > 27146)
{
shift++;
scale++;
round2 <<= 1;
}
istep = l << 1;
if (mode == 0)
{
// mode==0: Low-complexity and Low-accuracy mode
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* WebRtcSpl_kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = WebRtcSpl_kSinTable1024[j + 256];
wi = WebRtcSpl_kSinTable1024[j];
for (i = m; i < n; i += istep)
{
j = i + l;
tr32 = WEBRTC_SPL_RSHIFT_W32((WEBRTC_SPL_MUL_16_16_RSFT(wr, frfi[2 * j], 0)
- WEBRTC_SPL_MUL_16_16_RSFT(wi, frfi[2 * j + 1], 0)), 15);
ti32 = WEBRTC_SPL_RSHIFT_W32(
(WEBRTC_SPL_MUL_16_16_RSFT(wr, frfi[2 * j + 1], 0)
+ WEBRTC_SPL_MUL_16_16_RSFT(wi,frfi[2*j],0)), 15);
qr32 = (WebRtc_Word32)frfi[2 * i];
qi32 = (WebRtc_Word32)frfi[2 * i + 1];
frfi[2 * j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qr32 - tr32, shift);
frfi[2 * j + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qi32 - ti32, shift);
frfi[2 * i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qr32 + tr32, shift);
frfi[2 * i + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(qi32 + ti32, shift);
}
}
} else
{
// mode==1: High-complexity and High-accuracy mode
for (m = 0; m < l; ++m)
{
j = m << k;
/* The 256-value is a constant given as 1/4 of the size of
* WebRtcSpl_kSinTable1024[], and should not be changed depending on the input
* parameter 'stages'. It will result in 0 <= j < N_SINE_WAVE/2
*/
wr = WebRtcSpl_kSinTable1024[j + 256];
wi = WebRtcSpl_kSinTable1024[j];
#ifdef WEBRTC_ARCH_ARM_V7A
WebRtc_Word32 wri;
WebRtc_Word32 frfi_r;
__asm__("pkhbt %0, %1, %2, lsl #16" : "=r"(wri) :
"r"((WebRtc_Word32)wr), "r"((WebRtc_Word32)wi));
#endif
for (i = m; i < n; i += istep)
{
j = i + l;
#ifdef WEBRTC_ARCH_ARM_V7A
__asm__("pkhbt %0, %1, %2, lsl #16" : "=r"(frfi_r) :
"r"((WebRtc_Word32)frfi[2*j]), "r"((WebRtc_Word32)frfi[2*j +1]));
__asm__("smlsd %0, %1, %2, %3" : "=r"(tr32) :
"r"(wri), "r"(frfi_r), "r"(CIFFTRND));
__asm__("smladx %0, %1, %2, %3" : "=r"(ti32) :
"r"(wri), "r"(frfi_r), "r"(CIFFTRND));
#else
tr32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j])
- WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j + 1]) + CIFFTRND;
ti32 = WEBRTC_SPL_MUL_16_16(wr, frfi[2 * j + 1])
+ WEBRTC_SPL_MUL_16_16(wi, frfi[2 * j]) + CIFFTRND;
#endif
tr32 = WEBRTC_SPL_RSHIFT_W32(tr32, 15 - CIFFTSFT);
ti32 = WEBRTC_SPL_RSHIFT_W32(ti32, 15 - CIFFTSFT);
qr32 = ((WebRtc_Word32)frfi[2 * i]) << CIFFTSFT;
qi32 = ((WebRtc_Word32)frfi[2 * i + 1]) << CIFFTSFT;
frfi[2 * j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((qr32 - tr32+round2),
shift+CIFFTSFT);
frfi[2 * j + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(
(qi32 - ti32 + round2), shift + CIFFTSFT);
frfi[2 * i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((qr32 + tr32 + round2),
shift + CIFFTSFT);
frfi[2 * i + 1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(
(qi32 + ti32 + round2), shift + CIFFTSFT);
}
}
}
--k;
l = istep;
}
return scale;
}

View File

@ -0,0 +1,108 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the implementation of functions
* WebRtcSpl_MemSetW16()
* WebRtcSpl_MemSetW32()
* WebRtcSpl_MemCpyReversedOrder()
* WebRtcSpl_CopyFromEndW16()
* WebRtcSpl_ZerosArrayW16()
* WebRtcSpl_ZerosArrayW32()
* WebRtcSpl_OnesArrayW16()
* WebRtcSpl_OnesArrayW32()
*
* The description header can be found in signal_processing_library.h
*
*/
#include <string.h>
#include "signal_processing_library.h"
void WebRtcSpl_MemSetW16(WebRtc_Word16 *ptr, WebRtc_Word16 set_value, int length)
{
int j;
WebRtc_Word16 *arrptr = ptr;
for (j = length; j > 0; j--)
{
*arrptr++ = set_value;
}
}
void WebRtcSpl_MemSetW32(WebRtc_Word32 *ptr, WebRtc_Word32 set_value, int length)
{
int j;
WebRtc_Word32 *arrptr = ptr;
for (j = length; j > 0; j--)
{
*arrptr++ = set_value;
}
}
void WebRtcSpl_MemCpyReversedOrder(WebRtc_Word16* dest, WebRtc_Word16* source, int length)
{
int j;
WebRtc_Word16* destPtr = dest;
WebRtc_Word16* sourcePtr = source;
for (j = 0; j < length; j++)
{
*destPtr-- = *sourcePtr++;
}
}
WebRtc_Word16 WebRtcSpl_CopyFromEndW16(G_CONST WebRtc_Word16 *vector_in,
WebRtc_Word16 length,
WebRtc_Word16 samples,
WebRtc_Word16 *vector_out)
{
// Copy the last <samples> of the input vector to vector_out
WEBRTC_SPL_MEMCPY_W16(vector_out, &vector_in[length - samples], samples);
return samples;
}
WebRtc_Word16 WebRtcSpl_ZerosArrayW16(WebRtc_Word16 *vector, WebRtc_Word16 length)
{
WebRtcSpl_MemSetW16(vector, 0, length);
return length;
}
WebRtc_Word16 WebRtcSpl_ZerosArrayW32(WebRtc_Word32 *vector, WebRtc_Word16 length)
{
WebRtcSpl_MemSetW32(vector, 0, length);
return length;
}
WebRtc_Word16 WebRtcSpl_OnesArrayW16(WebRtc_Word16 *vector, WebRtc_Word16 length)
{
WebRtc_Word16 i;
WebRtc_Word16 *tmpvec = vector;
for (i = 0; i < length; i++)
{
*tmpvec++ = 1;
}
return length;
}
WebRtc_Word16 WebRtcSpl_OnesArrayW32(WebRtc_Word32 *vector, WebRtc_Word16 length)
{
WebRtc_Word16 i;
WebRtc_Word32 *tmpvec = vector;
for (i = 0; i < length; i++)
{
*tmpvec++ = 1;
}
return length;
}

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the 360 degree cos table.
*
*/
#include "signal_processing_library.h"
WebRtc_Word16 WebRtcSpl_kCosTable[] = {
8192, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112,
8091, 8067, 8041, 8012, 7982, 7948, 7912, 7874, 7834,
7791, 7745, 7697, 7647, 7595, 7540, 7483, 7424, 7362,
7299, 7233, 7164, 7094, 7021, 6947, 6870, 6791, 6710,
6627, 6542, 6455, 6366, 6275, 6182, 6087, 5991, 5892,
5792, 5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971, 3845,
3719, 3591, 3462, 3331, 3200, 3068, 2935, 2801, 2667,
2531, 2395, 2258, 2120, 1981, 1842, 1703, 1563, 1422,
1281, 1140, 998, 856, 713, 571, 428, 285, 142,
0, -142, -285, -428, -571, -713, -856, -998, -1140,
-1281, -1422, -1563, -1703, -1842, -1981, -2120, -2258, -2395,
-2531, -2667, -2801, -2935, -3068, -3200, -3331, -3462, -3591,
-3719, -3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
-4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586, -5690,
-5792, -5892, -5991, -6087, -6182, -6275, -6366, -6455, -6542,
-6627, -6710, -6791, -6870, -6947, -7021, -7094, -7164, -7233,
-7299, -7362, -7424, -7483, -7540, -7595, -7647, -7697, -7745,
-7791, -7834, -7874, -7912, -7948, -7982, -8012, -8041, -8067,
-8091, -8112, -8130, -8147, -8160, -8172, -8180, -8187, -8190,
-8191, -8190, -8187, -8180, -8172, -8160, -8147, -8130, -8112,
-8091, -8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
-7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424, -7362,
-7299, -7233, -7164, -7094, -7021, -6947, -6870, -6791, -6710,
-6627, -6542, -6455, -6366, -6275, -6182, -6087, -5991, -5892,
-5792, -5690, -5586, -5481, -5374, -5265, -5155, -5043, -4930,
-4815, -4698, -4580, -4461, -4341, -4219, -4096, -3971, -3845,
-3719, -3591, -3462, -3331, -3200, -3068, -2935, -2801, -2667,
-2531, -2395, -2258, -2120, -1981, -1842, -1703, -1563, -1422,
-1281, -1140, -998, -856, -713, -571, -428, -285, -142,
0, 142, 285, 428, 571, 713, 856, 998, 1140,
1281, 1422, 1563, 1703, 1842, 1981, 2120, 2258, 2395,
2531, 2667, 2801, 2935, 3068, 3200, 3331, 3462, 3591,
3719, 3845, 3971, 4095, 4219, 4341, 4461, 4580, 4698,
4815, 4930, 5043, 5155, 5265, 5374, 5481, 5586, 5690,
5792, 5892, 5991, 6087, 6182, 6275, 6366, 6455, 6542,
6627, 6710, 6791, 6870, 6947, 7021, 7094, 7164, 7233,
7299, 7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041, 8067,
8091, 8112, 8130, 8147, 8160, 8172, 8180, 8187, 8190
};

View File

@ -0,0 +1,267 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_CrossCorrelation().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_CrossCorrelation(WebRtc_Word32* cross_correlation, WebRtc_Word16* seq1,
WebRtc_Word16* seq2, WebRtc_Word16 dim_seq,
WebRtc_Word16 dim_cross_correlation,
WebRtc_Word16 right_shifts,
WebRtc_Word16 step_seq2)
{
int i, j;
WebRtc_Word16* seq1Ptr;
WebRtc_Word16* seq2Ptr;
WebRtc_Word32* CrossCorrPtr;
#ifdef _XSCALE_OPT_
#ifdef _WIN32
#pragma message("NOTE: _XSCALE_OPT_ optimizations are used (overrides _ARM_OPT_ and requires /QRxscale compiler flag)")
#endif
__int64 macc40;
int iseq1[250];
int iseq2[250];
int iseq3[250];
int * iseq1Ptr;
int * iseq2Ptr;
int * iseq3Ptr;
int len, i_len;
seq1Ptr = seq1;
iseq1Ptr = iseq1;
for(i = 0; i < ((dim_seq + 1) >> 1); i++)
{
*iseq1Ptr = (unsigned short)*seq1Ptr++;
*iseq1Ptr++ |= (WebRtc_Word32)*seq1Ptr++ << 16;
}
if(dim_seq%2)
{
*(iseq1Ptr-1) &= 0x0000ffff;
}
*iseq1Ptr = 0;
iseq1Ptr++;
*iseq1Ptr = 0;
iseq1Ptr++;
*iseq1Ptr = 0;
if(step_seq2 < 0)
{
seq2Ptr = seq2 - dim_cross_correlation + 1;
CrossCorrPtr = &cross_correlation[dim_cross_correlation - 1];
}
else
{
seq2Ptr = seq2;
CrossCorrPtr = cross_correlation;
}
len = dim_seq + dim_cross_correlation - 1;
i_len = (len + 1) >> 1;
iseq2Ptr = iseq2;
iseq3Ptr = iseq3;
for(i = 0; i < i_len; i++)
{
*iseq2Ptr = (unsigned short)*seq2Ptr++;
*iseq3Ptr = (unsigned short)*seq2Ptr;
*iseq2Ptr++ |= (WebRtc_Word32)*seq2Ptr++ << 16;
*iseq3Ptr++ |= (WebRtc_Word32)*seq2Ptr << 16;
}
if(len % 2)
{
iseq2[i_len - 1] &= 0x0000ffff;
iseq3[i_len - 1] = 0;
}
else
iseq3[i_len - 1] &= 0x0000ffff;
iseq2[i_len] = 0;
iseq3[i_len] = 0;
iseq2[i_len + 1] = 0;
iseq3[i_len + 1] = 0;
iseq2[i_len + 2] = 0;
iseq3[i_len + 2] = 0;
// Set pointer to start value
iseq2Ptr = iseq2;
iseq3Ptr = iseq3;
i_len = (dim_seq + 7) >> 3;
for (i = 0; i < dim_cross_correlation; i++)
{
iseq1Ptr = iseq1;
macc40 = 0;
_WriteCoProcessor(macc40, 0);
if((i & 1))
{
iseq3Ptr = iseq3 + (i >> 1);
for (j = i_len; j > 0; j--)
{
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq3Ptr++);
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq3Ptr++);
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq3Ptr++);
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq3Ptr++);
}
}
else
{
iseq2Ptr = iseq2 + (i >> 1);
for (j = i_len; j > 0; j--)
{
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq2Ptr++);
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq2Ptr++);
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq2Ptr++);
_SmulAddPack_2SW_ACC(*iseq1Ptr++, *iseq2Ptr++);
}
}
macc40 = _ReadCoProcessor(0);
*CrossCorrPtr = (WebRtc_Word32)(macc40 >> right_shifts);
CrossCorrPtr += step_seq2;
}
#else // #ifdef _XSCALE_OPT_
#ifdef _ARM_OPT_
WebRtc_Word16 dim_seq8 = (dim_seq >> 3) << 3;
#endif
CrossCorrPtr = cross_correlation;
for (i = 0; i < dim_cross_correlation; i++)
{
// Set the pointer to the static vector, set the pointer to the sliding vector
// and initialize cross_correlation
seq1Ptr = seq1;
seq2Ptr = seq2 + (step_seq2 * i);
(*CrossCorrPtr) = 0;
#ifndef _ARM_OPT_
#ifdef _WIN32
#pragma message("NOTE: default implementation is used")
#endif
// Perform the cross correlation
for (j = 0; j < dim_seq; j++)
{
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr), right_shifts);
seq1Ptr++;
seq2Ptr++;
}
#else
#ifdef _WIN32
#pragma message("NOTE: _ARM_OPT_ optimizations are used")
#endif
if (right_shifts == 0)
{
// Perform the optimized cross correlation
for (j = 0; j < dim_seq8; j = j + 8)
{
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
}
for (j = dim_seq8; j < dim_seq; j++)
{
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16((*seq1Ptr), (*seq2Ptr));
seq1Ptr++;
seq2Ptr++;
}
}
else // right_shifts != 0
{
// Perform the optimized cross correlation
for (j = 0; j < dim_seq8; j = j + 8)
{
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
}
for (j = dim_seq8; j < dim_seq; j++)
{
(*CrossCorrPtr) += WEBRTC_SPL_MUL_16_16_RSFT((*seq1Ptr), (*seq2Ptr),
right_shifts);
seq1Ptr++;
seq2Ptr++;
}
}
#endif
CrossCorrPtr++;
}
#endif
}

View File

@ -0,0 +1,144 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the divisions
* WebRtcSpl_DivU32U16()
* WebRtcSpl_DivW32W16()
* WebRtcSpl_DivW32W16ResW16()
* WebRtcSpl_DivResultInQ31()
* WebRtcSpl_DivW32HiLow()
*
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
WebRtc_UWord32 WebRtcSpl_DivU32U16(WebRtc_UWord32 num, WebRtc_UWord16 den)
{
// Guard against division with 0
if (den != 0)
{
return (WebRtc_UWord32)(num / den);
} else
{
return (WebRtc_UWord32)0xFFFFFFFF;
}
}
WebRtc_Word32 WebRtcSpl_DivW32W16(WebRtc_Word32 num, WebRtc_Word16 den)
{
// Guard against division with 0
if (den != 0)
{
return (WebRtc_Word32)(num / den);
} else
{
return (WebRtc_Word32)0x7FFFFFFF;
}
}
WebRtc_Word16 WebRtcSpl_DivW32W16ResW16(WebRtc_Word32 num, WebRtc_Word16 den)
{
// Guard against division with 0
if (den != 0)
{
return (WebRtc_Word16)(num / den);
} else
{
return (WebRtc_Word16)0x7FFF;
}
}
WebRtc_Word32 WebRtcSpl_DivResultInQ31(WebRtc_Word32 num, WebRtc_Word32 den)
{
WebRtc_Word32 L_num = num;
WebRtc_Word32 L_den = den;
WebRtc_Word32 div = 0;
int k = 31;
int change_sign = 0;
if (num == 0)
return 0;
if (num < 0)
{
change_sign++;
L_num = -num;
}
if (den < 0)
{
change_sign++;
L_den = -den;
}
while (k--)
{
div <<= 1;
L_num <<= 1;
if (L_num >= L_den)
{
L_num -= L_den;
div++;
}
}
if (change_sign == 1)
{
div = -div;
}
return div;
}
WebRtc_Word32 WebRtcSpl_DivW32HiLow(WebRtc_Word32 num, WebRtc_Word16 den_hi,
WebRtc_Word16 den_low)
{
WebRtc_Word16 approx, tmp_hi, tmp_low, num_hi, num_low;
WebRtc_Word32 tmpW32;
approx = (WebRtc_Word16)WebRtcSpl_DivW32W16((WebRtc_Word32)0x1FFFFFFF, den_hi);
// result in Q14 (Note: 3FFFFFFF = 0.5 in Q30)
// tmpW32 = 1/den = approx * (2.0 - den * approx) (in Q30)
tmpW32 = (WEBRTC_SPL_MUL_16_16(den_hi, approx) << 1)
+ ((WEBRTC_SPL_MUL_16_16(den_low, approx) >> 15) << 1);
// tmpW32 = den * approx
tmpW32 = (WebRtc_Word32)0x7fffffffL - tmpW32; // result in Q30 (tmpW32 = 2.0-(den*approx))
// Store tmpW32 in hi and low format
tmp_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmpW32, 16);
tmp_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((tmpW32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)tmp_hi, 16)), 1);
// tmpW32 = 1/den in Q29
tmpW32 = ((WEBRTC_SPL_MUL_16_16(tmp_hi, approx) + (WEBRTC_SPL_MUL_16_16(tmp_low, approx)
>> 15)) << 1);
// 1/den in hi and low format
tmp_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmpW32, 16);
tmp_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((tmpW32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)tmp_hi, 16)), 1);
// Store num in hi and low format
num_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(num, 16);
num_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((num
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)num_hi, 16)), 1);
// num * (1/den) by 32 bit multiplication (result in Q28)
tmpW32 = (WEBRTC_SPL_MUL_16_16(num_hi, tmp_hi) + (WEBRTC_SPL_MUL_16_16(num_hi, tmp_low)
>> 15) + (WEBRTC_SPL_MUL_16_16(num_low, tmp_hi) >> 15));
// Put result in Q31 (convert from Q28)
tmpW32 = WEBRTC_SPL_LSHIFT_W32(tmpW32, 3);
return tmpW32;
}

View File

@ -0,0 +1,91 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_DotProductWithScale().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
WebRtc_Word32 WebRtcSpl_DotProductWithScale(WebRtc_Word16 *vector1, WebRtc_Word16 *vector2,
int length, int scaling)
{
WebRtc_Word32 sum;
int i;
#ifdef _ARM_OPT_
#pragma message("NOTE: _ARM_OPT_ optimizations are used")
WebRtc_Word16 len4 = (length >> 2) << 2;
#endif
sum = 0;
#ifndef _ARM_OPT_
for (i = 0; i < length; i++)
{
sum += WEBRTC_SPL_MUL_16_16_RSFT(*vector1++, *vector2++, scaling);
}
#else
if (scaling == 0)
{
for (i = 0; i < len4; i = i + 4)
{
sum += WEBRTC_SPL_MUL_16_16(*vector1, *vector2);
vector1++;
vector2++;
sum += WEBRTC_SPL_MUL_16_16(*vector1, *vector2);
vector1++;
vector2++;
sum += WEBRTC_SPL_MUL_16_16(*vector1, *vector2);
vector1++;
vector2++;
sum += WEBRTC_SPL_MUL_16_16(*vector1, *vector2);
vector1++;
vector2++;
}
for (i = len4; i < length; i++)
{
sum += WEBRTC_SPL_MUL_16_16(*vector1, *vector2);
vector1++;
vector2++;
}
}
else
{
for (i = 0; i < len4; i = i + 4)
{
sum += WEBRTC_SPL_MUL_16_16_RSFT(*vector1, *vector2, scaling);
vector1++;
vector2++;
sum += WEBRTC_SPL_MUL_16_16_RSFT(*vector1, *vector2, scaling);
vector1++;
vector2++;
sum += WEBRTC_SPL_MUL_16_16_RSFT(*vector1, *vector2, scaling);
vector1++;
vector2++;
sum += WEBRTC_SPL_MUL_16_16_RSFT(*vector1, *vector2, scaling);
vector1++;
vector2++;
}
for (i = len4; i < length; i++)
{
sum += WEBRTC_SPL_MUL_16_16_RSFT(*vector1, *vector2, scaling);
vector1++;
vector2++;
}
}
#endif
return sum;
}

View File

@ -0,0 +1,59 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_DownsampleFast().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
int WebRtcSpl_DownsampleFast(WebRtc_Word16 *in_ptr, WebRtc_Word16 in_length,
WebRtc_Word16 *out_ptr, WebRtc_Word16 out_length,
WebRtc_Word16 *B, WebRtc_Word16 B_length, WebRtc_Word16 factor,
WebRtc_Word16 delay)
{
WebRtc_Word32 o;
int i, j;
WebRtc_Word16 *downsampled_ptr = out_ptr;
WebRtc_Word16 *b_ptr;
WebRtc_Word16 *x_ptr;
WebRtc_Word16 endpos = delay
+ (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(factor, (out_length - 1)) + 1;
if (in_length < endpos)
{
return -1;
}
for (i = delay; i < endpos; i += factor)
{
b_ptr = &B[0];
x_ptr = &in_ptr[i];
o = (WebRtc_Word32)2048; // Round val
for (j = 0; j < B_length; j++)
{
o += WEBRTC_SPL_MUL_16_16(*b_ptr++, *x_ptr--);
}
o = WEBRTC_SPL_RSHIFT_W32(o, 12);
// If output is higher than 32768, saturate it. Same with negative side
*downsampled_ptr++ = (WebRtc_Word16)WEBRTC_SPL_SAT(32767, o, -32768);
}
return 0;
}

View File

@ -0,0 +1,36 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_Energy().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
WebRtc_Word32 WebRtcSpl_Energy(WebRtc_Word16* vector, int vector_length, int* scale_factor)
{
WebRtc_Word32 en = 0;
int i;
int scaling = WebRtcSpl_GetScalingSquare(vector, vector_length, vector_length);
int looptimes = vector_length;
WebRtc_Word16 *vectorptr = vector;
for (i = 0; i < looptimes; i++)
{
en += WEBRTC_SPL_MUL_16_16_RSFT(*vectorptr, *vectorptr, scaling);
vectorptr++;
}
*scale_factor = scaling;
return en;
}

View File

@ -0,0 +1,89 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_FilterAR().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
int WebRtcSpl_FilterAR(G_CONST WebRtc_Word16* a,
int a_length,
G_CONST WebRtc_Word16* x,
int x_length,
WebRtc_Word16* state,
int state_length,
WebRtc_Word16* state_low,
int state_low_length,
WebRtc_Word16* filtered,
WebRtc_Word16* filtered_low,
int filtered_low_length)
{
WebRtc_Word32 o;
WebRtc_Word32 oLOW;
int i, j, stop;
G_CONST WebRtc_Word16* x_ptr = &x[0];
WebRtc_Word16* filteredFINAL_ptr = filtered;
WebRtc_Word16* filteredFINAL_LOW_ptr = filtered_low;
for (i = 0; i < x_length; i++)
{
// Calculate filtered[i] and filtered_low[i]
G_CONST WebRtc_Word16* a_ptr = &a[1];
WebRtc_Word16* filtered_ptr = &filtered[i - 1];
WebRtc_Word16* filtered_low_ptr = &filtered_low[i - 1];
WebRtc_Word16* state_ptr = &state[state_length - 1];
WebRtc_Word16* state_low_ptr = &state_low[state_length - 1];
o = (WebRtc_Word32)(*x_ptr++) << 12;
oLOW = (WebRtc_Word32)0;
stop = (i < a_length) ? i + 1 : a_length;
for (j = 1; j < stop; j++)
{
o -= WEBRTC_SPL_MUL_16_16(*a_ptr, *filtered_ptr--);
oLOW -= WEBRTC_SPL_MUL_16_16(*a_ptr++, *filtered_low_ptr--);
}
for (j = i + 1; j < a_length; j++)
{
o -= WEBRTC_SPL_MUL_16_16(*a_ptr, *state_ptr--);
oLOW -= WEBRTC_SPL_MUL_16_16(*a_ptr++, *state_low_ptr--);
}
o += (oLOW >> 12);
*filteredFINAL_ptr = (WebRtc_Word16)((o + (WebRtc_Word32)2048) >> 12);
*filteredFINAL_LOW_ptr++ = (WebRtc_Word16)(o - ((WebRtc_Word32)(*filteredFINAL_ptr++)
<< 12));
}
// Save the filter state
if (x_length >= state_length)
{
WebRtcSpl_CopyFromEndW16(filtered, x_length, a_length - 1, state);
WebRtcSpl_CopyFromEndW16(filtered_low, x_length, a_length - 1, state_low);
} else
{
for (i = 0; i < state_length - x_length; i++)
{
state[i] = state[i + x_length];
state_low[i] = state_low[i + x_length];
}
for (i = 0; i < x_length; i++)
{
state[state_length - x_length + i] = filtered[i];
state[state_length - x_length + i] = filtered_low[i];
}
}
return x_length;
}

View File

@ -0,0 +1,49 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_FilterARFastQ12().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_FilterARFastQ12(WebRtc_Word16 *in, WebRtc_Word16 *out, WebRtc_Word16 *A,
WebRtc_Word16 A_length, WebRtc_Word16 length)
{
WebRtc_Word32 o;
int i, j;
WebRtc_Word16 *x_ptr = &in[0];
WebRtc_Word16 *filtered_ptr = &out[0];
for (i = 0; i < length; i++)
{
// Calculate filtered[i]
G_CONST WebRtc_Word16 *a_ptr = &A[0];
WebRtc_Word16 *state_ptr = &out[i - 1];
o = WEBRTC_SPL_MUL_16_16(*x_ptr++, *a_ptr++);
for (j = 1; j < A_length; j++)
{
o -= WEBRTC_SPL_MUL_16_16(*a_ptr++,*state_ptr--);
}
// Saturate the output
o = WEBRTC_SPL_SAT((WebRtc_Word32)134215679, o, (WebRtc_Word32)-134217728);
*filtered_ptr++ = (WebRtc_Word16)((o + (WebRtc_Word32)2048) >> 12);
}
return;
}

View File

@ -0,0 +1,49 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_FilterMAFastQ12().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_FilterMAFastQ12(WebRtc_Word16* in_ptr,
WebRtc_Word16* out_ptr,
WebRtc_Word16* B,
WebRtc_Word16 B_length,
WebRtc_Word16 length)
{
WebRtc_Word32 o;
int i, j;
for (i = 0; i < length; i++)
{
G_CONST WebRtc_Word16* b_ptr = &B[0];
G_CONST WebRtc_Word16* x_ptr = &in_ptr[i];
o = (WebRtc_Word32)0;
for (j = 0; j < B_length; j++)
{
o += WEBRTC_SPL_MUL_16_16(*b_ptr++, *x_ptr--);
}
// If output is higher than 32768, saturate it. Same with negative side
// 2^27 = 134217728, which corresponds to 32768 in Q12
// Saturate the output
o = WEBRTC_SPL_SAT((WebRtc_Word32)134215679, o, (WebRtc_Word32)-134217728);
*out_ptr++ = (WebRtc_Word16)((o + (WebRtc_Word32)2048) >> 12);
}
return;
}

View File

@ -0,0 +1,41 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_GetHanningWindow().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_GetHanningWindow(WebRtc_Word16 *v, WebRtc_Word16 size)
{
int jj;
WebRtc_Word16 *vptr1;
WebRtc_Word32 index;
WebRtc_Word32 factor = ((WebRtc_Word32)0x40000000);
factor = WebRtcSpl_DivW32W16(factor, size);
if (size < 513)
index = (WebRtc_Word32)-0x200000;
else
index = (WebRtc_Word32)-0x100000;
vptr1 = v;
for (jj = 0; jj < size; jj++)
{
index += factor;
(*vptr1++) = WebRtcSpl_kHanningTable[index >> 22];
}
}

View File

@ -0,0 +1,44 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_GetScalingSquare().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
int WebRtcSpl_GetScalingSquare(WebRtc_Word16 *in_vector, int in_vector_length, int times)
{
int nbits = WebRtcSpl_GetSizeInBits(times);
int i;
WebRtc_Word16 smax = -1;
WebRtc_Word16 sabs;
WebRtc_Word16 *sptr = in_vector;
int t;
int looptimes = in_vector_length;
for (i = looptimes; i > 0; i--)
{
sabs = (*sptr > 0 ? *sptr++ : -*sptr++);
smax = (sabs > smax ? sabs : smax);
}
t = WebRtcSpl_NormW32(WEBRTC_SPL_MUL(smax, smax));
if (smax == 0)
{
return 0; // Since norm(0) returns 0
} else
{
return (t > nbits) ? 0 : nbits - t;
}
}

View File

@ -0,0 +1,53 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the Hanning table with 256 entries.
*
*/
#include "signal_processing_library.h"
// Hanning table with 256 entries
WebRtc_Word16 WebRtcSpl_kHanningTable[] = {
1, 2, 6, 10, 15, 22, 30, 39,
50, 62, 75, 89, 104, 121, 138, 157,
178, 199, 222, 246, 271, 297, 324, 353,
383, 413, 446, 479, 513, 549, 586, 624,
663, 703, 744, 787, 830, 875, 920, 967,
1015, 1064, 1114, 1165, 1218, 1271, 1325, 1381,
1437, 1494, 1553, 1612, 1673, 1734, 1796, 1859,
1924, 1989, 2055, 2122, 2190, 2259, 2329, 2399,
2471, 2543, 2617, 2691, 2765, 2841, 2918, 2995,
3073, 3152, 3232, 3312, 3393, 3475, 3558, 3641,
3725, 3809, 3895, 3980, 4067, 4154, 4242, 4330,
4419, 4509, 4599, 4689, 4781, 4872, 4964, 5057,
5150, 5244, 5338, 5432, 5527, 5622, 5718, 5814,
5910, 6007, 6104, 6202, 6299, 6397, 6495, 6594,
6693, 6791, 6891, 6990, 7090, 7189, 7289, 7389,
7489, 7589, 7690, 7790, 7890, 7991, 8091, 8192,
8293, 8393, 8494, 8594, 8694, 8795, 8895, 8995,
9095, 9195, 9294, 9394, 9493, 9593, 9691, 9790,
9889, 9987, 10085, 10182, 10280, 10377, 10474, 10570,
10666, 10762, 10857, 10952, 11046, 11140, 11234, 11327,
11420, 11512, 11603, 11695, 11785, 11875, 11965, 12054,
12142, 12230, 12317, 12404, 12489, 12575, 12659, 12743,
12826, 12909, 12991, 13072, 13152, 13232, 13311, 13389,
13466, 13543, 13619, 13693, 13767, 13841, 13913, 13985,
14055, 14125, 14194, 14262, 14329, 14395, 14460, 14525,
14588, 14650, 14711, 14772, 14831, 14890, 14947, 15003,
15059, 15113, 15166, 15219, 15270, 15320, 15369, 15417,
15464, 15509, 15554, 15597, 15640, 15681, 15721, 15760,
15798, 15835, 15871, 15905, 15938, 15971, 16001, 16031,
16060, 16087, 16113, 16138, 16162, 16185, 16206, 16227,
16246, 16263, 16280, 16295, 16309, 16322, 16334, 16345,
16354, 16362, 16369, 16374, 16378, 16382, 16383, 16384
};

View File

@ -0,0 +1,120 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the iLBC specific functions
* WebRtcSpl_ScaleAndAddVectorsWithRound()
* WebRtcSpl_ReverseOrderMultArrayElements()
* WebRtcSpl_ElementwiseVectorMult()
* WebRtcSpl_AddVectorsAndShift()
* WebRtcSpl_AddAffineVectorToVector()
* WebRtcSpl_AffineTransformVector()
*
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_ScaleAndAddVectorsWithRound(WebRtc_Word16 *vector1, WebRtc_Word16 scale1,
WebRtc_Word16 *vector2, WebRtc_Word16 scale2,
WebRtc_Word16 right_shifts, WebRtc_Word16 *out,
WebRtc_Word16 vector_length)
{
int i;
WebRtc_Word16 roundVal;
roundVal = 1 << right_shifts;
roundVal = roundVal >> 1;
for (i = 0; i < vector_length; i++)
{
out[i] = (WebRtc_Word16)((WEBRTC_SPL_MUL_16_16(vector1[i], scale1)
+ WEBRTC_SPL_MUL_16_16(vector2[i], scale2) + roundVal) >> right_shifts);
}
}
void WebRtcSpl_ReverseOrderMultArrayElements(WebRtc_Word16 *out, G_CONST WebRtc_Word16 *in,
G_CONST WebRtc_Word16 *win,
WebRtc_Word16 vector_length,
WebRtc_Word16 right_shifts)
{
int i;
WebRtc_Word16 *outptr = out;
G_CONST WebRtc_Word16 *inptr = in;
G_CONST WebRtc_Word16 *winptr = win;
for (i = 0; i < vector_length; i++)
{
(*outptr++) = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(*inptr++,
*winptr--, right_shifts);
}
}
void WebRtcSpl_ElementwiseVectorMult(WebRtc_Word16 *out, G_CONST WebRtc_Word16 *in,
G_CONST WebRtc_Word16 *win, WebRtc_Word16 vector_length,
WebRtc_Word16 right_shifts)
{
int i;
WebRtc_Word16 *outptr = out;
G_CONST WebRtc_Word16 *inptr = in;
G_CONST WebRtc_Word16 *winptr = win;
for (i = 0; i < vector_length; i++)
{
(*outptr++) = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(*inptr++,
*winptr++, right_shifts);
}
}
void WebRtcSpl_AddVectorsAndShift(WebRtc_Word16 *out, G_CONST WebRtc_Word16 *in1,
G_CONST WebRtc_Word16 *in2, WebRtc_Word16 vector_length,
WebRtc_Word16 right_shifts)
{
int i;
WebRtc_Word16 *outptr = out;
G_CONST WebRtc_Word16 *in1ptr = in1;
G_CONST WebRtc_Word16 *in2ptr = in2;
for (i = vector_length; i > 0; i--)
{
(*outptr++) = (WebRtc_Word16)(((*in1ptr++) + (*in2ptr++)) >> right_shifts);
}
}
void WebRtcSpl_AddAffineVectorToVector(WebRtc_Word16 *out, WebRtc_Word16 *in,
WebRtc_Word16 gain, WebRtc_Word32 add_constant,
WebRtc_Word16 right_shifts, int vector_length)
{
WebRtc_Word16 *inPtr;
WebRtc_Word16 *outPtr;
int i;
inPtr = in;
outPtr = out;
for (i = 0; i < vector_length; i++)
{
(*outPtr++) += (WebRtc_Word16)((WEBRTC_SPL_MUL_16_16((*inPtr++), gain)
+ (WebRtc_Word32)add_constant) >> right_shifts);
}
}
void WebRtcSpl_AffineTransformVector(WebRtc_Word16 *out, WebRtc_Word16 *in,
WebRtc_Word16 gain, WebRtc_Word32 add_constant,
WebRtc_Word16 right_shifts, int vector_length)
{
WebRtc_Word16 *inPtr;
WebRtc_Word16 *outPtr;
int i;
inPtr = in;
outPtr = out;
for (i = 0; i < vector_length; i++)
{
(*outPtr++) = (WebRtc_Word16)((WEBRTC_SPL_MUL_16_16((*inPtr++), gain)
+ (WebRtc_Word32)add_constant) >> right_shifts);
}
}

View File

@ -0,0 +1,259 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_LevinsonDurbin().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
#define SPL_LEVINSON_MAXORDER 20
WebRtc_Word16 WebRtcSpl_LevinsonDurbin(WebRtc_Word32 *R, WebRtc_Word16 *A, WebRtc_Word16 *K,
WebRtc_Word16 order)
{
WebRtc_Word16 i, j;
// Auto-correlation coefficients in high precision
WebRtc_Word16 R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1];
// LPC coefficients in high precision
WebRtc_Word16 A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1];
// LPC coefficients for next iteration
WebRtc_Word16 A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1];
// Reflection coefficient in high precision
WebRtc_Word16 K_hi, K_low;
// Prediction gain Alpha in high precision and with scale factor
WebRtc_Word16 Alpha_hi, Alpha_low, Alpha_exp;
WebRtc_Word16 tmp_hi, tmp_low;
WebRtc_Word32 temp1W32, temp2W32, temp3W32;
WebRtc_Word16 norm;
// Normalize the autocorrelation R[0]...R[order+1]
norm = WebRtcSpl_NormW32(R[0]);
for (i = order; i >= 0; i--)
{
temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm);
// Put R in hi and low format
R_hi[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
R_low[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_hi[i], 16)), 1);
}
// K = A[1] = -R[1] / R[0]
temp2W32 = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_hi[1],16)
+ WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_low[1],1); // R[1] in Q31
temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1]
temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31
// Put back the sign on R[1]
if (temp2W32 > 0)
{
temp1W32 = -temp1W32;
}
// Put K in hi and low format
K_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
K_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)K_hi, 16)), 1);
// Store first reflection coefficient
K[0] = K_hi;
temp1W32 = WEBRTC_SPL_RSHIFT_W32(temp1W32, 4); // A[1] in Q27
// Put A[1] in hi and low format
A_hi[1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
A_low[1] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_hi[1], 16)), 1);
// Alpha = R[0] * (1-K^2)
temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14) + WEBRTC_SPL_MUL_16_16(K_hi, K_hi))
<< 1); // temp1W32 = k^2 in Q31
temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
temp1W32 = (WebRtc_Word32)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31
// Store temp1W32 = 1 - K[0]*K[0] on hi and low format
tmp_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
tmp_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)tmp_hi, 16)), 1);
// Calculate Alpha in Q31
temp1W32 = ((WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_hi)
+ (WEBRTC_SPL_MUL_16_16(R_hi[0], tmp_low) >> 15)
+ (WEBRTC_SPL_MUL_16_16(R_low[0], tmp_hi) >> 15)) << 1);
// Normalize Alpha and put it in hi and low format
Alpha_exp = WebRtcSpl_NormW32(temp1W32);
temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp);
Alpha_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
Alpha_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)Alpha_hi, 16)), 1);
// Perform the iterative calculations in the Levinson-Durbin algorithm
for (i = 2; i <= order; i++)
{
/* ----
temp1W32 = R[i] + > R[j]*A[i-j]
/
----
j=1..i-1
*/
temp1W32 = 0;
for (j = 1; j < i; j++)
{
// temp1W32 is in Q31
temp1W32 += ((WEBRTC_SPL_MUL_16_16(R_hi[j], A_hi[i-j]) << 1)
+ (((WEBRTC_SPL_MUL_16_16(R_hi[j], A_low[i-j]) >> 15)
+ (WEBRTC_SPL_MUL_16_16(R_low[j], A_hi[i-j]) >> 15)) << 1));
}
temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4);
temp1W32 += (WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_hi[i], 16)
+ WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)R_low[i], 1));
// K = -temp1W32 / Alpha
temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32)
temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
// Put the sign of temp1W32 back again
if (temp1W32 > 0)
{
temp3W32 = -temp3W32;
}
// Use the Alpha shifts from earlier to de-normalize
norm = WebRtcSpl_NormW32(temp3W32);
if ((Alpha_exp <= norm) || (temp3W32 == 0))
{
temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp);
} else
{
if (temp3W32 > 0)
{
temp3W32 = (WebRtc_Word32)0x7fffffffL;
} else
{
temp3W32 = (WebRtc_Word32)0x80000000L;
}
}
// Put K on hi and low format
K_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
K_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp3W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)K_hi, 16)), 1);
// Store Reflection coefficient in Q15
K[i - 1] = K_hi;
// Test for unstable filter.
// If unstable return 0 and let the user decide what to do in that case
if ((WebRtc_Word32)WEBRTC_SPL_ABS_W16(K_hi) > (WebRtc_Word32)32750)
{
return 0; // Unstable filter
}
/*
Compute updated LPC coefficient: Anew[i]
Anew[j]= A[j] + K*A[i-j] for j=1..i-1
Anew[i]= K
*/
for (j = 1; j < i; j++)
{
// temp1W32 = A[j] in Q27
temp1W32 = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_hi[j],16)
+ WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_low[j],1);
// temp1W32 += K*A[i-j] in Q27
temp1W32 += ((WEBRTC_SPL_MUL_16_16(K_hi, A_hi[i-j])
+ (WEBRTC_SPL_MUL_16_16(K_hi, A_low[i-j]) >> 15)
+ (WEBRTC_SPL_MUL_16_16(K_low, A_hi[i-j]) >> 15)) << 1);
// Put Anew in hi and low format
A_upd_hi[j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
A_upd_low[j] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_upd_hi[j], 16)), 1);
}
// temp3W32 = K in Q27 (Convert from Q31 to Q27)
temp3W32 = WEBRTC_SPL_RSHIFT_W32(temp3W32, 4);
// Store Anew in hi and low format
A_upd_hi[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp3W32, 16);
A_upd_low[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp3W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_upd_hi[i], 16)), 1);
// Alpha = Alpha * (1-K^2)
temp1W32 = (((WEBRTC_SPL_MUL_16_16(K_hi, K_low) >> 14)
+ WEBRTC_SPL_MUL_16_16(K_hi, K_hi)) << 1); // K*K in Q31
temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
temp1W32 = (WebRtc_Word32)0x7fffffffL - temp1W32; // 1 - K*K in Q31
// Convert 1- K^2 in hi and low format
tmp_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
tmp_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)tmp_hi, 16)), 1);
// Calculate Alpha = Alpha * (1-K^2) in Q31
temp1W32 = ((WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_hi)
+ (WEBRTC_SPL_MUL_16_16(Alpha_hi, tmp_low) >> 15)
+ (WEBRTC_SPL_MUL_16_16(Alpha_low, tmp_hi) >> 15)) << 1);
// Normalize Alpha and store it on hi and low format
norm = WebRtcSpl_NormW32(temp1W32);
temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm);
Alpha_hi = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(temp1W32, 16);
Alpha_low = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32
- WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)Alpha_hi, 16)), 1);
// Update the total normalization of Alpha
Alpha_exp = Alpha_exp + norm;
// Update A[]
for (j = 1; j <= i; j++)
{
A_hi[j] = A_upd_hi[j];
A_low[j] = A_upd_low[j];
}
}
/*
Set A[0] to 1.0 and store the A[i] i=1...order in Q12
(Convert from Q27 and use rounding)
*/
A[0] = 4096;
for (i = 1; i <= order; i++)
{
// temp1W32 in Q27
temp1W32 = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_hi[i], 16)
+ WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)A_low[i], 1);
// Round and store upper word
A[i] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((temp1W32<<1)+(WebRtc_Word32)32768, 16);
}
return 1; // Stable filters
}

View File

@ -0,0 +1,57 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_LpcToReflCoef().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
#define SPL_LPC_TO_REFL_COEF_MAX_AR_MODEL_ORDER 50
void WebRtcSpl_LpcToReflCoef(WebRtc_Word16* a16, int use_order, WebRtc_Word16* k16)
{
int m, k;
WebRtc_Word32 tmp32[SPL_LPC_TO_REFL_COEF_MAX_AR_MODEL_ORDER];
WebRtc_Word32 tmp_inv_denom32;
WebRtc_Word16 tmp_inv_denom16;
k16[use_order - 1] = WEBRTC_SPL_LSHIFT_W16(a16[use_order], 3); //Q12<<3 => Q15
for (m = use_order - 1; m > 0; m--)
{
// (1 - k^2) in Q30
tmp_inv_denom32 = ((WebRtc_Word32)1073741823) - WEBRTC_SPL_MUL_16_16(k16[m], k16[m]);
// (1 - k^2) in Q15
tmp_inv_denom16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp_inv_denom32, 15);
for (k = 1; k <= m; k++)
{
// tmp[k] = (a[k] - RC[m] * a[m-k+1]) / (1.0 - RC[m]*RC[m]);
// [Q12<<16 - (Q15*Q12)<<1] = [Q28 - Q28] = Q28
tmp32[k] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)a16[k], 16)
- WEBRTC_SPL_LSHIFT_W32(WEBRTC_SPL_MUL_16_16(k16[m], a16[m-k+1]), 1);
tmp32[k] = WebRtcSpl_DivW32W16(tmp32[k], tmp_inv_denom16); //Q28/Q15 = Q13
}
for (k = 1; k < m; k++)
{
a16[k] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32[k], 1); //Q13>>1 => Q12
}
tmp32[m] = WEBRTC_SPL_SAT(8191, tmp32[m], -8191);
k16[m - 1] = (WebRtc_Word16)WEBRTC_SPL_LSHIFT_W32(tmp32[m], 2); //Q13<<2 => Q15
}
return;
}

View File

@ -0,0 +1,265 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the implementation of functions
* WebRtcSpl_MaxAbsValueW16()
* WebRtcSpl_MaxAbsIndexW16()
* WebRtcSpl_MaxAbsValueW32()
* WebRtcSpl_MaxValueW16()
* WebRtcSpl_MaxIndexW16()
* WebRtcSpl_MaxValueW32()
* WebRtcSpl_MaxIndexW32()
* WebRtcSpl_MinValueW16()
* WebRtcSpl_MinIndexW16()
* WebRtcSpl_MinValueW32()
* WebRtcSpl_MinIndexW32()
*
* The description header can be found in signal_processing_library.h.
*
*/
#include "signal_processing_library.h"
#if !(defined(WEBRTC_ANDROID) && defined(WEBRTC_ARCH_ARM_NEON))
// Maximum absolute value of word16 vector.
WebRtc_Word16 WebRtcSpl_MaxAbsValueW16(const WebRtc_Word16 *vector, WebRtc_Word16 length)
{
WebRtc_Word32 tempMax = 0;
WebRtc_Word32 absVal;
WebRtc_Word16 totMax;
int i;
G_CONST WebRtc_Word16 *tmpvector = vector;
for (i = 0; i < length; i++)
{
absVal = WEBRTC_SPL_ABS_W32((*tmpvector));
if (absVal > tempMax)
{
tempMax = absVal;
}
tmpvector++;
}
totMax = (WebRtc_Word16)WEBRTC_SPL_MIN(tempMax, WEBRTC_SPL_WORD16_MAX);
return totMax;
}
#endif
// Index of maximum absolute value in a word16 vector.
WebRtc_Word16 WebRtcSpl_MaxAbsIndexW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length)
{
WebRtc_Word16 tempMax;
WebRtc_Word16 absTemp;
WebRtc_Word16 tempMaxIndex = 0;
WebRtc_Word16 i = 0;
G_CONST WebRtc_Word16 *tmpvector = vector;
tempMax = WEBRTC_SPL_ABS_W16(*tmpvector);
tmpvector++;
for (i = 1; i < length; i++)
{
absTemp = WEBRTC_SPL_ABS_W16(*tmpvector);
tmpvector++;
if (absTemp > tempMax)
{
tempMax = absTemp;
tempMaxIndex = i;
}
}
return tempMaxIndex;
}
// Maximum absolute value of word32 vector.
WebRtc_Word32 WebRtcSpl_MaxAbsValueW32(G_CONST WebRtc_Word32 *vector, WebRtc_Word16 length)
{
WebRtc_UWord32 tempMax = 0;
WebRtc_UWord32 absVal;
WebRtc_Word32 retval;
int i;
G_CONST WebRtc_Word32 *tmpvector = vector;
for (i = 0; i < length; i++)
{
absVal = WEBRTC_SPL_ABS_W32((*tmpvector));
if (absVal > tempMax)
{
tempMax = absVal;
}
tmpvector++;
}
retval = (WebRtc_Word32)(WEBRTC_SPL_MIN(tempMax, WEBRTC_SPL_WORD32_MAX));
return retval;
}
// Maximum value of word16 vector.
#ifndef XSCALE_OPT
WebRtc_Word16 WebRtcSpl_MaxValueW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length)
{
WebRtc_Word16 tempMax;
WebRtc_Word16 i;
G_CONST WebRtc_Word16 *tmpvector = vector;
tempMax = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ > tempMax)
tempMax = vector[i];
}
return tempMax;
}
#else
#pragma message(">> WebRtcSpl_MaxValueW16 is excluded from this build")
#endif
// Index of maximum value in a word16 vector.
WebRtc_Word16 WebRtcSpl_MaxIndexW16(G_CONST WebRtc_Word16 *vector, WebRtc_Word16 length)
{
WebRtc_Word16 tempMax;
WebRtc_Word16 tempMaxIndex = 0;
WebRtc_Word16 i = 0;
G_CONST WebRtc_Word16 *tmpvector = vector;
tempMax = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ > tempMax)
{
tempMax = vector[i];
tempMaxIndex = i;
}
}
return tempMaxIndex;
}
// Maximum value of word32 vector.
#ifndef XSCALE_OPT
WebRtc_Word32 WebRtcSpl_MaxValueW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length)
{
WebRtc_Word32 tempMax;
WebRtc_Word16 i;
G_CONST WebRtc_Word32 *tmpvector = vector;
tempMax = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ > tempMax)
tempMax = vector[i];
}
return tempMax;
}
#else
#pragma message(">> WebRtcSpl_MaxValueW32 is excluded from this build")
#endif
// Index of maximum value in a word32 vector.
WebRtc_Word16 WebRtcSpl_MaxIndexW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length)
{
WebRtc_Word32 tempMax;
WebRtc_Word16 tempMaxIndex = 0;
WebRtc_Word16 i = 0;
G_CONST WebRtc_Word32 *tmpvector = vector;
tempMax = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ > tempMax)
{
tempMax = vector[i];
tempMaxIndex = i;
}
}
return tempMaxIndex;
}
// Minimum value of word16 vector.
WebRtc_Word16 WebRtcSpl_MinValueW16(G_CONST WebRtc_Word16 *vector, WebRtc_Word16 length)
{
WebRtc_Word16 tempMin;
WebRtc_Word16 i;
G_CONST WebRtc_Word16 *tmpvector = vector;
// Find the minimum value
tempMin = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ < tempMin)
tempMin = (vector[i]);
}
return tempMin;
}
// Index of minimum value in a word16 vector.
#ifndef XSCALE_OPT
WebRtc_Word16 WebRtcSpl_MinIndexW16(G_CONST WebRtc_Word16* vector, WebRtc_Word16 length)
{
WebRtc_Word16 tempMin;
WebRtc_Word16 tempMinIndex = 0;
WebRtc_Word16 i = 0;
G_CONST WebRtc_Word16* tmpvector = vector;
// Find index of smallest value
tempMin = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ < tempMin)
{
tempMin = vector[i];
tempMinIndex = i;
}
}
return tempMinIndex;
}
#else
#pragma message(">> WebRtcSpl_MinIndexW16 is excluded from this build")
#endif
// Minimum value of word32 vector.
WebRtc_Word32 WebRtcSpl_MinValueW32(G_CONST WebRtc_Word32 *vector, WebRtc_Word16 length)
{
WebRtc_Word32 tempMin;
WebRtc_Word16 i;
G_CONST WebRtc_Word32 *tmpvector = vector;
// Find the minimum value
tempMin = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ < tempMin)
tempMin = (vector[i]);
}
return tempMin;
}
// Index of minimum value in a word32 vector.
#ifndef XSCALE_OPT
WebRtc_Word16 WebRtcSpl_MinIndexW32(G_CONST WebRtc_Word32* vector, WebRtc_Word16 length)
{
WebRtc_Word32 tempMin;
WebRtc_Word16 tempMinIndex = 0;
WebRtc_Word16 i = 0;
G_CONST WebRtc_Word32 *tmpvector = vector;
// Find index of smallest value
tempMin = *tmpvector++;
for (i = 1; i < length; i++)
{
if (*tmpvector++ < tempMin)
{
tempMin = vector[i];
tempMinIndex = i;
}
}
return tempMinIndex;
}
#else
#pragma message(">> WebRtcSpl_MinIndexW32 is excluded from this build")
#endif

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if (defined(WEBRTC_ANDROID) && defined(WEBRTC_ARCH_ARM_NEON))
#include <arm_neon.h>
#include "signal_processing_library.h"
// Maximum absolute value of word16 vector.
WebRtc_Word16 WebRtcSpl_MaxAbsValueW16(const WebRtc_Word16* vector,
WebRtc_Word16 length) {
WebRtc_Word32 temp_max = 0;
WebRtc_Word32 abs_val;
WebRtc_Word16 tot_max;
int i;
__asm__("vmov.i16 d25, #0" : : : "d25");
for (i = 0; i < length - 7; i += 8) {
__asm__("vld1.16 {d26, d27}, [%0]" : : "r"(&vector[i]) : "q13");
__asm__("vabs.s16 q13, q13" : : : "q13");
__asm__("vpmax.s16 d26, d27" : : : "q13");
__asm__("vpmax.s16 d25, d26" : : : "d25", "d26");
}
__asm__("vpmax.s16 d25, d25" : : : "d25");
__asm__("vpmax.s16 d25, d25" : : : "d25");
__asm__("vmov.s16 %0, d25[0]" : "=r"(temp_max): : "d25");
for (; i < length; i++) {
abs_val = WEBRTC_SPL_ABS_W32((vector[i]));
if (abs_val > temp_max) {
temp_max = abs_val;
}
}
tot_max = (WebRtc_Word16)WEBRTC_SPL_MIN(temp_max, WEBRTC_SPL_WORD16_MAX);
return tot_max;
}
#endif

View File

@ -0,0 +1,85 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Table with 512 samples from a normal distribution with mean 1 and std 1
* The values are shifted up 13 steps (multiplied by 8192)
*/
#include "signal_processing_library.h"
WebRtc_Word16 WebRtcSpl_kRandNTable[] =
{
9178, -7260, 40, 10189, 4894, -3531, -13779, 14764,
-4008, -8884, -8990, 1008, 7368, 5184, 3251, -5817,
-9786, 5963, 1770, 8066, -7135, 10772, -2298, 1361,
6484, 2241, -8633, 792, 199, -3344, 6553, -10079,
-15040, 95, 11608, -12469, 14161, -4176, 2476, 6403,
13685, -16005, 6646, 2239, 10916, -3004, -602, -3141,
2142, 14144, -5829, 5305, 8209, 4713, 2697, -5112,
16092, -1210, -2891, -6631, -5360, -11878, -6781, -2739,
-6392, 536, 10923, 10872, 5059, -4748, -7770, 5477,
38, -1025, -2892, 1638, 6304, 14375, -11028, 1553,
-1565, 10762, -393, 4040, 5257, 12310, 6554, -4799,
4899, -6354, 1603, -1048, -2220, 8247, -186, -8944,
-12004, 2332, 4801, -4933, 6371, 131, 8614, -5927,
-8287, -22760, 4033, -15162, 3385, 3246, 3153, -5250,
3766, 784, 6494, -62, 3531, -1582, 15572, 662,
-3952, -330, -3196, 669, 7236, -2678, -6569, 23319,
-8645, -741, 14830, -15976, 4903, 315, -11342, 10311,
1858, -7777, 2145, 5436, 5677, -113, -10033, 826,
-1353, 17210, 7768, 986, -1471, 8291, -4982, 8207,
-14911, -6255, -2449, -11881, -7059, -11703, -4338, 8025,
7538, -2823, -12490, 9470, -1613, -2529, -10092, -7807,
9480, 6970, -12844, 5123, 3532, 4816, 4803, -8455,
-5045, 14032, -4378, -1643, 5756, -11041, -2732, -16618,
-6430, -18375, -3320, 6098, 5131, -4269, -8840, 2482,
-7048, 1547, -21890, -6505, -7414, -424, -11722, 7955,
1653, -17299, 1823, 473, -9232, 3337, 1111, 873,
4018, -8982, 9889, 3531, -11763, -3799, 7373, -4539,
3231, 7054, -8537, 7616, 6244, 16635, 447, -2915,
13967, 705, -2669, -1520, -1771, -16188, 5956, 5117,
6371, -9936, -1448, 2480, 5128, 7550, -8130, 5236,
8213, -6443, 7707, -1950, -13811, 7218, 7031, -3883,
67, 5731, -2874, 13480, -3743, 9298, -3280, 3552,
-4425, -18, -3785, -9988, -5357, 5477, -11794, 2117,
1416, -9935, 3376, 802, -5079, -8243, 12652, 66,
3653, -2368, 6781, -21895, -7227, 2487, 7839, -385,
6646, -7016, -4658, 5531, -1705, 834, 129, 3694,
-1343, 2238, -22640, -6417, -11139, 11301, -2945, -3494,
-5626, 185, -3615, -2041, -7972, -3106, -60, -23497,
-1566, 17064, 3519, 2518, 304, -6805, -10269, 2105,
1936, -426, -736, -8122, -1467, 4238, -6939, -13309,
360, 7402, -7970, 12576, 3287, 12194, -6289, -16006,
9171, 4042, -9193, 9123, -2512, 6388, -4734, -8739,
1028, -5406, -1696, 5889, -666, -4736, 4971, 3565,
9362, -6292, 3876, -3652, -19666, 7523, -4061, 391,
-11773, 7502, -3763, 4929, -9478, 13278, 2805, 4496,
7814, 16419, 12455, -14773, 2127, -2746, 3763, 4847,
3698, 6978, 4751, -6957, -3581, -45, 6252, 1513,
-4797, -7925, 11270, 16188, -2359, -5269, 9376, -10777,
7262, 20031, -6515, -2208, -5353, 8085, -1341, -1303,
7333, 5576, 3625, 5763, -7931, 9833, -3371, -10305,
6534, -13539, -9971, 997, 8464, -4064, -1495, 1857,
13624, 5458, 9490, -11086, -4524, 12022, -550, -198,
408, -8455, -7068, 10289, 9712, -3366, 9028, -7621,
-5243, 2362, 6909, 4672, -4933, -1799, 4709, -4563,
-62, -566, 1624, -7010, 14730, -17791, -3697, -2344,
-1741, 7099, -9509, -6855, -1989, 3495, -2289, 2031,
12784, 891, 14189, -3963, -5683, 421, -12575, 1724,
-12682, -5970, -8169, 3143, -1824, -5488, -5130, 8536,
12799, 794, 5738, 3459, -11689, -258, -3738, -3775,
-8742, 2333, 8312, -9383, 10331, 13119, 8398, 10644,
-19433, -6446, -16277, -11793, 16284, 9345, 15222, 15834,
2009, -7349, 130, -14547, 338, -5998, 3337, 21492,
2406, 7703, -951, 11196, -564, 3406, 2217, 4806,
2374, -5797, 11839, 8940, -11874, 18213, 2855, 10492
};

View File

@ -0,0 +1,52 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the randomization functions
* WebRtcSpl_IncreaseSeed()
* WebRtcSpl_RandU()
* WebRtcSpl_RandN()
* WebRtcSpl_RandUArray()
*
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
WebRtc_UWord32 WebRtcSpl_IncreaseSeed(WebRtc_UWord32 *seed)
{
seed[0] = (seed[0] * ((WebRtc_Word32)69069) + 1) & (WEBRTC_SPL_MAX_SEED_USED - 1);
return seed[0];
}
WebRtc_Word16 WebRtcSpl_RandU(WebRtc_UWord32 *seed)
{
return (WebRtc_Word16)(WebRtcSpl_IncreaseSeed(seed) >> 16);
}
WebRtc_Word16 WebRtcSpl_RandN(WebRtc_UWord32 *seed)
{
return WebRtcSpl_kRandNTable[WebRtcSpl_IncreaseSeed(seed) >> 23];
}
// Creates an array of uniformly distributed variables
WebRtc_Word16 WebRtcSpl_RandUArray(WebRtc_Word16* vector,
WebRtc_Word16 vector_length,
WebRtc_UWord32* seed)
{
int i;
for (i = 0; i < vector_length; i++)
{
vector[i] = WebRtcSpl_RandU(seed);
}
return vector_length;
}

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_ReflCoefToLpc().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_ReflCoefToLpc(G_CONST WebRtc_Word16 *k, int use_order, WebRtc_Word16 *a)
{
WebRtc_Word16 any[WEBRTC_SPL_MAX_LPC_ORDER + 1];
WebRtc_Word16 *aptr, *aptr2, *anyptr;
G_CONST WebRtc_Word16 *kptr;
int m, i;
kptr = k;
*a = 4096; // i.e., (Word16_MAX >> 3)+1.
*any = *a;
a[1] = WEBRTC_SPL_RSHIFT_W16((*k), 3);
for (m = 1; m < use_order; m++)
{
kptr++;
aptr = a;
aptr++;
aptr2 = &a[m];
anyptr = any;
anyptr++;
any[m + 1] = WEBRTC_SPL_RSHIFT_W16((*kptr), 3);
for (i = 0; i < m; i++)
{
*anyptr = (*aptr)
+ (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT((*aptr2), (*kptr), 15);
anyptr++;
aptr++;
aptr2--;
}
aptr = a;
anyptr = any;
for (i = 0; i < (m + 2); i++)
{
*aptr = *anyptr;
aptr++;
anyptr++;
}
}
}

View File

@ -0,0 +1,505 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling functions for 22 kHz.
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
#include "resample_by_2_internal.h"
// Declaration of internally used functions
static void WebRtcSpl_32khzTo22khzIntToShort(const WebRtc_Word32 *In, WebRtc_Word16 *Out,
const WebRtc_Word32 K);
void WebRtcSpl_32khzTo22khzIntToInt(const WebRtc_Word32 *In, WebRtc_Word32 *Out,
const WebRtc_Word32 K);
// interpolation coefficients
static const WebRtc_Word16 kCoefficients32To22[5][9] = {
{127, -712, 2359, -6333, 23456, 16775, -3695, 945, -154},
{-39, 230, -830, 2785, 32366, -2324, 760, -218, 38},
{117, -663, 2222, -6133, 26634, 13070, -3174, 831, -137},
{-77, 457, -1677, 5958, 31175, -4136, 1405, -408, 71},
{ 98, -560, 1900, -5406, 29240, 9423, -2480, 663, -110}
};
//////////////////////
// 22 kHz -> 16 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 4, 5, 10
#define SUB_BLOCKS_22_16 5
// 22 -> 16 resampler
void WebRtcSpl_Resample22khzTo16khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State22khzTo16khz* state, WebRtc_Word32* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_22_16 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_22_16; k++)
{
///// 22 --> 44 /////
// WebRtc_Word16 in[220/SUB_BLOCKS_22_16]
// WebRtc_Word32 out[440/SUB_BLOCKS_22_16]
/////
WebRtcSpl_UpBy2ShortToInt(in, 220 / SUB_BLOCKS_22_16, tmpmem + 16, state->S_22_44);
///// 44 --> 32 /////
// WebRtc_Word32 in[440/SUB_BLOCKS_22_16]
// WebRtc_Word32 out[320/SUB_BLOCKS_22_16]
/////
// copy state to and from input array
tmpmem[8] = state->S_44_32[0];
tmpmem[9] = state->S_44_32[1];
tmpmem[10] = state->S_44_32[2];
tmpmem[11] = state->S_44_32[3];
tmpmem[12] = state->S_44_32[4];
tmpmem[13] = state->S_44_32[5];
tmpmem[14] = state->S_44_32[6];
tmpmem[15] = state->S_44_32[7];
state->S_44_32[0] = tmpmem[440 / SUB_BLOCKS_22_16 + 8];
state->S_44_32[1] = tmpmem[440 / SUB_BLOCKS_22_16 + 9];
state->S_44_32[2] = tmpmem[440 / SUB_BLOCKS_22_16 + 10];
state->S_44_32[3] = tmpmem[440 / SUB_BLOCKS_22_16 + 11];
state->S_44_32[4] = tmpmem[440 / SUB_BLOCKS_22_16 + 12];
state->S_44_32[5] = tmpmem[440 / SUB_BLOCKS_22_16 + 13];
state->S_44_32[6] = tmpmem[440 / SUB_BLOCKS_22_16 + 14];
state->S_44_32[7] = tmpmem[440 / SUB_BLOCKS_22_16 + 15];
WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 40 / SUB_BLOCKS_22_16);
///// 32 --> 16 /////
// WebRtc_Word32 in[320/SUB_BLOCKS_22_16]
// WebRtc_Word32 out[160/SUB_BLOCKS_22_16]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 320 / SUB_BLOCKS_22_16, out, state->S_32_16);
// move input/output pointers 10/SUB_BLOCKS_22_16 ms seconds ahead
in += 220 / SUB_BLOCKS_22_16;
out += 160 / SUB_BLOCKS_22_16;
}
}
// initialize state of 22 -> 16 resampler
void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_22_44[k] = 0;
state->S_44_32[k] = 0;
state->S_32_16[k] = 0;
}
}
//////////////////////
// 16 kHz -> 22 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 4, 5, 10
#define SUB_BLOCKS_16_22 4
// 16 -> 22 resampler
void WebRtcSpl_Resample16khzTo22khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State16khzTo22khz* state, WebRtc_Word32* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_16_22 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_16_22; k++)
{
///// 16 --> 32 /////
// WebRtc_Word16 in[160/SUB_BLOCKS_16_22]
// WebRtc_Word32 out[320/SUB_BLOCKS_16_22]
/////
WebRtcSpl_UpBy2ShortToInt(in, 160 / SUB_BLOCKS_16_22, tmpmem + 8, state->S_16_32);
///// 32 --> 22 /////
// WebRtc_Word32 in[320/SUB_BLOCKS_16_22]
// WebRtc_Word32 out[220/SUB_BLOCKS_16_22]
/////
// copy state to and from input array
tmpmem[0] = state->S_32_22[0];
tmpmem[1] = state->S_32_22[1];
tmpmem[2] = state->S_32_22[2];
tmpmem[3] = state->S_32_22[3];
tmpmem[4] = state->S_32_22[4];
tmpmem[5] = state->S_32_22[5];
tmpmem[6] = state->S_32_22[6];
tmpmem[7] = state->S_32_22[7];
state->S_32_22[0] = tmpmem[320 / SUB_BLOCKS_16_22];
state->S_32_22[1] = tmpmem[320 / SUB_BLOCKS_16_22 + 1];
state->S_32_22[2] = tmpmem[320 / SUB_BLOCKS_16_22 + 2];
state->S_32_22[3] = tmpmem[320 / SUB_BLOCKS_16_22 + 3];
state->S_32_22[4] = tmpmem[320 / SUB_BLOCKS_16_22 + 4];
state->S_32_22[5] = tmpmem[320 / SUB_BLOCKS_16_22 + 5];
state->S_32_22[6] = tmpmem[320 / SUB_BLOCKS_16_22 + 6];
state->S_32_22[7] = tmpmem[320 / SUB_BLOCKS_16_22 + 7];
WebRtcSpl_32khzTo22khzIntToShort(tmpmem, out, 20 / SUB_BLOCKS_16_22);
// move input/output pointers 10/SUB_BLOCKS_16_22 ms seconds ahead
in += 160 / SUB_BLOCKS_16_22;
out += 220 / SUB_BLOCKS_16_22;
}
}
// initialize state of 16 -> 22 resampler
void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_16_32[k] = 0;
state->S_32_22[k] = 0;
}
}
//////////////////////
// 22 kHz -> 8 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 5, 10
#define SUB_BLOCKS_22_8 2
// 22 -> 8 resampler
void WebRtcSpl_Resample22khzTo8khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State22khzTo8khz* state, WebRtc_Word32* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_22_8 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_22_8; k++)
{
///// 22 --> 22 lowpass /////
// WebRtc_Word16 in[220/SUB_BLOCKS_22_8]
// WebRtc_Word32 out[220/SUB_BLOCKS_22_8]
/////
WebRtcSpl_LPBy2ShortToInt(in, 220 / SUB_BLOCKS_22_8, tmpmem + 16, state->S_22_22);
///// 22 --> 16 /////
// WebRtc_Word32 in[220/SUB_BLOCKS_22_8]
// WebRtc_Word32 out[160/SUB_BLOCKS_22_8]
/////
// copy state to and from input array
tmpmem[8] = state->S_22_16[0];
tmpmem[9] = state->S_22_16[1];
tmpmem[10] = state->S_22_16[2];
tmpmem[11] = state->S_22_16[3];
tmpmem[12] = state->S_22_16[4];
tmpmem[13] = state->S_22_16[5];
tmpmem[14] = state->S_22_16[6];
tmpmem[15] = state->S_22_16[7];
state->S_22_16[0] = tmpmem[220 / SUB_BLOCKS_22_8 + 8];
state->S_22_16[1] = tmpmem[220 / SUB_BLOCKS_22_8 + 9];
state->S_22_16[2] = tmpmem[220 / SUB_BLOCKS_22_8 + 10];
state->S_22_16[3] = tmpmem[220 / SUB_BLOCKS_22_8 + 11];
state->S_22_16[4] = tmpmem[220 / SUB_BLOCKS_22_8 + 12];
state->S_22_16[5] = tmpmem[220 / SUB_BLOCKS_22_8 + 13];
state->S_22_16[6] = tmpmem[220 / SUB_BLOCKS_22_8 + 14];
state->S_22_16[7] = tmpmem[220 / SUB_BLOCKS_22_8 + 15];
WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 20 / SUB_BLOCKS_22_8);
///// 16 --> 8 /////
// WebRtc_Word32 in[160/SUB_BLOCKS_22_8]
// WebRtc_Word32 out[80/SUB_BLOCKS_22_8]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 160 / SUB_BLOCKS_22_8, out, state->S_16_8);
// move input/output pointers 10/SUB_BLOCKS_22_8 ms seconds ahead
in += 220 / SUB_BLOCKS_22_8;
out += 80 / SUB_BLOCKS_22_8;
}
}
// initialize state of 22 -> 8 resampler
void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_22_22[k] = 0;
state->S_22_22[k + 8] = 0;
state->S_22_16[k] = 0;
state->S_16_8[k] = 0;
}
}
//////////////////////
// 8 kHz -> 22 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 5, 10
#define SUB_BLOCKS_8_22 2
// 8 -> 22 resampler
void WebRtcSpl_Resample8khzTo22khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State8khzTo22khz* state, WebRtc_Word32* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_8_22 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_8_22; k++)
{
///// 8 --> 16 /////
// WebRtc_Word16 in[80/SUB_BLOCKS_8_22]
// WebRtc_Word32 out[160/SUB_BLOCKS_8_22]
/////
WebRtcSpl_UpBy2ShortToInt(in, 80 / SUB_BLOCKS_8_22, tmpmem + 18, state->S_8_16);
///// 16 --> 11 /////
// WebRtc_Word32 in[160/SUB_BLOCKS_8_22]
// WebRtc_Word32 out[110/SUB_BLOCKS_8_22]
/////
// copy state to and from input array
tmpmem[10] = state->S_16_11[0];
tmpmem[11] = state->S_16_11[1];
tmpmem[12] = state->S_16_11[2];
tmpmem[13] = state->S_16_11[3];
tmpmem[14] = state->S_16_11[4];
tmpmem[15] = state->S_16_11[5];
tmpmem[16] = state->S_16_11[6];
tmpmem[17] = state->S_16_11[7];
state->S_16_11[0] = tmpmem[160 / SUB_BLOCKS_8_22 + 10];
state->S_16_11[1] = tmpmem[160 / SUB_BLOCKS_8_22 + 11];
state->S_16_11[2] = tmpmem[160 / SUB_BLOCKS_8_22 + 12];
state->S_16_11[3] = tmpmem[160 / SUB_BLOCKS_8_22 + 13];
state->S_16_11[4] = tmpmem[160 / SUB_BLOCKS_8_22 + 14];
state->S_16_11[5] = tmpmem[160 / SUB_BLOCKS_8_22 + 15];
state->S_16_11[6] = tmpmem[160 / SUB_BLOCKS_8_22 + 16];
state->S_16_11[7] = tmpmem[160 / SUB_BLOCKS_8_22 + 17];
WebRtcSpl_32khzTo22khzIntToInt(tmpmem + 10, tmpmem, 10 / SUB_BLOCKS_8_22);
///// 11 --> 22 /////
// WebRtc_Word32 in[110/SUB_BLOCKS_8_22]
// WebRtc_Word16 out[220/SUB_BLOCKS_8_22]
/////
WebRtcSpl_UpBy2IntToShort(tmpmem, 110 / SUB_BLOCKS_8_22, out, state->S_11_22);
// move input/output pointers 10/SUB_BLOCKS_8_22 ms seconds ahead
in += 80 / SUB_BLOCKS_8_22;
out += 220 / SUB_BLOCKS_8_22;
}
}
// initialize state of 8 -> 22 resampler
void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_8_16[k] = 0;
state->S_16_11[k] = 0;
state->S_11_22[k] = 0;
}
}
// compute two inner-products and store them to output array
static void WebRtcSpl_DotProdIntToInt(const WebRtc_Word32* in1, const WebRtc_Word32* in2,
const WebRtc_Word16* coef_ptr, WebRtc_Word32* out1,
WebRtc_Word32* out2)
{
WebRtc_Word32 tmp1 = 16384;
WebRtc_Word32 tmp2 = 16384;
WebRtc_Word16 coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
*out1 = tmp1 + coef * in1[8];
*out2 = tmp2 + coef * in2[-8];
}
// compute two inner-products and store them to output array
static void WebRtcSpl_DotProdIntToShort(const WebRtc_Word32* in1, const WebRtc_Word32* in2,
const WebRtc_Word16* coef_ptr, WebRtc_Word16* out1,
WebRtc_Word16* out2)
{
WebRtc_Word32 tmp1 = 16384;
WebRtc_Word32 tmp2 = 16384;
WebRtc_Word16 coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
tmp1 += coef * in1[8];
tmp2 += coef * in2[-8];
// scale down, round and saturate
tmp1 >>= 15;
if (tmp1 > (WebRtc_Word32)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (WebRtc_Word32)0xFFFF8000)
tmp1 = 0xFFFF8000;
tmp2 >>= 15;
if (tmp2 > (WebRtc_Word32)0x00007FFF)
tmp2 = 0x00007FFF;
if (tmp2 < (WebRtc_Word32)0xFFFF8000)
tmp2 = 0xFFFF8000;
*out1 = (WebRtc_Word16)tmp1;
*out2 = (WebRtc_Word16)tmp2;
}
// Resampling ratio: 11/16
// input: WebRtc_Word32 (normalized, not saturated) :: size 16 * K
// output: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384) :: size 11 * K
// K: Number of blocks
void WebRtcSpl_32khzTo22khzIntToInt(const WebRtc_Word32* In,
WebRtc_Word32* Out,
const WebRtc_Word32 K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (16 input samples -> 11 output samples);
// process in sub blocks of size 16 samples.
WebRtc_Word32 m;
for (m = 0; m < K; m++)
{
// first output sample
Out[0] = ((WebRtc_Word32)In[3] << 15) + (1 << 14);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]);
// update pointers
In += 16;
Out += 11;
}
}
// Resampling ratio: 11/16
// input: WebRtc_Word32 (normalized, not saturated) :: size 16 * K
// output: WebRtc_Word16 (saturated) :: size 11 * K
// K: Number of blocks
void WebRtcSpl_32khzTo22khzIntToShort(const WebRtc_Word32 *In,
WebRtc_Word16 *Out,
const WebRtc_Word32 K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (16 input samples -> 11 output samples);
// process in sub blocks of size 16 samples.
WebRtc_Word32 tmp;
WebRtc_Word32 m;
for (m = 0; m < K; m++)
{
// first output sample
tmp = In[3];
if (tmp > (WebRtc_Word32)0x00007FFF)
tmp = 0x00007FFF;
if (tmp < (WebRtc_Word32)0xFFFF8000)
tmp = 0xFFFF8000;
Out[0] = (WebRtc_Word16)tmp;
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]);
// update pointers
In += 16;
Out += 11;
}
}

View File

@ -0,0 +1,186 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains resampling functions between 48 kHz and nb/wb.
* The description header can be found in signal_processing_library.h
*
*/
#include <string.h>
#include "signal_processing_library.h"
#include "resample_by_2_internal.h"
////////////////////////////
///// 48 kHz -> 16 kHz /////
////////////////////////////
// 48 -> 16 resampler
void WebRtcSpl_Resample48khzTo16khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State48khzTo16khz* state, WebRtc_Word32* tmpmem)
{
///// 48 --> 48(LP) /////
// WebRtc_Word16 in[480]
// WebRtc_Word32 out[480]
/////
WebRtcSpl_LPBy2ShortToInt(in, 480, tmpmem + 16, state->S_48_48);
///// 48 --> 32 /////
// WebRtc_Word32 in[480]
// WebRtc_Word32 out[320]
/////
// copy state to and from input array
memcpy(tmpmem + 8, state->S_48_32, 8 * sizeof(WebRtc_Word32));
memcpy(state->S_48_32, tmpmem + 488, 8 * sizeof(WebRtc_Word32));
WebRtcSpl_Resample48khzTo32khz(tmpmem + 8, tmpmem, 160);
///// 32 --> 16 /////
// WebRtc_Word32 in[320]
// WebRtc_Word16 out[160]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 320, out, state->S_32_16);
}
// initialize state of 48 -> 16 resampler
void WebRtcSpl_ResetResample48khzTo16khz(WebRtcSpl_State48khzTo16khz* state)
{
memset(state->S_48_48, 0, 16 * sizeof(WebRtc_Word32));
memset(state->S_48_32, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_32_16, 0, 8 * sizeof(WebRtc_Word32));
}
////////////////////////////
///// 16 kHz -> 48 kHz /////
////////////////////////////
// 16 -> 48 resampler
void WebRtcSpl_Resample16khzTo48khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State16khzTo48khz* state, WebRtc_Word32* tmpmem)
{
///// 16 --> 32 /////
// WebRtc_Word16 in[160]
// WebRtc_Word32 out[320]
/////
WebRtcSpl_UpBy2ShortToInt(in, 160, tmpmem + 16, state->S_16_32);
///// 32 --> 24 /////
// WebRtc_Word32 in[320]
// WebRtc_Word32 out[240]
// copy state to and from input array
/////
memcpy(tmpmem + 8, state->S_32_24, 8 * sizeof(WebRtc_Word32));
memcpy(state->S_32_24, tmpmem + 328, 8 * sizeof(WebRtc_Word32));
WebRtcSpl_Resample32khzTo24khz(tmpmem + 8, tmpmem, 80);
///// 24 --> 48 /////
// WebRtc_Word32 in[240]
// WebRtc_Word16 out[480]
/////
WebRtcSpl_UpBy2IntToShort(tmpmem, 240, out, state->S_24_48);
}
// initialize state of 16 -> 48 resampler
void WebRtcSpl_ResetResample16khzTo48khz(WebRtcSpl_State16khzTo48khz* state)
{
memset(state->S_16_32, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_32_24, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_24_48, 0, 8 * sizeof(WebRtc_Word32));
}
////////////////////////////
///// 48 kHz -> 8 kHz /////
////////////////////////////
// 48 -> 8 resampler
void WebRtcSpl_Resample48khzTo8khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State48khzTo8khz* state, WebRtc_Word32* tmpmem)
{
///// 48 --> 24 /////
// WebRtc_Word16 in[480]
// WebRtc_Word32 out[240]
/////
WebRtcSpl_DownBy2ShortToInt(in, 480, tmpmem + 256, state->S_48_24);
///// 24 --> 24(LP) /////
// WebRtc_Word32 in[240]
// WebRtc_Word32 out[240]
/////
WebRtcSpl_LPBy2IntToInt(tmpmem + 256, 240, tmpmem + 16, state->S_24_24);
///// 24 --> 16 /////
// WebRtc_Word32 in[240]
// WebRtc_Word32 out[160]
/////
// copy state to and from input array
memcpy(tmpmem + 8, state->S_24_16, 8 * sizeof(WebRtc_Word32));
memcpy(state->S_24_16, tmpmem + 248, 8 * sizeof(WebRtc_Word32));
WebRtcSpl_Resample48khzTo32khz(tmpmem + 8, tmpmem, 80);
///// 16 --> 8 /////
// WebRtc_Word32 in[160]
// WebRtc_Word16 out[80]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 160, out, state->S_16_8);
}
// initialize state of 48 -> 8 resampler
void WebRtcSpl_ResetResample48khzTo8khz(WebRtcSpl_State48khzTo8khz* state)
{
memset(state->S_48_24, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_24_24, 0, 16 * sizeof(WebRtc_Word32));
memset(state->S_24_16, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_16_8, 0, 8 * sizeof(WebRtc_Word32));
}
////////////////////////////
///// 8 kHz -> 48 kHz /////
////////////////////////////
// 8 -> 48 resampler
void WebRtcSpl_Resample8khzTo48khz(const WebRtc_Word16* in, WebRtc_Word16* out,
WebRtcSpl_State8khzTo48khz* state, WebRtc_Word32* tmpmem)
{
///// 8 --> 16 /////
// WebRtc_Word16 in[80]
// WebRtc_Word32 out[160]
/////
WebRtcSpl_UpBy2ShortToInt(in, 80, tmpmem + 264, state->S_8_16);
///// 16 --> 12 /////
// WebRtc_Word32 in[160]
// WebRtc_Word32 out[120]
/////
// copy state to and from input array
memcpy(tmpmem + 256, state->S_16_12, 8 * sizeof(WebRtc_Word32));
memcpy(state->S_16_12, tmpmem + 416, 8 * sizeof(WebRtc_Word32));
WebRtcSpl_Resample32khzTo24khz(tmpmem + 256, tmpmem + 240, 40);
///// 12 --> 24 /////
// WebRtc_Word32 in[120]
// WebRtc_Word16 out[240]
/////
WebRtcSpl_UpBy2IntToInt(tmpmem + 240, 120, tmpmem, state->S_12_24);
///// 24 --> 48 /////
// WebRtc_Word32 in[240]
// WebRtc_Word16 out[480]
/////
WebRtcSpl_UpBy2IntToShort(tmpmem, 240, out, state->S_24_48);
}
// initialize state of 8 -> 48 resampler
void WebRtcSpl_ResetResample8khzTo48khz(WebRtcSpl_State8khzTo48khz* state)
{
memset(state->S_8_16, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_16_12, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_12_24, 0, 8 * sizeof(WebRtc_Word32));
memset(state->S_24_48, 0, 8 * sizeof(WebRtc_Word32));
}

View File

@ -0,0 +1,170 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling by two functions.
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
// allpass filter coefficients.
static const WebRtc_UWord16 kResampleAllpass1[3] = {3284, 24441, 49528};
static const WebRtc_UWord16 kResampleAllpass2[3] = {12199, 37471, 60255};
// decimator
void WebRtcSpl_DownsampleBy2(const WebRtc_Word16* in, const WebRtc_Word16 len,
WebRtc_Word16* out, WebRtc_Word32* filtState)
{
WebRtc_Word32 tmp1, tmp2, diff, in32, out32;
WebRtc_Word16 i;
register WebRtc_Word32 state0 = filtState[0];
register WebRtc_Word32 state1 = filtState[1];
register WebRtc_Word32 state2 = filtState[2];
register WebRtc_Word32 state3 = filtState[3];
register WebRtc_Word32 state4 = filtState[4];
register WebRtc_Word32 state5 = filtState[5];
register WebRtc_Word32 state6 = filtState[6];
register WebRtc_Word32 state7 = filtState[7];
for (i = (len >> 1); i > 0; i--)
{
// lower allpass filter
in32 = (WebRtc_Word32)(*in++) << 10;
diff = in32 - state1;
tmp1 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass2[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass2[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass2[2], diff, state2);
state2 = tmp2;
// upper allpass filter
in32 = (WebRtc_Word32)(*in++) << 10;
diff = in32 - state5;
tmp1 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass1[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass1[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass1[2], diff, state6);
state6 = tmp2;
// add two allpass outputs, divide by two and round
out32 = (state3 + state7 + 1024) >> 11;
// limit amplitude to prevent wrap-around, and write to output array
#ifdef WEBRTC_ARCH_ARM_V7A
__asm__("ssat %r0, #16, %r1" : "=r"(*out) : "r"(out32));
out++;
#else
if (out32 > 32767)
*out++ = 32767;
else if (out32 < -32768)
*out++ = -32768;
else
*out++ = (WebRtc_Word16)out32;
#endif
}
filtState[0] = state0;
filtState[1] = state1;
filtState[2] = state2;
filtState[3] = state3;
filtState[4] = state4;
filtState[5] = state5;
filtState[6] = state6;
filtState[7] = state7;
}
void WebRtcSpl_UpsampleBy2(const WebRtc_Word16* in, WebRtc_Word16 len, WebRtc_Word16* out,
WebRtc_Word32* filtState)
{
WebRtc_Word32 tmp1, tmp2, diff, in32, out32;
WebRtc_Word16 i;
register WebRtc_Word32 state0 = filtState[0];
register WebRtc_Word32 state1 = filtState[1];
register WebRtc_Word32 state2 = filtState[2];
register WebRtc_Word32 state3 = filtState[3];
register WebRtc_Word32 state4 = filtState[4];
register WebRtc_Word32 state5 = filtState[5];
register WebRtc_Word32 state6 = filtState[6];
register WebRtc_Word32 state7 = filtState[7];
for (i = len; i > 0; i--)
{
// lower allpass filter
in32 = (WebRtc_Word32)(*in++) << 10;
diff = in32 - state1;
tmp1 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass1[0], diff, state0);
state0 = in32;
diff = tmp1 - state2;
tmp2 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass1[1], diff, state1);
state1 = tmp1;
diff = tmp2 - state3;
state3 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass1[2], diff, state2);
state2 = tmp2;
// round; limit amplitude to prevent wrap-around; write to output array
out32 = (state3 + 512) >> 10;
#ifdef WEBRTC_ARCH_ARM_V7A
__asm__("ssat %r0, #16, %r1":"=r"(*out): "r"(out32));
out++;
#else
if (out32 > 32767)
*out++ = 32767;
else if (out32 < -32768)
*out++ = -32768;
else
*out++ = (WebRtc_Word16)out32;
#endif
// upper allpass filter
diff = in32 - state5;
tmp1 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass2[0], diff, state4);
state4 = in32;
diff = tmp1 - state6;
tmp2 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass2[1], diff, state5);
state5 = tmp1;
diff = tmp2 - state7;
state7 = WEBRTC_SPL_SCALEDIFF32(kResampleAllpass2[2], diff, state6);
state6 = tmp2;
// round; limit amplitude to prevent wrap-around; write to output array
out32 = (state7 + 512) >> 10;
#ifdef WEBRTC_ARCH_ARM_V7A
__asm__("ssat %r0, #16, %r1":"=r"(*out): "r"(out32));
out++;
#else
if (out32 > 32767)
*out++ = 32767;
else if (out32 < -32768)
*out++ = -32768;
else
*out++ = (WebRtc_Word16)out32;
#endif
}
filtState[0] = state0;
filtState[1] = state1;
filtState[2] = state2;
filtState[3] = state3;
filtState[4] = state4;
filtState[5] = state5;
filtState[6] = state6;
filtState[7] = state7;
}

View File

@ -0,0 +1,679 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file contains some internal resampling functions.
*
*/
#include "resample_by_2_internal.h"
// allpass filter coefficients.
static const WebRtc_Word16 kResampleAllpass[2][3] = {
{821, 6110, 12382},
{3050, 9368, 15063}
};
//
// decimator
// input: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384) OVERWRITTEN!
// output: WebRtc_Word16 (saturated) (of length len/2)
// state: filter state array; length = 8
void WebRtcSpl_DownBy2IntToShort(WebRtc_Word32 *in, WebRtc_Word32 len, WebRtc_Word16 *out,
WebRtc_Word32 *state)
{
WebRtc_Word32 tmp0, tmp1, diff;
WebRtc_Word32 i;
len >>= 1;
// lower allpass filter (operates on even input samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// divide by two and store temporarily
in[i << 1] = (state[3] >> 1);
}
in++;
// upper allpass filter (operates on odd input samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// divide by two and store temporarily
in[i << 1] = (state[7] >> 1);
}
in--;
// combine allpass outputs
for (i = 0; i < len; i += 2)
{
// divide by two, add both allpass outputs and round
tmp0 = (in[i << 1] + in[(i << 1) + 1]) >> 15;
tmp1 = (in[(i << 1) + 2] + in[(i << 1) + 3]) >> 15;
if (tmp0 > (WebRtc_Word32)0x00007FFF)
tmp0 = 0x00007FFF;
if (tmp0 < (WebRtc_Word32)0xFFFF8000)
tmp0 = 0xFFFF8000;
out[i] = (WebRtc_Word16)tmp0;
if (tmp1 > (WebRtc_Word32)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (WebRtc_Word32)0xFFFF8000)
tmp1 = 0xFFFF8000;
out[i + 1] = (WebRtc_Word16)tmp1;
}
}
//
// decimator
// input: WebRtc_Word16
// output: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384) (of length len/2)
// state: filter state array; length = 8
void WebRtcSpl_DownBy2ShortToInt(const WebRtc_Word16 *in,
WebRtc_Word32 len,
WebRtc_Word32 *out,
WebRtc_Word32 *state)
{
WebRtc_Word32 tmp0, tmp1, diff;
WebRtc_Word32 i;
len >>= 1;
// lower allpass filter (operates on even input samples)
for (i = 0; i < len; i++)
{
tmp0 = ((WebRtc_Word32)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// divide by two and store temporarily
out[i] = (state[3] >> 1);
}
in++;
// upper allpass filter (operates on odd input samples)
for (i = 0; i < len; i++)
{
tmp0 = ((WebRtc_Word32)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// divide by two and store temporarily
out[i] += (state[7] >> 1);
}
in--;
}
//
// interpolator
// input: WebRtc_Word16
// output: WebRtc_Word32 (normalized, not saturated) (of length len*2)
// state: filter state array; length = 8
void WebRtcSpl_UpBy2ShortToInt(const WebRtc_Word16 *in, WebRtc_Word32 len, WebRtc_Word32 *out,
WebRtc_Word32 *state)
{
WebRtc_Word32 tmp0, tmp1, diff;
WebRtc_Word32 i;
// upper allpass filter (generates odd output samples)
for (i = 0; i < len; i++)
{
tmp0 = ((WebRtc_Word32)in[i] << 15) + (1 << 14);
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// scale down, round and store
out[i << 1] = state[7] >> 15;
}
out++;
// lower allpass filter (generates even output samples)
for (i = 0; i < len; i++)
{
tmp0 = ((WebRtc_Word32)in[i] << 15) + (1 << 14);
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3] >> 15;
}
}
//
// interpolator
// input: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384)
// output: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384) (of length len*2)
// state: filter state array; length = 8
void WebRtcSpl_UpBy2IntToInt(const WebRtc_Word32 *in, WebRtc_Word32 len, WebRtc_Word32 *out,
WebRtc_Word32 *state)
{
WebRtc_Word32 tmp0, tmp1, diff;
WebRtc_Word32 i;
// upper allpass filter (generates odd output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// scale down, round and store
out[i << 1] = state[7];
}
out++;
// lower allpass filter (generates even output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3];
}
}
//
// interpolator
// input: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384)
// output: WebRtc_Word16 (saturated) (of length len*2)
// state: filter state array; length = 8
void WebRtcSpl_UpBy2IntToShort(const WebRtc_Word32 *in, WebRtc_Word32 len, WebRtc_Word16 *out,
WebRtc_Word32 *state)
{
WebRtc_Word32 tmp0, tmp1, diff;
WebRtc_Word32 i;
// upper allpass filter (generates odd output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// scale down, saturate and store
tmp1 = state[7] >> 15;
if (tmp1 > (WebRtc_Word32)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (WebRtc_Word32)0xFFFF8000)
tmp1 = 0xFFFF8000;
out[i << 1] = (WebRtc_Word16)tmp1;
}
out++;
// lower allpass filter (generates even output samples)
for (i = 0; i < len; i++)
{
tmp0 = in[i];
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, saturate and store
tmp1 = state[3] >> 15;
if (tmp1 > (WebRtc_Word32)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (WebRtc_Word32)0xFFFF8000)
tmp1 = 0xFFFF8000;
out[i << 1] = (WebRtc_Word16)tmp1;
}
}
// lowpass filter
// input: WebRtc_Word16
// output: WebRtc_Word32 (normalized, not saturated)
// state: filter state array; length = 8
void WebRtcSpl_LPBy2ShortToInt(const WebRtc_Word16* in, WebRtc_Word32 len, WebRtc_Word32* out,
WebRtc_Word32* state)
{
WebRtc_Word32 tmp0, tmp1, diff;
WebRtc_Word32 i;
len >>= 1;
// lower allpass filter: odd input -> even output samples
in++;
// initial state of polyphase delay element
tmp0 = state[12];
for (i = 0; i < len; i++)
{
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3] >> 1;
tmp0 = ((WebRtc_Word32)in[i << 1] << 15) + (1 << 14);
}
in--;
// upper allpass filter: even input -> even output samples
for (i = 0; i < len; i++)
{
tmp0 = ((WebRtc_Word32)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[7] >> 1)) >> 15;
}
// switch to odd output samples
out++;
// lower allpass filter: even input -> odd output samples
for (i = 0; i < len; i++)
{
tmp0 = ((WebRtc_Word32)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[9];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[8] + diff * kResampleAllpass[1][0];
state[8] = tmp0;
diff = tmp1 - state[10];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[9] + diff * kResampleAllpass[1][1];
state[9] = tmp1;
diff = tmp0 - state[11];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[11] = state[10] + diff * kResampleAllpass[1][2];
state[10] = tmp0;
// scale down, round and store
out[i << 1] = state[11] >> 1;
}
// upper allpass filter: odd input -> odd output samples
in++;
for (i = 0; i < len; i++)
{
tmp0 = ((WebRtc_Word32)in[i << 1] << 15) + (1 << 14);
diff = tmp0 - state[13];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[12] + diff * kResampleAllpass[0][0];
state[12] = tmp0;
diff = tmp1 - state[14];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[13] + diff * kResampleAllpass[0][1];
state[13] = tmp1;
diff = tmp0 - state[15];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[15] = state[14] + diff * kResampleAllpass[0][2];
state[14] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[15] >> 1)) >> 15;
}
}
// lowpass filter
// input: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384)
// output: WebRtc_Word32 (normalized, not saturated)
// state: filter state array; length = 8
void WebRtcSpl_LPBy2IntToInt(const WebRtc_Word32* in, WebRtc_Word32 len, WebRtc_Word32* out,
WebRtc_Word32* state)
{
WebRtc_Word32 tmp0, tmp1, diff;
WebRtc_Word32 i;
len >>= 1;
// lower allpass filter: odd input -> even output samples
in++;
// initial state of polyphase delay element
tmp0 = state[12];
for (i = 0; i < len; i++)
{
diff = tmp0 - state[1];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[0] + diff * kResampleAllpass[1][0];
state[0] = tmp0;
diff = tmp1 - state[2];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[1] + diff * kResampleAllpass[1][1];
state[1] = tmp1;
diff = tmp0 - state[3];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[3] = state[2] + diff * kResampleAllpass[1][2];
state[2] = tmp0;
// scale down, round and store
out[i << 1] = state[3] >> 1;
tmp0 = in[i << 1];
}
in--;
// upper allpass filter: even input -> even output samples
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[5];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[4] + diff * kResampleAllpass[0][0];
state[4] = tmp0;
diff = tmp1 - state[6];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[5] + diff * kResampleAllpass[0][1];
state[5] = tmp1;
diff = tmp0 - state[7];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[7] = state[6] + diff * kResampleAllpass[0][2];
state[6] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[7] >> 1)) >> 15;
}
// switch to odd output samples
out++;
// lower allpass filter: even input -> odd output samples
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[9];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[8] + diff * kResampleAllpass[1][0];
state[8] = tmp0;
diff = tmp1 - state[10];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[9] + diff * kResampleAllpass[1][1];
state[9] = tmp1;
diff = tmp0 - state[11];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[11] = state[10] + diff * kResampleAllpass[1][2];
state[10] = tmp0;
// scale down, round and store
out[i << 1] = state[11] >> 1;
}
// upper allpass filter: odd input -> odd output samples
in++;
for (i = 0; i < len; i++)
{
tmp0 = in[i << 1];
diff = tmp0 - state[13];
// scale down and round
diff = (diff + (1 << 13)) >> 14;
tmp1 = state[12] + diff * kResampleAllpass[0][0];
state[12] = tmp0;
diff = tmp1 - state[14];
// scale down and round
diff = diff >> 14;
if (diff < 0)
diff += 1;
tmp0 = state[13] + diff * kResampleAllpass[0][1];
state[13] = tmp1;
diff = tmp0 - state[15];
// scale down and truncate
diff = diff >> 14;
if (diff < 0)
diff += 1;
state[15] = state[14] + diff * kResampleAllpass[0][2];
state[14] = tmp0;
// average the two allpass outputs, scale down and store
out[i << 1] = (out[i << 1] + (state[15] >> 1)) >> 15;
}
}

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file contains some internal resampling functions.
*
*/
#ifndef WEBRTC_SPL_RESAMPLE_BY_2_INTERNAL_H_
#define WEBRTC_SPL_RESAMPLE_BY_2_INTERNAL_H_
#include "typedefs.h"
/*******************************************************************
* resample_by_2_fast.c
* Functions for internal use in the other resample functions
******************************************************************/
void WebRtcSpl_DownBy2IntToShort(WebRtc_Word32 *in, WebRtc_Word32 len, WebRtc_Word16 *out,
WebRtc_Word32 *state);
void WebRtcSpl_DownBy2ShortToInt(const WebRtc_Word16 *in, WebRtc_Word32 len,
WebRtc_Word32 *out, WebRtc_Word32 *state);
void WebRtcSpl_UpBy2ShortToInt(const WebRtc_Word16 *in, WebRtc_Word32 len,
WebRtc_Word32 *out, WebRtc_Word32 *state);
void WebRtcSpl_UpBy2IntToInt(const WebRtc_Word32 *in, WebRtc_Word32 len, WebRtc_Word32 *out,
WebRtc_Word32 *state);
void WebRtcSpl_UpBy2IntToShort(const WebRtc_Word32 *in, WebRtc_Word32 len,
WebRtc_Word16 *out, WebRtc_Word32 *state);
void WebRtcSpl_LPBy2ShortToInt(const WebRtc_Word16* in, WebRtc_Word32 len,
WebRtc_Word32* out, WebRtc_Word32* state);
void WebRtcSpl_LPBy2IntToInt(const WebRtc_Word32* in, WebRtc_Word32 len, WebRtc_Word32* out,
WebRtc_Word32* state);
#endif // WEBRTC_SPL_RESAMPLE_BY_2_INTERNAL_H_

View File

@ -0,0 +1,242 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling functions between 48, 44, 32 and 24 kHz.
* The description headers can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
// interpolation coefficients
static const WebRtc_Word16 kCoefficients48To32[2][8] = {
{778, -2050, 1087, 23285, 12903, -3783, 441, 222},
{222, 441, -3783, 12903, 23285, 1087, -2050, 778}
};
static const WebRtc_Word16 kCoefficients32To24[3][8] = {
{767, -2362, 2434, 24406, 10620, -3838, 721, 90},
{386, -381, -2646, 19062, 19062, -2646, -381, 386},
{90, 721, -3838, 10620, 24406, 2434, -2362, 767}
};
static const WebRtc_Word16 kCoefficients44To32[4][9] = {
{117, -669, 2245, -6183, 26267, 13529, -3245, 845, -138},
{-101, 612, -2283, 8532, 29790, -5138, 1789, -524, 91},
{50, -292, 1016, -3064, 32010, 3933, -1147, 315, -53},
{-156, 974, -3863, 18603, 21691, -6246, 2353, -712, 126}
};
// Resampling ratio: 2/3
// input: WebRtc_Word32 (normalized, not saturated) :: size 3 * K
// output: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384) :: size 2 * K
// K: number of blocks
void WebRtcSpl_Resample48khzTo32khz(const WebRtc_Word32 *In, WebRtc_Word32 *Out,
const WebRtc_Word32 K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (3 input samples -> 2 output samples);
// process in sub blocks of size 3 samples.
WebRtc_Word32 tmp;
WebRtc_Word32 m;
for (m = 0; m < K; m++)
{
tmp = 1 << 14;
tmp += kCoefficients48To32[0][0] * In[0];
tmp += kCoefficients48To32[0][1] * In[1];
tmp += kCoefficients48To32[0][2] * In[2];
tmp += kCoefficients48To32[0][3] * In[3];
tmp += kCoefficients48To32[0][4] * In[4];
tmp += kCoefficients48To32[0][5] * In[5];
tmp += kCoefficients48To32[0][6] * In[6];
tmp += kCoefficients48To32[0][7] * In[7];
Out[0] = tmp;
tmp = 1 << 14;
tmp += kCoefficients48To32[1][0] * In[1];
tmp += kCoefficients48To32[1][1] * In[2];
tmp += kCoefficients48To32[1][2] * In[3];
tmp += kCoefficients48To32[1][3] * In[4];
tmp += kCoefficients48To32[1][4] * In[5];
tmp += kCoefficients48To32[1][5] * In[6];
tmp += kCoefficients48To32[1][6] * In[7];
tmp += kCoefficients48To32[1][7] * In[8];
Out[1] = tmp;
// update pointers
In += 3;
Out += 2;
}
}
// Resampling ratio: 3/4
// input: WebRtc_Word32 (normalized, not saturated) :: size 4 * K
// output: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384) :: size 3 * K
// K: number of blocks
void WebRtcSpl_Resample32khzTo24khz(const WebRtc_Word32 *In, WebRtc_Word32 *Out,
const WebRtc_Word32 K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (4 input samples -> 3 output samples);
// process in sub blocks of size 4 samples.
WebRtc_Word32 m;
WebRtc_Word32 tmp;
for (m = 0; m < K; m++)
{
tmp = 1 << 14;
tmp += kCoefficients32To24[0][0] * In[0];
tmp += kCoefficients32To24[0][1] * In[1];
tmp += kCoefficients32To24[0][2] * In[2];
tmp += kCoefficients32To24[0][3] * In[3];
tmp += kCoefficients32To24[0][4] * In[4];
tmp += kCoefficients32To24[0][5] * In[5];
tmp += kCoefficients32To24[0][6] * In[6];
tmp += kCoefficients32To24[0][7] * In[7];
Out[0] = tmp;
tmp = 1 << 14;
tmp += kCoefficients32To24[1][0] * In[1];
tmp += kCoefficients32To24[1][1] * In[2];
tmp += kCoefficients32To24[1][2] * In[3];
tmp += kCoefficients32To24[1][3] * In[4];
tmp += kCoefficients32To24[1][4] * In[5];
tmp += kCoefficients32To24[1][5] * In[6];
tmp += kCoefficients32To24[1][6] * In[7];
tmp += kCoefficients32To24[1][7] * In[8];
Out[1] = tmp;
tmp = 1 << 14;
tmp += kCoefficients32To24[2][0] * In[2];
tmp += kCoefficients32To24[2][1] * In[3];
tmp += kCoefficients32To24[2][2] * In[4];
tmp += kCoefficients32To24[2][3] * In[5];
tmp += kCoefficients32To24[2][4] * In[6];
tmp += kCoefficients32To24[2][5] * In[7];
tmp += kCoefficients32To24[2][6] * In[8];
tmp += kCoefficients32To24[2][7] * In[9];
Out[2] = tmp;
// update pointers
In += 4;
Out += 3;
}
}
//
// fractional resampling filters
// Fout = 11/16 * Fin
// Fout = 8/11 * Fin
//
// compute two inner-products and store them to output array
static void WebRtcSpl_ResampDotProduct(const WebRtc_Word32 *in1, const WebRtc_Word32 *in2,
const WebRtc_Word16 *coef_ptr, WebRtc_Word32 *out1,
WebRtc_Word32 *out2)
{
WebRtc_Word32 tmp1 = 16384;
WebRtc_Word32 tmp2 = 16384;
WebRtc_Word16 coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
*out1 = tmp1 + coef * in1[8];
*out2 = tmp2 + coef * in2[-8];
}
// Resampling ratio: 8/11
// input: WebRtc_Word32 (normalized, not saturated) :: size 11 * K
// output: WebRtc_Word32 (shifted 15 positions to the left, + offset 16384) :: size 8 * K
// K: number of blocks
void WebRtcSpl_Resample44khzTo32khz(const WebRtc_Word32 *In, WebRtc_Word32 *Out,
const WebRtc_Word32 K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (11 input samples -> 8 output samples);
// process in sub blocks of size 11 samples.
WebRtc_Word32 tmp;
WebRtc_Word32 m;
for (m = 0; m < K; m++)
{
tmp = 1 << 14;
// first output sample
Out[0] = ((WebRtc_Word32)In[3] << 15) + tmp;
// sum and accumulate filter coefficients and input samples
tmp += kCoefficients44To32[3][0] * In[5];
tmp += kCoefficients44To32[3][1] * In[6];
tmp += kCoefficients44To32[3][2] * In[7];
tmp += kCoefficients44To32[3][3] * In[8];
tmp += kCoefficients44To32[3][4] * In[9];
tmp += kCoefficients44To32[3][5] * In[10];
tmp += kCoefficients44To32[3][6] * In[11];
tmp += kCoefficients44To32[3][7] * In[12];
tmp += kCoefficients44To32[3][8] * In[13];
Out[4] = tmp;
// sum and accumulate filter coefficients and input samples
WebRtcSpl_ResampDotProduct(&In[0], &In[17], kCoefficients44To32[0], &Out[1], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_ResampDotProduct(&In[2], &In[15], kCoefficients44To32[1], &Out[2], &Out[6]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_ResampDotProduct(&In[3], &In[14], kCoefficients44To32[2], &Out[3], &Out[5]);
// update pointers
In += 11;
Out += 8;
}
}

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the 360 degree sine table.
*
*/
#include "signal_processing_library.h"
WebRtc_Word16 WebRtcSpl_kSinTable[] = {
0, 142, 285, 428, 571, 713, 856, 998, 1140,
1281, 1422, 1563, 1703, 1842, 1981, 2120, 2258, 2395,
2531, 2667, 2801, 2935, 3068, 3200, 3331, 3462, 3591,
3719, 3845, 3971, 4095, 4219, 4341, 4461, 4580, 4698,
4815, 4930, 5043, 5155, 5265, 5374, 5481, 5586, 5690,
5792, 5892, 5991, 6087, 6182, 6275, 6366, 6455, 6542,
6627, 6710, 6791, 6870, 6947, 7021, 7094, 7164, 7233,
7299, 7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041, 8067,
8091, 8112, 8130, 8147, 8160, 8172, 8180, 8187, 8190,
8191, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112,
8091, 8067, 8041, 8012, 7982, 7948, 7912, 7874, 7834,
7791, 7745, 7697, 7647, 7595, 7540, 7483, 7424, 7362,
7299, 7233, 7164, 7094, 7021, 6947, 6870, 6791, 6710,
6627, 6542, 6455, 6366, 6275, 6182, 6087, 5991, 5892,
5792, 5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971, 3845,
3719, 3591, 3462, 3331, 3200, 3068, 2935, 2801, 2667,
2531, 2395, 2258, 2120, 1981, 1842, 1703, 1563, 1422,
1281, 1140, 998, 856, 713, 571, 428, 285, 142,
0, -142, -285, -428, -571, -713, -856, -998, -1140,
-1281, -1422, -1563, -1703, -1842, -1981, -2120, -2258, -2395,
-2531, -2667, -2801, -2935, -3068, -3200, -3331, -3462, -3591,
-3719, -3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
-4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586, -5690,
-5792, -5892, -5991, -6087, -6182, -6275, -6366, -6455, -6542,
-6627, -6710, -6791, -6870, -6947, -7021, -7094, -7164, -7233,
-7299, -7362, -7424, -7483, -7540, -7595, -7647, -7697, -7745,
-7791, -7834, -7874, -7912, -7948, -7982, -8012, -8041, -8067,
-8091, -8112, -8130, -8147, -8160, -8172, -8180, -8187, -8190,
-8191, -8190, -8187, -8180, -8172, -8160, -8147, -8130, -8112,
-8091, -8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
-7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424, -7362,
-7299, -7233, -7164, -7094, -7021, -6947, -6870, -6791, -6710,
-6627, -6542, -6455, -6366, -6275, -6182, -6087, -5991, -5892,
-5792, -5690, -5586, -5481, -5374, -5265, -5155, -5043, -4930,
-4815, -4698, -4580, -4461, -4341, -4219, -4096, -3971, -3845,
-3719, -3591, -3462, -3331, -3200, -3068, -2935, -2801, -2667,
-2531, -2395, -2258, -2120, -1981, -1842, -1703, -1563, -1422,
-1281, -1140, -998, -856, -713, -571, -428, -285, -142
};

View File

@ -0,0 +1,150 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the 1024 point sine table.
*
*/
#include "signal_processing_library.h"
WebRtc_Word16 WebRtcSpl_kSinTable1024[] =
{
0, 201, 402, 603, 804, 1005, 1206, 1406,
1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011,
3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608,
4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195,
6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766,
7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319,
9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849,
11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353,
12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268,
15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672,
16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036,
18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357,
19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631,
20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855,
22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027,
23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143,
24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198,
26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132,
27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001,
28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802,
28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534,
29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195,
30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783,
30851, 30918, 30984, 31049,
31113, 31175, 31236, 31297,
31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097,
32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382,
32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588,
32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717,
32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766,
32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736,
32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628,
32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441,
32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833,
31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413,
31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918,
30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349,
30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706,
29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992,
28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208,
28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355,
27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456,
25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413,
24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311,
23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153,
22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942,
20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680,
19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371,
18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017,
16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191,
14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724,
12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227,
11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703,
9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156,
7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589,
6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006,
4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411,
3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
1607, 1406, 1206, 1005, 804, 603, 402, 201,
0, -201, -402, -603, -804, -1005, -1206, -1406,
-1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011,
-3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608,
-4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195,
-6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766,
-7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319,
-9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849,
-11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
-12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
-14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
-15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
-16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
-18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
-19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
-20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
-22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
-23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
-24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
-25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
-26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
-27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
-28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
-28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
-29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
-30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
-30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
-31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
-31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
-32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
-32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
-32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
-32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
-32767, -32766, -32764, -32761, -32757, -32751, -32744, -32736,
-32727, -32717, -32705, -32692, -32678, -32662, -32646, -32628,
-32609, -32588, -32567, -32544, -32520, -32495, -32468, -32441,
-32412, -32382, -32350, -32318, -32284, -32249, -32213, -32176,
-32137, -32097, -32056, -32014, -31970, -31926, -31880, -31833,
-31785, -31735, -31684, -31633, -31580, -31525, -31470, -31413,
-31356, -31297, -31236, -31175, -31113, -31049, -30984, -30918,
-30851, -30783, -30713, -30643, -30571, -30498, -30424, -30349,
-30272, -30195, -30116, -30036, -29955, -29873, -29790, -29706,
-29621, -29534, -29446, -29358, -29268, -29177, -29085, -28992,
-28897, -28802, -28706, -28608, -28510, -28410, -28309, -28208,
-28105, -28001, -27896, -27790, -27683, -27575, -27466, -27355,
-27244, -27132, -27019, -26905, -26789, -26673, -26556, -26437,
-26318, -26198, -26077, -25954, -25831, -25707, -25582, -25456,
-25329, -25201, -25072, -24942, -24811, -24679, -24546, -24413,
-24278, -24143, -24006, -23869, -23731, -23592, -23452, -23311,
-23169, -23027, -22883, -22739, -22594, -22448, -22301, -22153,
-22004, -21855, -21705, -21554, -21402, -21249, -21096, -20942,
-20787, -20631, -20474, -20317, -20159, -20000, -19840, -19680,
-19519, -19357, -19194, -19031, -18867, -18702, -18537, -18371,
-18204, -18036, -17868, -17699, -17530, -17360, -17189, -17017,
-16845, -16672, -16499, -16325, -16150, -15975, -15799, -15623,
-15446, -15268, -15090, -14911, -14732, -14552, -14372, -14191,
-14009, -13827, -13645, -13462, -13278, -13094, -12909, -12724,
-12539, -12353, -12166, -11980, -11792, -11604, -11416, -11227,
-11038, -10849, -10659, -10469, -10278, -10087, -9895, -9703,
-9511, -9319, -9126, -8932, -8739, -8545, -8351, -8156,
-7961, -7766, -7571, -7375, -7179, -6982, -6786, -6589,
-6392, -6195, -5997, -5799, -5601, -5403, -5205, -5006,
-4807, -4608, -4409, -4210, -4011, -3811, -3611, -3411,
-3211, -3011, -2811, -2610, -2410, -2209, -2009, -1808,
-1607, -1406, -1206, -1005, -804, -603, -402, -201,
};

View File

@ -0,0 +1,73 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'spl',
'type': '<(library)',
'include_dirs': [
'../interface',
],
'direct_dependent_settings': {
'include_dirs': [
'../interface',
],
},
'sources': [
'../interface/signal_processing_library.h',
'../interface/spl_inl.h',
'auto_corr_to_refl_coef.c',
'auto_correlation.c',
'complex_fft.c',
'complex_ifft.c',
'complex_bit_reverse.c',
'copy_set_operations.c',
'cos_table.c',
'cross_correlation.c',
'division_operations.c',
'dot_product_with_scale.c',
'downsample_fast.c',
'energy.c',
'filter_ar.c',
'filter_ar_fast_q12.c',
'filter_ma_fast_q12.c',
'get_hanning_window.c',
'get_scaling_square.c',
'hanning_table.c',
'ilbc_specific_functions.c',
'levinson_durbin.c',
'lpc_to_refl_coef.c',
'min_max_operations.c',
'randn_table.c',
'randomization_functions.c',
'refl_coef_to_lpc.c',
'resample.c',
'resample_48khz.c',
'resample_by_2.c',
'resample_by_2_internal.c',
'resample_by_2_internal.h',
'resample_fractional.c',
'sin_table.c',
'sin_table_1024.c',
'spl_sqrt.c',
'spl_sqrt_floor.c',
'spl_version.c',
'splitting_filter.c',
'sqrt_of_one_minus_x_squared.c',
'vector_scaling_operations.c',
],
},
],
}
# Local Variables:
# tab-width:2
# indent-tabs-mode:nil
# End:
# vim: set expandtab tabstop=2 shiftwidth=2:

View File

@ -0,0 +1,184 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_Sqrt().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
WebRtc_Word32 WebRtcSpl_SqrtLocal(WebRtc_Word32 in);
WebRtc_Word32 WebRtcSpl_SqrtLocal(WebRtc_Word32 in)
{
WebRtc_Word16 x_half, t16;
WebRtc_Word32 A, B, x2;
/* The following block performs:
y=in/2
x=y-2^30
x_half=x/2^31
t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
+ 0.875*((x_half)^5)
*/
B = in;
B = WEBRTC_SPL_RSHIFT_W32(B, 1); // B = in/2
B = B - ((WebRtc_Word32)0x40000000); // B = in/2 - 1/2
x_half = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(B, 16);// x_half = x/2 = (in-1)/2
B = B + ((WebRtc_Word32)0x40000000); // B = 1 + x/2
B = B + ((WebRtc_Word32)0x40000000); // Add 0.5 twice (since 1.0 does not exist in Q31)
x2 = ((WebRtc_Word32)x_half) * ((WebRtc_Word32)x_half) * 2; // A = (x/2)^2
A = -x2; // A = -(x/2)^2
B = B + (A >> 1); // B = 1 + x/2 - 0.5*(x/2)^2
A = WEBRTC_SPL_RSHIFT_W32(A, 16);
A = A * A * 2; // A = (x/2)^4
t16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(A, 16);
B = B + WEBRTC_SPL_MUL_16_16(-20480, t16) * 2; // B = B - 0.625*A
// After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4
t16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(A, 16);
A = WEBRTC_SPL_MUL_16_16(x_half, t16) * 2; // A = (x/2)^5
t16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(A, 16);
B = B + WEBRTC_SPL_MUL_16_16(28672, t16) * 2; // B = B + 0.875*A
// After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4 + 0.875*(x/2)^5
t16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(x2, 16);
A = WEBRTC_SPL_MUL_16_16(x_half, t16) * 2; // A = x/2^3
B = B + (A >> 1); // B = B + 0.5*A
// After this, B = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 - 0.625*(x/2)^4 + 0.875*(x/2)^5
B = B + ((WebRtc_Word32)32768); // Round off bit
return B;
}
WebRtc_Word32 WebRtcSpl_Sqrt(WebRtc_Word32 value)
{
/*
Algorithm:
Six term Taylor Series is used here to compute the square root of a number
y^0.5 = (1+x)^0.5 where x = y-1
= 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5)
0.5 <= x < 1
Example of how the algorithm works, with ut=sqrt(in), and
with in=73632 and ut=271 (even shift value case):
in=73632
y= in/131072
x=y-1
t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
ut=t*(1/sqrt(2))*512
or:
in=73632
in2=73632*2^14
y= in2/2^31
x=y-1
t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
ut=t*(1/sqrt(2))
ut2=ut*2^9
which gives:
in = 73632
in2 = 1206386688
y = 0.56176757812500
x = -0.43823242187500
t = 0.74973506527313
ut = 0.53014274874797
ut2 = 2.714330873589594e+002
or:
in=73632
in2=73632*2^14
y=in2/2
x=y-2^30
x_half=x/2^31
t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
+ 0.875*((x_half)^5)
ut=t*(1/sqrt(2))
ut2=ut*2^9
which gives:
in = 73632
in2 = 1206386688
y = 603193344
x = -470548480
x_half = -0.21911621093750
t = 0.74973506527313
ut = 0.53014274874797
ut2 = 2.714330873589594e+002
*/
WebRtc_Word16 x_norm, nshift, t16, sh;
WebRtc_Word32 A;
WebRtc_Word16 k_sqrt_2 = 23170; // 1/sqrt2 (==5a82)
A = value;
if (A == 0)
return (WebRtc_Word32)0; // sqrt(0) = 0
sh = WebRtcSpl_NormW32(A); // # shifts to normalize A
A = WEBRTC_SPL_LSHIFT_W32(A, sh); // Normalize A
if (A < (WEBRTC_SPL_WORD32_MAX - 32767))
{
A = A + ((WebRtc_Word32)32768); // Round off bit
} else
{
A = WEBRTC_SPL_WORD32_MAX;
}
x_norm = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(A, 16); // x_norm = AH
nshift = WEBRTC_SPL_RSHIFT_W16(sh, 1); // nshift = sh>>1
nshift = -nshift; // Negate the power for later de-normalization
A = (WebRtc_Word32)WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)x_norm, 16);
A = WEBRTC_SPL_ABS_W32(A); // A = abs(x_norm<<16)
A = WebRtcSpl_SqrtLocal(A); // A = sqrt(A)
if ((-2 * nshift) == sh)
{ // Even shift value case
t16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(A, 16); // t16 = AH
A = WEBRTC_SPL_MUL_16_16(k_sqrt_2, t16) * 2; // A = 1/sqrt(2)*t16
A = A + ((WebRtc_Word32)32768); // Round off
A = A & ((WebRtc_Word32)0x7fff0000); // Round off
A = WEBRTC_SPL_RSHIFT_W32(A, 15); // A = A>>16
} else
{
A = WEBRTC_SPL_RSHIFT_W32(A, 16); // A = A>>16
}
A = A & ((WebRtc_Word32)0x0000ffff);
A = (WebRtc_Word32)WEBRTC_SPL_SHIFT_W32(A, nshift); // De-normalize the result
return A;
}

View File

@ -0,0 +1,53 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_SqrtFloor().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
#define WEBRTC_SPL_SQRT_ITER(N) \
try1 = root + (1 << (N)); \
if (value >= try1 << (N)) \
{ \
value -= try1 << (N); \
root |= 2 << (N); \
}
// (out) Square root of input parameter
WebRtc_Word32 WebRtcSpl_SqrtFloor(WebRtc_Word32 value)
{
// new routine for performance, 4 cycles/bit in ARM
// output precision is 16 bits
WebRtc_Word32 root = 0, try1;
WEBRTC_SPL_SQRT_ITER (15);
WEBRTC_SPL_SQRT_ITER (14);
WEBRTC_SPL_SQRT_ITER (13);
WEBRTC_SPL_SQRT_ITER (12);
WEBRTC_SPL_SQRT_ITER (11);
WEBRTC_SPL_SQRT_ITER (10);
WEBRTC_SPL_SQRT_ITER ( 9);
WEBRTC_SPL_SQRT_ITER ( 8);
WEBRTC_SPL_SQRT_ITER ( 7);
WEBRTC_SPL_SQRT_ITER ( 6);
WEBRTC_SPL_SQRT_ITER ( 5);
WEBRTC_SPL_SQRT_ITER ( 4);
WEBRTC_SPL_SQRT_ITER ( 3);
WEBRTC_SPL_SQRT_ITER ( 2);
WEBRTC_SPL_SQRT_ITER ( 1);
WEBRTC_SPL_SQRT_ITER ( 0);
return root >> 1;
}

View File

@ -0,0 +1,25 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_get_version().
* The description header can be found in signal_processing_library.h
*
*/
#include <string.h>
#include "signal_processing_library.h"
WebRtc_Word16 WebRtcSpl_get_version(char* version, WebRtc_Word16 length_in_bytes)
{
strncpy(version, "1.2.0", length_in_bytes);
return 0;
}

View File

@ -0,0 +1,200 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the splitting filter functions.
*
*/
#include "signal_processing_library.h"
// Number of samples in a low/high-band frame.
enum
{
kBandFrameLength = 160
};
// QMF filter coefficients in Q16.
static const WebRtc_UWord16 WebRtcSpl_kAllPassFilter1[3] = {6418, 36982, 57261};
static const WebRtc_UWord16 WebRtcSpl_kAllPassFilter2[3] = {21333, 49062, 63010};
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcSpl_AllPassQMF(...)
//
// Allpass filter used by the analysis and synthesis parts of the QMF filter.
//
// Input:
// - in_data : Input data sequence (Q10)
// - data_length : Length of data sequence (>2)
// - filter_coefficients : Filter coefficients (length 3, Q16)
//
// Input & Output:
// - filter_state : Filter state (length 6, Q10).
//
// Output:
// - out_data : Output data sequence (Q10), length equal to
// |data_length|
//
void WebRtcSpl_AllPassQMF(WebRtc_Word32* in_data, const WebRtc_Word16 data_length,
WebRtc_Word32* out_data, const WebRtc_UWord16* filter_coefficients,
WebRtc_Word32* filter_state)
{
// The procedure is to filter the input with three first order all pass filters
// (cascade operations).
//
// a_3 + q^-1 a_2 + q^-1 a_1 + q^-1
// y[n] = ----------- ----------- ----------- x[n]
// 1 + a_3q^-1 1 + a_2q^-1 1 + a_1q^-1
//
// The input vector |filter_coefficients| includes these three filter coefficients.
// The filter state contains the in_data state, in_data[-1], followed by
// the out_data state, out_data[-1]. This is repeated for each cascade.
// The first cascade filter will filter the |in_data| and store the output in
// |out_data|. The second will the take the |out_data| as input and make an
// intermediate storage in |in_data|, to save memory. The third, and final, cascade
// filter operation takes the |in_data| (which is the output from the previous cascade
// filter) and store the output in |out_data|.
// Note that the input vector values are changed during the process.
WebRtc_Word16 k;
WebRtc_Word32 diff;
// First all-pass cascade; filter from in_data to out_data.
// Let y_i[n] indicate the output of cascade filter i (with filter coefficient a_i) at
// vector position n. Then the final output will be y[n] = y_3[n]
// First loop, use the states stored in memory.
// "diff" should be safe from wrap around since max values are 2^25
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[1]); // = (x[0] - y_1[-1])
// y_1[0] = x[-1] + a_1 * (x[0] - y_1[-1])
out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, filter_state[0]);
// For the remaining loops, use previous values.
for (k = 1; k < data_length; k++)
{
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (x[n] - y_1[n-1])
// y_1[n] = x[n-1] + a_1 * (x[n] - y_1[n-1])
out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, in_data[k - 1]);
}
// Update states.
filter_state[0] = in_data[data_length - 1]; // x[N-1], becomes x[-1] next time
filter_state[1] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
// Second all-pass cascade; filter from out_data to in_data.
diff = WEBRTC_SPL_SUB_SAT_W32(out_data[0], filter_state[3]); // = (y_1[0] - y_2[-1])
// y_2[0] = y_1[-1] + a_2 * (y_1[0] - y_2[-1])
in_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, filter_state[2]);
for (k = 1; k < data_length; k++)
{
diff = WEBRTC_SPL_SUB_SAT_W32(out_data[k], in_data[k - 1]); // =(y_1[n] - y_2[n-1])
// y_2[0] = y_1[-1] + a_2 * (y_1[0] - y_2[-1])
in_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, out_data[k-1]);
}
filter_state[2] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
filter_state[3] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
// Third all-pass cascade; filter from in_data to out_data.
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[5]); // = (y_2[0] - y[-1])
// y[0] = y_2[-1] + a_3 * (y_2[0] - y[-1])
out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, filter_state[4]);
for (k = 1; k < data_length; k++)
{
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (y_2[n] - y[n-1])
// y[n] = y_2[n-1] + a_3 * (y_2[n] - y[n-1])
out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, in_data[k-1]);
}
filter_state[4] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
filter_state[5] = out_data[data_length - 1]; // y[N-1], becomes y[-1] next time
}
void WebRtcSpl_AnalysisQMF(const WebRtc_Word16* in_data, WebRtc_Word16* low_band,
WebRtc_Word16* high_band, WebRtc_Word32* filter_state1,
WebRtc_Word32* filter_state2)
{
WebRtc_Word16 i;
WebRtc_Word16 k;
WebRtc_Word32 tmp;
WebRtc_Word32 half_in1[kBandFrameLength];
WebRtc_Word32 half_in2[kBandFrameLength];
WebRtc_Word32 filter1[kBandFrameLength];
WebRtc_Word32 filter2[kBandFrameLength];
// Split even and odd samples. Also shift them to Q10.
for (i = 0, k = 0; i < kBandFrameLength; i++, k += 2)
{
half_in2[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)in_data[k], 10);
half_in1[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)in_data[k + 1], 10);
}
// All pass filter even and odd samples, independently.
WebRtcSpl_AllPassQMF(half_in1, kBandFrameLength, filter1, WebRtcSpl_kAllPassFilter1,
filter_state1);
WebRtcSpl_AllPassQMF(half_in2, kBandFrameLength, filter2, WebRtcSpl_kAllPassFilter2,
filter_state2);
// Take the sum and difference of filtered version of odd and even
// branches to get upper & lower band.
for (i = 0; i < kBandFrameLength; i++)
{
tmp = filter1[i] + filter2[i] + 1024;
tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
low_band[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp, WEBRTC_SPL_WORD16_MIN);
tmp = filter1[i] - filter2[i] + 1024;
tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
high_band[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp, WEBRTC_SPL_WORD16_MIN);
}
}
void WebRtcSpl_SynthesisQMF(const WebRtc_Word16* low_band, const WebRtc_Word16* high_band,
WebRtc_Word16* out_data, WebRtc_Word32* filter_state1,
WebRtc_Word32* filter_state2)
{
WebRtc_Word32 tmp;
WebRtc_Word32 half_in1[kBandFrameLength];
WebRtc_Word32 half_in2[kBandFrameLength];
WebRtc_Word32 filter1[kBandFrameLength];
WebRtc_Word32 filter2[kBandFrameLength];
WebRtc_Word16 i;
WebRtc_Word16 k;
// Obtain the sum and difference channels out of upper and lower-band channels.
// Also shift to Q10 domain.
for (i = 0; i < kBandFrameLength; i++)
{
tmp = (WebRtc_Word32)low_band[i] + (WebRtc_Word32)high_band[i];
half_in1[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
tmp = (WebRtc_Word32)low_band[i] - (WebRtc_Word32)high_band[i];
half_in2[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
}
// all-pass filter the sum and difference channels
WebRtcSpl_AllPassQMF(half_in1, kBandFrameLength, filter1, WebRtcSpl_kAllPassFilter2,
filter_state1);
WebRtcSpl_AllPassQMF(half_in2, kBandFrameLength, filter2, WebRtcSpl_kAllPassFilter1,
filter_state2);
// The filtered signals are even and odd samples of the output. Combine
// them. The signals are Q10 should shift them back to Q0 and take care of
// saturation.
for (i = 0, k = 0; i < kBandFrameLength; i++)
{
tmp = WEBRTC_SPL_RSHIFT_W32(filter2[i] + 512, 10);
out_data[k++] = (WebRtc_Word16)WEBRTC_SPL_SAT(32767, tmp, -32768);
tmp = WEBRTC_SPL_RSHIFT_W32(filter1[i] + 512, 10);
out_data[k++] = (WebRtc_Word16)WEBRTC_SPL_SAT(32767, tmp, -32768);
}
}

View File

@ -0,0 +1,35 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the function WebRtcSpl_SqrtOfOneMinusXSquared().
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_SqrtOfOneMinusXSquared(WebRtc_Word16 *xQ15, int vector_length,
WebRtc_Word16 *yQ15)
{
WebRtc_Word32 sq;
int m;
WebRtc_Word16 tmp;
for (m = 0; m < vector_length; m++)
{
tmp = xQ15[m];
sq = WEBRTC_SPL_MUL_16_16(tmp, tmp); // x^2 in Q30
sq = 1073741823 - sq; // 1-x^2, where 1 ~= 0.99999999906 is 1073741823 in Q30
sq = WebRtcSpl_Sqrt(sq); // sqrt(1-x^2) in Q15
yQ15[m] = (WebRtc_Word16)sq;
}
}

View File

@ -0,0 +1,151 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains implementations of the functions
* WebRtcSpl_VectorBitShiftW16()
* WebRtcSpl_VectorBitShiftW32()
* WebRtcSpl_VectorBitShiftW32ToW16()
* WebRtcSpl_ScaleVector()
* WebRtcSpl_ScaleVectorWithSat()
* WebRtcSpl_ScaleAndAddVectors()
*
* The description header can be found in signal_processing_library.h
*
*/
#include "signal_processing_library.h"
void WebRtcSpl_VectorBitShiftW16(WebRtc_Word16 *res,
WebRtc_Word16 length,
G_CONST WebRtc_Word16 *in,
WebRtc_Word16 right_shifts)
{
int i;
if (right_shifts > 0)
{
for (i = length; i > 0; i--)
{
(*res++) = ((*in++) >> right_shifts);
}
} else
{
for (i = length; i > 0; i--)
{
(*res++) = ((*in++) << (-right_shifts));
}
}
}
void WebRtcSpl_VectorBitShiftW32(WebRtc_Word32 *out_vector,
WebRtc_Word16 vector_length,
G_CONST WebRtc_Word32 *in_vector,
WebRtc_Word16 right_shifts)
{
int i;
if (right_shifts > 0)
{
for (i = vector_length; i > 0; i--)
{
(*out_vector++) = ((*in_vector++) >> right_shifts);
}
} else
{
for (i = vector_length; i > 0; i--)
{
(*out_vector++) = ((*in_vector++) << (-right_shifts));
}
}
}
void WebRtcSpl_VectorBitShiftW32ToW16(WebRtc_Word16 *res,
WebRtc_Word16 length,
G_CONST WebRtc_Word32 *in,
WebRtc_Word16 right_shifts)
{
int i;
if (right_shifts >= 0)
{
for (i = length; i > 0; i--)
{
(*res++) = (WebRtc_Word16)((*in++) >> right_shifts);
}
} else
{
WebRtc_Word16 left_shifts = -right_shifts;
for (i = length; i > 0; i--)
{
(*res++) = (WebRtc_Word16)((*in++) << left_shifts);
}
}
}
void WebRtcSpl_ScaleVector(G_CONST WebRtc_Word16 *in_vector, WebRtc_Word16 *out_vector,
WebRtc_Word16 gain, WebRtc_Word16 in_vector_length,
WebRtc_Word16 right_shifts)
{
// Performs vector operation: out_vector = (gain*in_vector)>>right_shifts
int i;
G_CONST WebRtc_Word16 *inptr;
WebRtc_Word16 *outptr;
inptr = in_vector;
outptr = out_vector;
for (i = 0; i < in_vector_length; i++)
{
(*outptr++) = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(*inptr++, gain, right_shifts);
}
}
void WebRtcSpl_ScaleVectorWithSat(G_CONST WebRtc_Word16 *in_vector, WebRtc_Word16 *out_vector,
WebRtc_Word16 gain, WebRtc_Word16 in_vector_length,
WebRtc_Word16 right_shifts)
{
// Performs vector operation: out_vector = (gain*in_vector)>>right_shifts
int i;
WebRtc_Word32 tmpW32;
G_CONST WebRtc_Word16 *inptr;
WebRtc_Word16 *outptr;
inptr = in_vector;
outptr = out_vector;
for (i = 0; i < in_vector_length; i++)
{
tmpW32 = WEBRTC_SPL_MUL_16_16_RSFT(*inptr++, gain, right_shifts);
( *outptr++) = (WebRtc_Word16)WEBRTC_SPL_SAT(32767, tmpW32, -32768);
}
}
void WebRtcSpl_ScaleAndAddVectors(G_CONST WebRtc_Word16 *in1, WebRtc_Word16 gain1, int shift1,
G_CONST WebRtc_Word16 *in2, WebRtc_Word16 gain2, int shift2,
WebRtc_Word16 *out, int vector_length)
{
// Performs vector operation: out = (gain1*in1)>>shift1 + (gain2*in2)>>shift2
int i;
G_CONST WebRtc_Word16 *in1ptr;
G_CONST WebRtc_Word16 *in2ptr;
WebRtc_Word16 *outptr;
in1ptr = in1;
in2ptr = in2;
outptr = out;
for (i = 0; i < vector_length; i++)
{
(*outptr++) = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(gain1, *in1ptr++, shift1)
+ (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(gain2, *in2ptr++, shift2);
}
}

View File

@ -0,0 +1,704 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the Q14 radix-8 tables used in ARM9e optimizations.
*
*/
extern const int s_Q14S_8;
const int s_Q14S_8 = 1024;
extern const unsigned short t_Q14S_8[2032];
const unsigned short t_Q14S_8[2032] = {
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
0x22a3,0x187e ,0x3249,0x0c7c ,0x11a8,0x238e ,
0x0000,0x2d41 ,0x22a3,0x187e ,0xdd5d,0x3b21 ,
0xdd5d,0x3b21 ,0x11a8,0x238e ,0xb4be,0x3ec5 ,
0xc000,0x4000 ,0x0000,0x2d41 ,0xa57e,0x2d41 ,
0xac61,0x3b21 ,0xee58,0x3537 ,0xb4be,0x0c7c ,
0xa57e,0x2d41 ,0xdd5d,0x3b21 ,0xdd5d,0xe782 ,
0xac61,0x187e ,0xcdb7,0x3ec5 ,0x11a8,0xcac9 ,
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
0x396b,0x0646 ,0x3cc8,0x0324 ,0x35eb,0x0964 ,
0x3249,0x0c7c ,0x396b,0x0646 ,0x2aaa,0x1294 ,
0x2aaa,0x1294 ,0x35eb,0x0964 ,0x1e7e,0x1b5d ,
0x22a3,0x187e ,0x3249,0x0c7c ,0x11a8,0x238e ,
0x1a46,0x1e2b ,0x2e88,0x0f8d ,0x0471,0x2afb ,
0x11a8,0x238e ,0x2aaa,0x1294 ,0xf721,0x3179 ,
0x08df,0x289a ,0x26b3,0x1590 ,0xea02,0x36e5 ,
0x0000,0x2d41 ,0x22a3,0x187e ,0xdd5d,0x3b21 ,
0xf721,0x3179 ,0x1e7e,0x1b5d ,0xd178,0x3e15 ,
0xee58,0x3537 ,0x1a46,0x1e2b ,0xc695,0x3fb1 ,
0xe5ba,0x3871 ,0x15fe,0x20e7 ,0xbcf0,0x3fec ,
0xdd5d,0x3b21 ,0x11a8,0x238e ,0xb4be,0x3ec5 ,
0xd556,0x3d3f ,0x0d48,0x2620 ,0xae2e,0x3c42 ,
0xcdb7,0x3ec5 ,0x08df,0x289a ,0xa963,0x3871 ,
0xc695,0x3fb1 ,0x0471,0x2afb ,0xa678,0x3368 ,
0xc000,0x4000 ,0x0000,0x2d41 ,0xa57e,0x2d41 ,
0xba09,0x3fb1 ,0xfb8f,0x2f6c ,0xa678,0x2620 ,
0xb4be,0x3ec5 ,0xf721,0x3179 ,0xa963,0x1e2b ,
0xb02d,0x3d3f ,0xf2b8,0x3368 ,0xae2e,0x1590 ,
0xac61,0x3b21 ,0xee58,0x3537 ,0xb4be,0x0c7c ,
0xa963,0x3871 ,0xea02,0x36e5 ,0xbcf0,0x0324 ,
0xa73b,0x3537 ,0xe5ba,0x3871 ,0xc695,0xf9ba ,
0xa5ed,0x3179 ,0xe182,0x39db ,0xd178,0xf073 ,
0xa57e,0x2d41 ,0xdd5d,0x3b21 ,0xdd5d,0xe782 ,
0xa5ed,0x289a ,0xd94d,0x3c42 ,0xea02,0xdf19 ,
0xa73b,0x238e ,0xd556,0x3d3f ,0xf721,0xd766 ,
0xa963,0x1e2b ,0xd178,0x3e15 ,0x0471,0xd094 ,
0xac61,0x187e ,0xcdb7,0x3ec5 ,0x11a8,0xcac9 ,
0xb02d,0x1294 ,0xca15,0x3f4f ,0x1e7e,0xc625 ,
0xb4be,0x0c7c ,0xc695,0x3fb1 ,0x2aaa,0xc2c1 ,
0xba09,0x0646 ,0xc338,0x3fec ,0x35eb,0xc0b1 ,
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
0x3e69,0x0192 ,0x3f36,0x00c9 ,0x3d9a,0x025b ,
0x3cc8,0x0324 ,0x3e69,0x0192 ,0x3b1e,0x04b5 ,
0x3b1e,0x04b5 ,0x3d9a,0x025b ,0x388e,0x070e ,
0x396b,0x0646 ,0x3cc8,0x0324 ,0x35eb,0x0964 ,
0x37af,0x07d6 ,0x3bf4,0x03ed ,0x3334,0x0bb7 ,
0x35eb,0x0964 ,0x3b1e,0x04b5 ,0x306c,0x0e06 ,
0x341e,0x0af1 ,0x3a46,0x057e ,0x2d93,0x1050 ,
0x3249,0x0c7c ,0x396b,0x0646 ,0x2aaa,0x1294 ,
0x306c,0x0e06 ,0x388e,0x070e ,0x27b3,0x14d2 ,
0x2e88,0x0f8d ,0x37af,0x07d6 ,0x24ae,0x1709 ,
0x2c9d,0x1112 ,0x36ce,0x089d ,0x219c,0x1937 ,
0x2aaa,0x1294 ,0x35eb,0x0964 ,0x1e7e,0x1b5d ,
0x28b2,0x1413 ,0x3505,0x0a2b ,0x1b56,0x1d79 ,
0x26b3,0x1590 ,0x341e,0x0af1 ,0x1824,0x1f8c ,
0x24ae,0x1709 ,0x3334,0x0bb7 ,0x14ea,0x2193 ,
0x22a3,0x187e ,0x3249,0x0c7c ,0x11a8,0x238e ,
0x2093,0x19ef ,0x315b,0x0d41 ,0x0e61,0x257e ,
0x1e7e,0x1b5d ,0x306c,0x0e06 ,0x0b14,0x2760 ,
0x1c64,0x1cc6 ,0x2f7b,0x0eca ,0x07c4,0x2935 ,
0x1a46,0x1e2b ,0x2e88,0x0f8d ,0x0471,0x2afb ,
0x1824,0x1f8c ,0x2d93,0x1050 ,0x011c,0x2cb2 ,
0x15fe,0x20e7 ,0x2c9d,0x1112 ,0xfdc7,0x2e5a ,
0x13d5,0x223d ,0x2ba4,0x11d3 ,0xfa73,0x2ff2 ,
0x11a8,0x238e ,0x2aaa,0x1294 ,0xf721,0x3179 ,
0x0f79,0x24da ,0x29af,0x1354 ,0xf3d2,0x32ef ,
0x0d48,0x2620 ,0x28b2,0x1413 ,0xf087,0x3453 ,
0x0b14,0x2760 ,0x27b3,0x14d2 ,0xed41,0x35a5 ,
0x08df,0x289a ,0x26b3,0x1590 ,0xea02,0x36e5 ,
0x06a9,0x29ce ,0x25b1,0x164c ,0xe6cb,0x3812 ,
0x0471,0x2afb ,0x24ae,0x1709 ,0xe39c,0x392b ,
0x0239,0x2c21 ,0x23a9,0x17c4 ,0xe077,0x3a30 ,
0x0000,0x2d41 ,0x22a3,0x187e ,0xdd5d,0x3b21 ,
0xfdc7,0x2e5a ,0x219c,0x1937 ,0xda4f,0x3bfd ,
0xfb8f,0x2f6c ,0x2093,0x19ef ,0xd74e,0x3cc5 ,
0xf957,0x3076 ,0x1f89,0x1aa7 ,0xd45c,0x3d78 ,
0xf721,0x3179 ,0x1e7e,0x1b5d ,0xd178,0x3e15 ,
0xf4ec,0x3274 ,0x1d72,0x1c12 ,0xcea5,0x3e9d ,
0xf2b8,0x3368 ,0x1c64,0x1cc6 ,0xcbe2,0x3f0f ,
0xf087,0x3453 ,0x1b56,0x1d79 ,0xc932,0x3f6b ,
0xee58,0x3537 ,0x1a46,0x1e2b ,0xc695,0x3fb1 ,
0xec2b,0x3612 ,0x1935,0x1edc ,0xc40c,0x3fe1 ,
0xea02,0x36e5 ,0x1824,0x1f8c ,0xc197,0x3ffb ,
0xe7dc,0x37b0 ,0x1711,0x203a ,0xbf38,0x3fff ,
0xe5ba,0x3871 ,0x15fe,0x20e7 ,0xbcf0,0x3fec ,
0xe39c,0x392b ,0x14ea,0x2193 ,0xbabf,0x3fc4 ,
0xe182,0x39db ,0x13d5,0x223d ,0xb8a6,0x3f85 ,
0xdf6d,0x3a82 ,0x12bf,0x22e7 ,0xb6a5,0x3f30 ,
0xdd5d,0x3b21 ,0x11a8,0x238e ,0xb4be,0x3ec5 ,
0xdb52,0x3bb6 ,0x1091,0x2435 ,0xb2f2,0x3e45 ,
0xd94d,0x3c42 ,0x0f79,0x24da ,0xb140,0x3daf ,
0xd74e,0x3cc5 ,0x0e61,0x257e ,0xafa9,0x3d03 ,
0xd556,0x3d3f ,0x0d48,0x2620 ,0xae2e,0x3c42 ,
0xd363,0x3daf ,0x0c2e,0x26c1 ,0xacd0,0x3b6d ,
0xd178,0x3e15 ,0x0b14,0x2760 ,0xab8e,0x3a82 ,
0xcf94,0x3e72 ,0x09fa,0x27fe ,0xaa6a,0x3984 ,
0xcdb7,0x3ec5 ,0x08df,0x289a ,0xa963,0x3871 ,
0xcbe2,0x3f0f ,0x07c4,0x2935 ,0xa87b,0x374b ,
0xca15,0x3f4f ,0x06a9,0x29ce ,0xa7b1,0x3612 ,
0xc851,0x3f85 ,0x058d,0x2a65 ,0xa705,0x34c6 ,
0xc695,0x3fb1 ,0x0471,0x2afb ,0xa678,0x3368 ,
0xc4e2,0x3fd4 ,0x0355,0x2b8f ,0xa60b,0x31f8 ,
0xc338,0x3fec ,0x0239,0x2c21 ,0xa5bc,0x3076 ,
0xc197,0x3ffb ,0x011c,0x2cb2 ,0xa58d,0x2ee4 ,
0xc000,0x4000 ,0x0000,0x2d41 ,0xa57e,0x2d41 ,
0xbe73,0x3ffb ,0xfee4,0x2dcf ,0xa58d,0x2b8f ,
0xbcf0,0x3fec ,0xfdc7,0x2e5a ,0xa5bc,0x29ce ,
0xbb77,0x3fd4 ,0xfcab,0x2ee4 ,0xa60b,0x27fe ,
0xba09,0x3fb1 ,0xfb8f,0x2f6c ,0xa678,0x2620 ,
0xb8a6,0x3f85 ,0xfa73,0x2ff2 ,0xa705,0x2435 ,
0xb74d,0x3f4f ,0xf957,0x3076 ,0xa7b1,0x223d ,
0xb600,0x3f0f ,0xf83c,0x30f9 ,0xa87b,0x203a ,
0xb4be,0x3ec5 ,0xf721,0x3179 ,0xa963,0x1e2b ,
0xb388,0x3e72 ,0xf606,0x31f8 ,0xaa6a,0x1c12 ,
0xb25e,0x3e15 ,0xf4ec,0x3274 ,0xab8e,0x19ef ,
0xb140,0x3daf ,0xf3d2,0x32ef ,0xacd0,0x17c4 ,
0xb02d,0x3d3f ,0xf2b8,0x3368 ,0xae2e,0x1590 ,
0xaf28,0x3cc5 ,0xf19f,0x33df ,0xafa9,0x1354 ,
0xae2e,0x3c42 ,0xf087,0x3453 ,0xb140,0x1112 ,
0xad41,0x3bb6 ,0xef6f,0x34c6 ,0xb2f2,0x0eca ,
0xac61,0x3b21 ,0xee58,0x3537 ,0xb4be,0x0c7c ,
0xab8e,0x3a82 ,0xed41,0x35a5 ,0xb6a5,0x0a2b ,
0xaac8,0x39db ,0xec2b,0x3612 ,0xb8a6,0x07d6 ,
0xaa0f,0x392b ,0xeb16,0x367d ,0xbabf,0x057e ,
0xa963,0x3871 ,0xea02,0x36e5 ,0xbcf0,0x0324 ,
0xa8c5,0x37b0 ,0xe8ef,0x374b ,0xbf38,0x00c9 ,
0xa834,0x36e5 ,0xe7dc,0x37b0 ,0xc197,0xfe6e ,
0xa7b1,0x3612 ,0xe6cb,0x3812 ,0xc40c,0xfc13 ,
0xa73b,0x3537 ,0xe5ba,0x3871 ,0xc695,0xf9ba ,
0xa6d3,0x3453 ,0xe4aa,0x38cf ,0xc932,0xf763 ,
0xa678,0x3368 ,0xe39c,0x392b ,0xcbe2,0xf50f ,
0xa62c,0x3274 ,0xe28e,0x3984 ,0xcea5,0xf2bf ,
0xa5ed,0x3179 ,0xe182,0x39db ,0xd178,0xf073 ,
0xa5bc,0x3076 ,0xe077,0x3a30 ,0xd45c,0xee2d ,
0xa599,0x2f6c ,0xdf6d,0x3a82 ,0xd74e,0xebed ,
0xa585,0x2e5a ,0xde64,0x3ad3 ,0xda4f,0xe9b4 ,
0xa57e,0x2d41 ,0xdd5d,0x3b21 ,0xdd5d,0xe782 ,
0xa585,0x2c21 ,0xdc57,0x3b6d ,0xe077,0xe559 ,
0xa599,0x2afb ,0xdb52,0x3bb6 ,0xe39c,0xe33a ,
0xa5bc,0x29ce ,0xda4f,0x3bfd ,0xe6cb,0xe124 ,
0xa5ed,0x289a ,0xd94d,0x3c42 ,0xea02,0xdf19 ,
0xa62c,0x2760 ,0xd84d,0x3c85 ,0xed41,0xdd19 ,
0xa678,0x2620 ,0xd74e,0x3cc5 ,0xf087,0xdb26 ,
0xa6d3,0x24da ,0xd651,0x3d03 ,0xf3d2,0xd93f ,
0xa73b,0x238e ,0xd556,0x3d3f ,0xf721,0xd766 ,
0xa7b1,0x223d ,0xd45c,0x3d78 ,0xfa73,0xd59b ,
0xa834,0x20e7 ,0xd363,0x3daf ,0xfdc7,0xd3df ,
0xa8c5,0x1f8c ,0xd26d,0x3de3 ,0x011c,0xd231 ,
0xa963,0x1e2b ,0xd178,0x3e15 ,0x0471,0xd094 ,
0xaa0f,0x1cc6 ,0xd085,0x3e45 ,0x07c4,0xcf07 ,
0xaac8,0x1b5d ,0xcf94,0x3e72 ,0x0b14,0xcd8c ,
0xab8e,0x19ef ,0xcea5,0x3e9d ,0x0e61,0xcc21 ,
0xac61,0x187e ,0xcdb7,0x3ec5 ,0x11a8,0xcac9 ,
0xad41,0x1709 ,0xcccc,0x3eeb ,0x14ea,0xc983 ,
0xae2e,0x1590 ,0xcbe2,0x3f0f ,0x1824,0xc850 ,
0xaf28,0x1413 ,0xcafb,0x3f30 ,0x1b56,0xc731 ,
0xb02d,0x1294 ,0xca15,0x3f4f ,0x1e7e,0xc625 ,
0xb140,0x1112 ,0xc932,0x3f6b ,0x219c,0xc52d ,
0xb25e,0x0f8d ,0xc851,0x3f85 ,0x24ae,0xc44a ,
0xb388,0x0e06 ,0xc772,0x3f9c ,0x27b3,0xc37b ,
0xb4be,0x0c7c ,0xc695,0x3fb1 ,0x2aaa,0xc2c1 ,
0xb600,0x0af1 ,0xc5ba,0x3fc4 ,0x2d93,0xc21d ,
0xb74d,0x0964 ,0xc4e2,0x3fd4 ,0x306c,0xc18e ,
0xb8a6,0x07d6 ,0xc40c,0x3fe1 ,0x3334,0xc115 ,
0xba09,0x0646 ,0xc338,0x3fec ,0x35eb,0xc0b1 ,
0xbb77,0x04b5 ,0xc266,0x3ff5 ,0x388e,0xc064 ,
0xbcf0,0x0324 ,0xc197,0x3ffb ,0x3b1e,0xc02c ,
0xbe73,0x0192 ,0xc0ca,0x3fff ,0x3d9a,0xc00b ,
0x4000,0x0000 ,0x3f9b,0x0065 ,0x3f36,0x00c9 ,
0x3ed0,0x012e ,0x3e69,0x0192 ,0x3e02,0x01f7 ,
0x3d9a,0x025b ,0x3d31,0x02c0 ,0x3cc8,0x0324 ,
0x3c5f,0x0388 ,0x3bf4,0x03ed ,0x3b8a,0x0451 ,
0x3b1e,0x04b5 ,0x3ab2,0x051a ,0x3a46,0x057e ,
0x39d9,0x05e2 ,0x396b,0x0646 ,0x38fd,0x06aa ,
0x388e,0x070e ,0x381f,0x0772 ,0x37af,0x07d6 ,
0x373f,0x0839 ,0x36ce,0x089d ,0x365d,0x0901 ,
0x35eb,0x0964 ,0x3578,0x09c7 ,0x3505,0x0a2b ,
0x3492,0x0a8e ,0x341e,0x0af1 ,0x33a9,0x0b54 ,
0x3334,0x0bb7 ,0x32bf,0x0c1a ,0x3249,0x0c7c ,
0x31d2,0x0cdf ,0x315b,0x0d41 ,0x30e4,0x0da4 ,
0x306c,0x0e06 ,0x2ff4,0x0e68 ,0x2f7b,0x0eca ,
0x2f02,0x0f2b ,0x2e88,0x0f8d ,0x2e0e,0x0fee ,
0x2d93,0x1050 ,0x2d18,0x10b1 ,0x2c9d,0x1112 ,
0x2c21,0x1173 ,0x2ba4,0x11d3 ,0x2b28,0x1234 ,
0x2aaa,0x1294 ,0x2a2d,0x12f4 ,0x29af,0x1354 ,
0x2931,0x13b4 ,0x28b2,0x1413 ,0x2833,0x1473 ,
0x27b3,0x14d2 ,0x2733,0x1531 ,0x26b3,0x1590 ,
0x2632,0x15ee ,0x25b1,0x164c ,0x252f,0x16ab ,
0x24ae,0x1709 ,0x242b,0x1766 ,0x23a9,0x17c4 ,
0x2326,0x1821 ,0x22a3,0x187e ,0x221f,0x18db ,
0x219c,0x1937 ,0x2117,0x1993 ,0x2093,0x19ef ,
0x200e,0x1a4b ,0x1f89,0x1aa7 ,0x1f04,0x1b02 ,
0x1e7e,0x1b5d ,0x1df8,0x1bb8 ,0x1d72,0x1c12 ,
0x1ceb,0x1c6c ,0x1c64,0x1cc6 ,0x1bdd,0x1d20 ,
0x1b56,0x1d79 ,0x1ace,0x1dd3 ,0x1a46,0x1e2b ,
0x19be,0x1e84 ,0x1935,0x1edc ,0x18ad,0x1f34 ,
0x1824,0x1f8c ,0x179b,0x1fe3 ,0x1711,0x203a ,
0x1688,0x2091 ,0x15fe,0x20e7 ,0x1574,0x213d ,
0x14ea,0x2193 ,0x145f,0x21e8 ,0x13d5,0x223d ,
0x134a,0x2292 ,0x12bf,0x22e7 ,0x1234,0x233b ,
0x11a8,0x238e ,0x111d,0x23e2 ,0x1091,0x2435 ,
0x1005,0x2488 ,0x0f79,0x24da ,0x0eed,0x252c ,
0x0e61,0x257e ,0x0dd4,0x25cf ,0x0d48,0x2620 ,
0x0cbb,0x2671 ,0x0c2e,0x26c1 ,0x0ba1,0x2711 ,
0x0b14,0x2760 ,0x0a87,0x27af ,0x09fa,0x27fe ,
0x096d,0x284c ,0x08df,0x289a ,0x0852,0x28e7 ,
0x07c4,0x2935 ,0x0736,0x2981 ,0x06a9,0x29ce ,
0x061b,0x2a1a ,0x058d,0x2a65 ,0x04ff,0x2ab0 ,
0x0471,0x2afb ,0x03e3,0x2b45 ,0x0355,0x2b8f ,
0x02c7,0x2bd8 ,0x0239,0x2c21 ,0x01aa,0x2c6a ,
0x011c,0x2cb2 ,0x008e,0x2cfa ,0x0000,0x2d41 ,
0xff72,0x2d88 ,0xfee4,0x2dcf ,0xfe56,0x2e15 ,
0xfdc7,0x2e5a ,0xfd39,0x2e9f ,0xfcab,0x2ee4 ,
0xfc1d,0x2f28 ,0xfb8f,0x2f6c ,0xfb01,0x2faf ,
0xfa73,0x2ff2 ,0xf9e5,0x3034 ,0xf957,0x3076 ,
0xf8ca,0x30b8 ,0xf83c,0x30f9 ,0xf7ae,0x3139 ,
0xf721,0x3179 ,0xf693,0x31b9 ,0xf606,0x31f8 ,
0xf579,0x3236 ,0xf4ec,0x3274 ,0xf45f,0x32b2 ,
0xf3d2,0x32ef ,0xf345,0x332c ,0xf2b8,0x3368 ,
0xf22c,0x33a3 ,0xf19f,0x33df ,0xf113,0x3419 ,
0xf087,0x3453 ,0xeffb,0x348d ,0xef6f,0x34c6 ,
0xeee3,0x34ff ,0xee58,0x3537 ,0xedcc,0x356e ,
0xed41,0x35a5 ,0xecb6,0x35dc ,0xec2b,0x3612 ,
0xeba1,0x3648 ,0xeb16,0x367d ,0xea8c,0x36b1 ,
0xea02,0x36e5 ,0xe978,0x3718 ,0xe8ef,0x374b ,
0xe865,0x377e ,0xe7dc,0x37b0 ,0xe753,0x37e1 ,
0xe6cb,0x3812 ,0xe642,0x3842 ,0xe5ba,0x3871 ,
0xe532,0x38a1 ,0xe4aa,0x38cf ,0xe423,0x38fd ,
0xe39c,0x392b ,0xe315,0x3958 ,0xe28e,0x3984 ,
0xe208,0x39b0 ,0xe182,0x39db ,0xe0fc,0x3a06 ,
0xe077,0x3a30 ,0xdff2,0x3a59 ,0xdf6d,0x3a82 ,
0xdee9,0x3aab ,0xde64,0x3ad3 ,0xdde1,0x3afa ,
0xdd5d,0x3b21 ,0xdcda,0x3b47 ,0xdc57,0x3b6d ,
0xdbd5,0x3b92 ,0xdb52,0x3bb6 ,0xdad1,0x3bda ,
0xda4f,0x3bfd ,0xd9ce,0x3c20 ,0xd94d,0x3c42 ,
0xd8cd,0x3c64 ,0xd84d,0x3c85 ,0xd7cd,0x3ca5 ,
0xd74e,0x3cc5 ,0xd6cf,0x3ce4 ,0xd651,0x3d03 ,
0xd5d3,0x3d21 ,0xd556,0x3d3f ,0xd4d8,0x3d5b ,
0xd45c,0x3d78 ,0xd3df,0x3d93 ,0xd363,0x3daf ,
0xd2e8,0x3dc9 ,0xd26d,0x3de3 ,0xd1f2,0x3dfc ,
0xd178,0x3e15 ,0xd0fe,0x3e2d ,0xd085,0x3e45 ,
0xd00c,0x3e5c ,0xcf94,0x3e72 ,0xcf1c,0x3e88 ,
0xcea5,0x3e9d ,0xce2e,0x3eb1 ,0xcdb7,0x3ec5 ,
0xcd41,0x3ed8 ,0xcccc,0x3eeb ,0xcc57,0x3efd ,
0xcbe2,0x3f0f ,0xcb6e,0x3f20 ,0xcafb,0x3f30 ,
0xca88,0x3f40 ,0xca15,0x3f4f ,0xc9a3,0x3f5d ,
0xc932,0x3f6b ,0xc8c1,0x3f78 ,0xc851,0x3f85 ,
0xc7e1,0x3f91 ,0xc772,0x3f9c ,0xc703,0x3fa7 ,
0xc695,0x3fb1 ,0xc627,0x3fbb ,0xc5ba,0x3fc4 ,
0xc54e,0x3fcc ,0xc4e2,0x3fd4 ,0xc476,0x3fdb ,
0xc40c,0x3fe1 ,0xc3a1,0x3fe7 ,0xc338,0x3fec ,
0xc2cf,0x3ff1 ,0xc266,0x3ff5 ,0xc1fe,0x3ff8 ,
0xc197,0x3ffb ,0xc130,0x3ffd ,0xc0ca,0x3fff ,
0xc065,0x4000 ,0xc000,0x4000 ,0xbf9c,0x4000 ,
0xbf38,0x3fff ,0xbed5,0x3ffd ,0xbe73,0x3ffb ,
0xbe11,0x3ff8 ,0xbdb0,0x3ff5 ,0xbd50,0x3ff1 ,
0xbcf0,0x3fec ,0xbc91,0x3fe7 ,0xbc32,0x3fe1 ,
0xbbd4,0x3fdb ,0xbb77,0x3fd4 ,0xbb1b,0x3fcc ,
0xbabf,0x3fc4 ,0xba64,0x3fbb ,0xba09,0x3fb1 ,
0xb9af,0x3fa7 ,0xb956,0x3f9c ,0xb8fd,0x3f91 ,
0xb8a6,0x3f85 ,0xb84f,0x3f78 ,0xb7f8,0x3f6b ,
0xb7a2,0x3f5d ,0xb74d,0x3f4f ,0xb6f9,0x3f40 ,
0xb6a5,0x3f30 ,0xb652,0x3f20 ,0xb600,0x3f0f ,
0xb5af,0x3efd ,0xb55e,0x3eeb ,0xb50e,0x3ed8 ,
0xb4be,0x3ec5 ,0xb470,0x3eb1 ,0xb422,0x3e9d ,
0xb3d5,0x3e88 ,0xb388,0x3e72 ,0xb33d,0x3e5c ,
0xb2f2,0x3e45 ,0xb2a7,0x3e2d ,0xb25e,0x3e15 ,
0xb215,0x3dfc ,0xb1cd,0x3de3 ,0xb186,0x3dc9 ,
0xb140,0x3daf ,0xb0fa,0x3d93 ,0xb0b5,0x3d78 ,
0xb071,0x3d5b ,0xb02d,0x3d3f ,0xafeb,0x3d21 ,
0xafa9,0x3d03 ,0xaf68,0x3ce4 ,0xaf28,0x3cc5 ,
0xaee8,0x3ca5 ,0xaea9,0x3c85 ,0xae6b,0x3c64 ,
0xae2e,0x3c42 ,0xadf2,0x3c20 ,0xadb6,0x3bfd ,
0xad7b,0x3bda ,0xad41,0x3bb6 ,0xad08,0x3b92 ,
0xacd0,0x3b6d ,0xac98,0x3b47 ,0xac61,0x3b21 ,
0xac2b,0x3afa ,0xabf6,0x3ad3 ,0xabc2,0x3aab ,
0xab8e,0x3a82 ,0xab5b,0x3a59 ,0xab29,0x3a30 ,
0xaaf8,0x3a06 ,0xaac8,0x39db ,0xaa98,0x39b0 ,
0xaa6a,0x3984 ,0xaa3c,0x3958 ,0xaa0f,0x392b ,
0xa9e3,0x38fd ,0xa9b7,0x38cf ,0xa98d,0x38a1 ,
0xa963,0x3871 ,0xa93a,0x3842 ,0xa912,0x3812 ,
0xa8eb,0x37e1 ,0xa8c5,0x37b0 ,0xa89f,0x377e ,
0xa87b,0x374b ,0xa857,0x3718 ,0xa834,0x36e5 ,
0xa812,0x36b1 ,0xa7f1,0x367d ,0xa7d0,0x3648 ,
0xa7b1,0x3612 ,0xa792,0x35dc ,0xa774,0x35a5 ,
0xa757,0x356e ,0xa73b,0x3537 ,0xa71f,0x34ff ,
0xa705,0x34c6 ,0xa6eb,0x348d ,0xa6d3,0x3453 ,
0xa6bb,0x3419 ,0xa6a4,0x33df ,0xa68e,0x33a3 ,
0xa678,0x3368 ,0xa664,0x332c ,0xa650,0x32ef ,
0xa63e,0x32b2 ,0xa62c,0x3274 ,0xa61b,0x3236 ,
0xa60b,0x31f8 ,0xa5fb,0x31b9 ,0xa5ed,0x3179 ,
0xa5e0,0x3139 ,0xa5d3,0x30f9 ,0xa5c7,0x30b8 ,
0xa5bc,0x3076 ,0xa5b2,0x3034 ,0xa5a9,0x2ff2 ,
0xa5a1,0x2faf ,0xa599,0x2f6c ,0xa593,0x2f28 ,
0xa58d,0x2ee4 ,0xa588,0x2e9f ,0xa585,0x2e5a ,
0xa581,0x2e15 ,0xa57f,0x2dcf ,0xa57e,0x2d88 ,
0xa57e,0x2d41 ,0xa57e,0x2cfa ,0xa57f,0x2cb2 ,
0xa581,0x2c6a ,0xa585,0x2c21 ,0xa588,0x2bd8 ,
0xa58d,0x2b8f ,0xa593,0x2b45 ,0xa599,0x2afb ,
0xa5a1,0x2ab0 ,0xa5a9,0x2a65 ,0xa5b2,0x2a1a ,
0xa5bc,0x29ce ,0xa5c7,0x2981 ,0xa5d3,0x2935 ,
0xa5e0,0x28e7 ,0xa5ed,0x289a ,0xa5fb,0x284c ,
0xa60b,0x27fe ,0xa61b,0x27af ,0xa62c,0x2760 ,
0xa63e,0x2711 ,0xa650,0x26c1 ,0xa664,0x2671 ,
0xa678,0x2620 ,0xa68e,0x25cf ,0xa6a4,0x257e ,
0xa6bb,0x252c ,0xa6d3,0x24da ,0xa6eb,0x2488 ,
0xa705,0x2435 ,0xa71f,0x23e2 ,0xa73b,0x238e ,
0xa757,0x233b ,0xa774,0x22e7 ,0xa792,0x2292 ,
0xa7b1,0x223d ,0xa7d0,0x21e8 ,0xa7f1,0x2193 ,
0xa812,0x213d ,0xa834,0x20e7 ,0xa857,0x2091 ,
0xa87b,0x203a ,0xa89f,0x1fe3 ,0xa8c5,0x1f8c ,
0xa8eb,0x1f34 ,0xa912,0x1edc ,0xa93a,0x1e84 ,
0xa963,0x1e2b ,0xa98d,0x1dd3 ,0xa9b7,0x1d79 ,
0xa9e3,0x1d20 ,0xaa0f,0x1cc6 ,0xaa3c,0x1c6c ,
0xaa6a,0x1c12 ,0xaa98,0x1bb8 ,0xaac8,0x1b5d ,
0xaaf8,0x1b02 ,0xab29,0x1aa7 ,0xab5b,0x1a4b ,
0xab8e,0x19ef ,0xabc2,0x1993 ,0xabf6,0x1937 ,
0xac2b,0x18db ,0xac61,0x187e ,0xac98,0x1821 ,
0xacd0,0x17c4 ,0xad08,0x1766 ,0xad41,0x1709 ,
0xad7b,0x16ab ,0xadb6,0x164c ,0xadf2,0x15ee ,
0xae2e,0x1590 ,0xae6b,0x1531 ,0xaea9,0x14d2 ,
0xaee8,0x1473 ,0xaf28,0x1413 ,0xaf68,0x13b4 ,
0xafa9,0x1354 ,0xafeb,0x12f4 ,0xb02d,0x1294 ,
0xb071,0x1234 ,0xb0b5,0x11d3 ,0xb0fa,0x1173 ,
0xb140,0x1112 ,0xb186,0x10b1 ,0xb1cd,0x1050 ,
0xb215,0x0fee ,0xb25e,0x0f8d ,0xb2a7,0x0f2b ,
0xb2f2,0x0eca ,0xb33d,0x0e68 ,0xb388,0x0e06 ,
0xb3d5,0x0da4 ,0xb422,0x0d41 ,0xb470,0x0cdf ,
0xb4be,0x0c7c ,0xb50e,0x0c1a ,0xb55e,0x0bb7 ,
0xb5af,0x0b54 ,0xb600,0x0af1 ,0xb652,0x0a8e ,
0xb6a5,0x0a2b ,0xb6f9,0x09c7 ,0xb74d,0x0964 ,
0xb7a2,0x0901 ,0xb7f8,0x089d ,0xb84f,0x0839 ,
0xb8a6,0x07d6 ,0xb8fd,0x0772 ,0xb956,0x070e ,
0xb9af,0x06aa ,0xba09,0x0646 ,0xba64,0x05e2 ,
0xbabf,0x057e ,0xbb1b,0x051a ,0xbb77,0x04b5 ,
0xbbd4,0x0451 ,0xbc32,0x03ed ,0xbc91,0x0388 ,
0xbcf0,0x0324 ,0xbd50,0x02c0 ,0xbdb0,0x025b ,
0xbe11,0x01f7 ,0xbe73,0x0192 ,0xbed5,0x012e ,
0xbf38,0x00c9 ,0xbf9c,0x0065 };
extern const int s_Q14R_8;
const int s_Q14R_8 = 1024;
extern const unsigned short t_Q14R_8[2032];
const unsigned short t_Q14R_8[2032] = {
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
0x3b21,0x187e ,0x3ec5,0x0c7c ,0x3537,0x238e ,
0x2d41,0x2d41 ,0x3b21,0x187e ,0x187e,0x3b21 ,
0x187e,0x3b21 ,0x3537,0x238e ,0xf384,0x3ec5 ,
0x0000,0x4000 ,0x2d41,0x2d41 ,0xd2bf,0x2d41 ,
0xe782,0x3b21 ,0x238e,0x3537 ,0xc13b,0x0c7c ,
0xd2bf,0x2d41 ,0x187e,0x3b21 ,0xc4df,0xe782 ,
0xc4df,0x187e ,0x0c7c,0x3ec5 ,0xdc72,0xcac9 ,
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
0x3fb1,0x0646 ,0x3fec,0x0324 ,0x3f4f,0x0964 ,
0x3ec5,0x0c7c ,0x3fb1,0x0646 ,0x3d3f,0x1294 ,
0x3d3f,0x1294 ,0x3f4f,0x0964 ,0x39db,0x1b5d ,
0x3b21,0x187e ,0x3ec5,0x0c7c ,0x3537,0x238e ,
0x3871,0x1e2b ,0x3e15,0x0f8d ,0x2f6c,0x2afb ,
0x3537,0x238e ,0x3d3f,0x1294 ,0x289a,0x3179 ,
0x3179,0x289a ,0x3c42,0x1590 ,0x20e7,0x36e5 ,
0x2d41,0x2d41 ,0x3b21,0x187e ,0x187e,0x3b21 ,
0x289a,0x3179 ,0x39db,0x1b5d ,0x0f8d,0x3e15 ,
0x238e,0x3537 ,0x3871,0x1e2b ,0x0646,0x3fb1 ,
0x1e2b,0x3871 ,0x36e5,0x20e7 ,0xfcdc,0x3fec ,
0x187e,0x3b21 ,0x3537,0x238e ,0xf384,0x3ec5 ,
0x1294,0x3d3f ,0x3368,0x2620 ,0xea70,0x3c42 ,
0x0c7c,0x3ec5 ,0x3179,0x289a ,0xe1d5,0x3871 ,
0x0646,0x3fb1 ,0x2f6c,0x2afb ,0xd9e0,0x3368 ,
0x0000,0x4000 ,0x2d41,0x2d41 ,0xd2bf,0x2d41 ,
0xf9ba,0x3fb1 ,0x2afb,0x2f6c ,0xcc98,0x2620 ,
0xf384,0x3ec5 ,0x289a,0x3179 ,0xc78f,0x1e2b ,
0xed6c,0x3d3f ,0x2620,0x3368 ,0xc3be,0x1590 ,
0xe782,0x3b21 ,0x238e,0x3537 ,0xc13b,0x0c7c ,
0xe1d5,0x3871 ,0x20e7,0x36e5 ,0xc014,0x0324 ,
0xdc72,0x3537 ,0x1e2b,0x3871 ,0xc04f,0xf9ba ,
0xd766,0x3179 ,0x1b5d,0x39db ,0xc1eb,0xf073 ,
0xd2bf,0x2d41 ,0x187e,0x3b21 ,0xc4df,0xe782 ,
0xce87,0x289a ,0x1590,0x3c42 ,0xc91b,0xdf19 ,
0xcac9,0x238e ,0x1294,0x3d3f ,0xce87,0xd766 ,
0xc78f,0x1e2b ,0x0f8d,0x3e15 ,0xd505,0xd094 ,
0xc4df,0x187e ,0x0c7c,0x3ec5 ,0xdc72,0xcac9 ,
0xc2c1,0x1294 ,0x0964,0x3f4f ,0xe4a3,0xc625 ,
0xc13b,0x0c7c ,0x0646,0x3fb1 ,0xed6c,0xc2c1 ,
0xc04f,0x0646 ,0x0324,0x3fec ,0xf69c,0xc0b1 ,
0x4000,0x0000 ,0x4000,0x0000 ,0x4000,0x0000 ,
0x3ffb,0x0192 ,0x3fff,0x00c9 ,0x3ff5,0x025b ,
0x3fec,0x0324 ,0x3ffb,0x0192 ,0x3fd4,0x04b5 ,
0x3fd4,0x04b5 ,0x3ff5,0x025b ,0x3f9c,0x070e ,
0x3fb1,0x0646 ,0x3fec,0x0324 ,0x3f4f,0x0964 ,
0x3f85,0x07d6 ,0x3fe1,0x03ed ,0x3eeb,0x0bb7 ,
0x3f4f,0x0964 ,0x3fd4,0x04b5 ,0x3e72,0x0e06 ,
0x3f0f,0x0af1 ,0x3fc4,0x057e ,0x3de3,0x1050 ,
0x3ec5,0x0c7c ,0x3fb1,0x0646 ,0x3d3f,0x1294 ,
0x3e72,0x0e06 ,0x3f9c,0x070e ,0x3c85,0x14d2 ,
0x3e15,0x0f8d ,0x3f85,0x07d6 ,0x3bb6,0x1709 ,
0x3daf,0x1112 ,0x3f6b,0x089d ,0x3ad3,0x1937 ,
0x3d3f,0x1294 ,0x3f4f,0x0964 ,0x39db,0x1b5d ,
0x3cc5,0x1413 ,0x3f30,0x0a2b ,0x38cf,0x1d79 ,
0x3c42,0x1590 ,0x3f0f,0x0af1 ,0x37b0,0x1f8c ,
0x3bb6,0x1709 ,0x3eeb,0x0bb7 ,0x367d,0x2193 ,
0x3b21,0x187e ,0x3ec5,0x0c7c ,0x3537,0x238e ,
0x3a82,0x19ef ,0x3e9d,0x0d41 ,0x33df,0x257e ,
0x39db,0x1b5d ,0x3e72,0x0e06 ,0x3274,0x2760 ,
0x392b,0x1cc6 ,0x3e45,0x0eca ,0x30f9,0x2935 ,
0x3871,0x1e2b ,0x3e15,0x0f8d ,0x2f6c,0x2afb ,
0x37b0,0x1f8c ,0x3de3,0x1050 ,0x2dcf,0x2cb2 ,
0x36e5,0x20e7 ,0x3daf,0x1112 ,0x2c21,0x2e5a ,
0x3612,0x223d ,0x3d78,0x11d3 ,0x2a65,0x2ff2 ,
0x3537,0x238e ,0x3d3f,0x1294 ,0x289a,0x3179 ,
0x3453,0x24da ,0x3d03,0x1354 ,0x26c1,0x32ef ,
0x3368,0x2620 ,0x3cc5,0x1413 ,0x24da,0x3453 ,
0x3274,0x2760 ,0x3c85,0x14d2 ,0x22e7,0x35a5 ,
0x3179,0x289a ,0x3c42,0x1590 ,0x20e7,0x36e5 ,
0x3076,0x29ce ,0x3bfd,0x164c ,0x1edc,0x3812 ,
0x2f6c,0x2afb ,0x3bb6,0x1709 ,0x1cc6,0x392b ,
0x2e5a,0x2c21 ,0x3b6d,0x17c4 ,0x1aa7,0x3a30 ,
0x2d41,0x2d41 ,0x3b21,0x187e ,0x187e,0x3b21 ,
0x2c21,0x2e5a ,0x3ad3,0x1937 ,0x164c,0x3bfd ,
0x2afb,0x2f6c ,0x3a82,0x19ef ,0x1413,0x3cc5 ,
0x29ce,0x3076 ,0x3a30,0x1aa7 ,0x11d3,0x3d78 ,
0x289a,0x3179 ,0x39db,0x1b5d ,0x0f8d,0x3e15 ,
0x2760,0x3274 ,0x3984,0x1c12 ,0x0d41,0x3e9d ,
0x2620,0x3368 ,0x392b,0x1cc6 ,0x0af1,0x3f0f ,
0x24da,0x3453 ,0x38cf,0x1d79 ,0x089d,0x3f6b ,
0x238e,0x3537 ,0x3871,0x1e2b ,0x0646,0x3fb1 ,
0x223d,0x3612 ,0x3812,0x1edc ,0x03ed,0x3fe1 ,
0x20e7,0x36e5 ,0x37b0,0x1f8c ,0x0192,0x3ffb ,
0x1f8c,0x37b0 ,0x374b,0x203a ,0xff37,0x3fff ,
0x1e2b,0x3871 ,0x36e5,0x20e7 ,0xfcdc,0x3fec ,
0x1cc6,0x392b ,0x367d,0x2193 ,0xfa82,0x3fc4 ,
0x1b5d,0x39db ,0x3612,0x223d ,0xf82a,0x3f85 ,
0x19ef,0x3a82 ,0x35a5,0x22e7 ,0xf5d5,0x3f30 ,
0x187e,0x3b21 ,0x3537,0x238e ,0xf384,0x3ec5 ,
0x1709,0x3bb6 ,0x34c6,0x2435 ,0xf136,0x3e45 ,
0x1590,0x3c42 ,0x3453,0x24da ,0xeeee,0x3daf ,
0x1413,0x3cc5 ,0x33df,0x257e ,0xecac,0x3d03 ,
0x1294,0x3d3f ,0x3368,0x2620 ,0xea70,0x3c42 ,
0x1112,0x3daf ,0x32ef,0x26c1 ,0xe83c,0x3b6d ,
0x0f8d,0x3e15 ,0x3274,0x2760 ,0xe611,0x3a82 ,
0x0e06,0x3e72 ,0x31f8,0x27fe ,0xe3ee,0x3984 ,
0x0c7c,0x3ec5 ,0x3179,0x289a ,0xe1d5,0x3871 ,
0x0af1,0x3f0f ,0x30f9,0x2935 ,0xdfc6,0x374b ,
0x0964,0x3f4f ,0x3076,0x29ce ,0xddc3,0x3612 ,
0x07d6,0x3f85 ,0x2ff2,0x2a65 ,0xdbcb,0x34c6 ,
0x0646,0x3fb1 ,0x2f6c,0x2afb ,0xd9e0,0x3368 ,
0x04b5,0x3fd4 ,0x2ee4,0x2b8f ,0xd802,0x31f8 ,
0x0324,0x3fec ,0x2e5a,0x2c21 ,0xd632,0x3076 ,
0x0192,0x3ffb ,0x2dcf,0x2cb2 ,0xd471,0x2ee4 ,
0x0000,0x4000 ,0x2d41,0x2d41 ,0xd2bf,0x2d41 ,
0xfe6e,0x3ffb ,0x2cb2,0x2dcf ,0xd11c,0x2b8f ,
0xfcdc,0x3fec ,0x2c21,0x2e5a ,0xcf8a,0x29ce ,
0xfb4b,0x3fd4 ,0x2b8f,0x2ee4 ,0xce08,0x27fe ,
0xf9ba,0x3fb1 ,0x2afb,0x2f6c ,0xcc98,0x2620 ,
0xf82a,0x3f85 ,0x2a65,0x2ff2 ,0xcb3a,0x2435 ,
0xf69c,0x3f4f ,0x29ce,0x3076 ,0xc9ee,0x223d ,
0xf50f,0x3f0f ,0x2935,0x30f9 ,0xc8b5,0x203a ,
0xf384,0x3ec5 ,0x289a,0x3179 ,0xc78f,0x1e2b ,
0xf1fa,0x3e72 ,0x27fe,0x31f8 ,0xc67c,0x1c12 ,
0xf073,0x3e15 ,0x2760,0x3274 ,0xc57e,0x19ef ,
0xeeee,0x3daf ,0x26c1,0x32ef ,0xc493,0x17c4 ,
0xed6c,0x3d3f ,0x2620,0x3368 ,0xc3be,0x1590 ,
0xebed,0x3cc5 ,0x257e,0x33df ,0xc2fd,0x1354 ,
0xea70,0x3c42 ,0x24da,0x3453 ,0xc251,0x1112 ,
0xe8f7,0x3bb6 ,0x2435,0x34c6 ,0xc1bb,0x0eca ,
0xe782,0x3b21 ,0x238e,0x3537 ,0xc13b,0x0c7c ,
0xe611,0x3a82 ,0x22e7,0x35a5 ,0xc0d0,0x0a2b ,
0xe4a3,0x39db ,0x223d,0x3612 ,0xc07b,0x07d6 ,
0xe33a,0x392b ,0x2193,0x367d ,0xc03c,0x057e ,
0xe1d5,0x3871 ,0x20e7,0x36e5 ,0xc014,0x0324 ,
0xe074,0x37b0 ,0x203a,0x374b ,0xc001,0x00c9 ,
0xdf19,0x36e5 ,0x1f8c,0x37b0 ,0xc005,0xfe6e ,
0xddc3,0x3612 ,0x1edc,0x3812 ,0xc01f,0xfc13 ,
0xdc72,0x3537 ,0x1e2b,0x3871 ,0xc04f,0xf9ba ,
0xdb26,0x3453 ,0x1d79,0x38cf ,0xc095,0xf763 ,
0xd9e0,0x3368 ,0x1cc6,0x392b ,0xc0f1,0xf50f ,
0xd8a0,0x3274 ,0x1c12,0x3984 ,0xc163,0xf2bf ,
0xd766,0x3179 ,0x1b5d,0x39db ,0xc1eb,0xf073 ,
0xd632,0x3076 ,0x1aa7,0x3a30 ,0xc288,0xee2d ,
0xd505,0x2f6c ,0x19ef,0x3a82 ,0xc33b,0xebed ,
0xd3df,0x2e5a ,0x1937,0x3ad3 ,0xc403,0xe9b4 ,
0xd2bf,0x2d41 ,0x187e,0x3b21 ,0xc4df,0xe782 ,
0xd1a6,0x2c21 ,0x17c4,0x3b6d ,0xc5d0,0xe559 ,
0xd094,0x2afb ,0x1709,0x3bb6 ,0xc6d5,0xe33a ,
0xcf8a,0x29ce ,0x164c,0x3bfd ,0xc7ee,0xe124 ,
0xce87,0x289a ,0x1590,0x3c42 ,0xc91b,0xdf19 ,
0xcd8c,0x2760 ,0x14d2,0x3c85 ,0xca5b,0xdd19 ,
0xcc98,0x2620 ,0x1413,0x3cc5 ,0xcbad,0xdb26 ,
0xcbad,0x24da ,0x1354,0x3d03 ,0xcd11,0xd93f ,
0xcac9,0x238e ,0x1294,0x3d3f ,0xce87,0xd766 ,
0xc9ee,0x223d ,0x11d3,0x3d78 ,0xd00e,0xd59b ,
0xc91b,0x20e7 ,0x1112,0x3daf ,0xd1a6,0xd3df ,
0xc850,0x1f8c ,0x1050,0x3de3 ,0xd34e,0xd231 ,
0xc78f,0x1e2b ,0x0f8d,0x3e15 ,0xd505,0xd094 ,
0xc6d5,0x1cc6 ,0x0eca,0x3e45 ,0xd6cb,0xcf07 ,
0xc625,0x1b5d ,0x0e06,0x3e72 ,0xd8a0,0xcd8c ,
0xc57e,0x19ef ,0x0d41,0x3e9d ,0xda82,0xcc21 ,
0xc4df,0x187e ,0x0c7c,0x3ec5 ,0xdc72,0xcac9 ,
0xc44a,0x1709 ,0x0bb7,0x3eeb ,0xde6d,0xc983 ,
0xc3be,0x1590 ,0x0af1,0x3f0f ,0xe074,0xc850 ,
0xc33b,0x1413 ,0x0a2b,0x3f30 ,0xe287,0xc731 ,
0xc2c1,0x1294 ,0x0964,0x3f4f ,0xe4a3,0xc625 ,
0xc251,0x1112 ,0x089d,0x3f6b ,0xe6c9,0xc52d ,
0xc1eb,0x0f8d ,0x07d6,0x3f85 ,0xe8f7,0xc44a ,
0xc18e,0x0e06 ,0x070e,0x3f9c ,0xeb2e,0xc37b ,
0xc13b,0x0c7c ,0x0646,0x3fb1 ,0xed6c,0xc2c1 ,
0xc0f1,0x0af1 ,0x057e,0x3fc4 ,0xefb0,0xc21d ,
0xc0b1,0x0964 ,0x04b5,0x3fd4 ,0xf1fa,0xc18e ,
0xc07b,0x07d6 ,0x03ed,0x3fe1 ,0xf449,0xc115 ,
0xc04f,0x0646 ,0x0324,0x3fec ,0xf69c,0xc0b1 ,
0xc02c,0x04b5 ,0x025b,0x3ff5 ,0xf8f2,0xc064 ,
0xc014,0x0324 ,0x0192,0x3ffb ,0xfb4b,0xc02c ,
0xc005,0x0192 ,0x00c9,0x3fff ,0xfda5,0xc00b ,
0x4000,0x0000 ,0x4000,0x0065 ,0x3fff,0x00c9 ,
0x3ffd,0x012e ,0x3ffb,0x0192 ,0x3ff8,0x01f7 ,
0x3ff5,0x025b ,0x3ff1,0x02c0 ,0x3fec,0x0324 ,
0x3fe7,0x0388 ,0x3fe1,0x03ed ,0x3fdb,0x0451 ,
0x3fd4,0x04b5 ,0x3fcc,0x051a ,0x3fc4,0x057e ,
0x3fbb,0x05e2 ,0x3fb1,0x0646 ,0x3fa7,0x06aa ,
0x3f9c,0x070e ,0x3f91,0x0772 ,0x3f85,0x07d6 ,
0x3f78,0x0839 ,0x3f6b,0x089d ,0x3f5d,0x0901 ,
0x3f4f,0x0964 ,0x3f40,0x09c7 ,0x3f30,0x0a2b ,
0x3f20,0x0a8e ,0x3f0f,0x0af1 ,0x3efd,0x0b54 ,
0x3eeb,0x0bb7 ,0x3ed8,0x0c1a ,0x3ec5,0x0c7c ,
0x3eb1,0x0cdf ,0x3e9d,0x0d41 ,0x3e88,0x0da4 ,
0x3e72,0x0e06 ,0x3e5c,0x0e68 ,0x3e45,0x0eca ,
0x3e2d,0x0f2b ,0x3e15,0x0f8d ,0x3dfc,0x0fee ,
0x3de3,0x1050 ,0x3dc9,0x10b1 ,0x3daf,0x1112 ,
0x3d93,0x1173 ,0x3d78,0x11d3 ,0x3d5b,0x1234 ,
0x3d3f,0x1294 ,0x3d21,0x12f4 ,0x3d03,0x1354 ,
0x3ce4,0x13b4 ,0x3cc5,0x1413 ,0x3ca5,0x1473 ,
0x3c85,0x14d2 ,0x3c64,0x1531 ,0x3c42,0x1590 ,
0x3c20,0x15ee ,0x3bfd,0x164c ,0x3bda,0x16ab ,
0x3bb6,0x1709 ,0x3b92,0x1766 ,0x3b6d,0x17c4 ,
0x3b47,0x1821 ,0x3b21,0x187e ,0x3afa,0x18db ,
0x3ad3,0x1937 ,0x3aab,0x1993 ,0x3a82,0x19ef ,
0x3a59,0x1a4b ,0x3a30,0x1aa7 ,0x3a06,0x1b02 ,
0x39db,0x1b5d ,0x39b0,0x1bb8 ,0x3984,0x1c12 ,
0x3958,0x1c6c ,0x392b,0x1cc6 ,0x38fd,0x1d20 ,
0x38cf,0x1d79 ,0x38a1,0x1dd3 ,0x3871,0x1e2b ,
0x3842,0x1e84 ,0x3812,0x1edc ,0x37e1,0x1f34 ,
0x37b0,0x1f8c ,0x377e,0x1fe3 ,0x374b,0x203a ,
0x3718,0x2091 ,0x36e5,0x20e7 ,0x36b1,0x213d ,
0x367d,0x2193 ,0x3648,0x21e8 ,0x3612,0x223d ,
0x35dc,0x2292 ,0x35a5,0x22e7 ,0x356e,0x233b ,
0x3537,0x238e ,0x34ff,0x23e2 ,0x34c6,0x2435 ,
0x348d,0x2488 ,0x3453,0x24da ,0x3419,0x252c ,
0x33df,0x257e ,0x33a3,0x25cf ,0x3368,0x2620 ,
0x332c,0x2671 ,0x32ef,0x26c1 ,0x32b2,0x2711 ,
0x3274,0x2760 ,0x3236,0x27af ,0x31f8,0x27fe ,
0x31b9,0x284c ,0x3179,0x289a ,0x3139,0x28e7 ,
0x30f9,0x2935 ,0x30b8,0x2981 ,0x3076,0x29ce ,
0x3034,0x2a1a ,0x2ff2,0x2a65 ,0x2faf,0x2ab0 ,
0x2f6c,0x2afb ,0x2f28,0x2b45 ,0x2ee4,0x2b8f ,
0x2e9f,0x2bd8 ,0x2e5a,0x2c21 ,0x2e15,0x2c6a ,
0x2dcf,0x2cb2 ,0x2d88,0x2cfa ,0x2d41,0x2d41 ,
0x2cfa,0x2d88 ,0x2cb2,0x2dcf ,0x2c6a,0x2e15 ,
0x2c21,0x2e5a ,0x2bd8,0x2e9f ,0x2b8f,0x2ee4 ,
0x2b45,0x2f28 ,0x2afb,0x2f6c ,0x2ab0,0x2faf ,
0x2a65,0x2ff2 ,0x2a1a,0x3034 ,0x29ce,0x3076 ,
0x2981,0x30b8 ,0x2935,0x30f9 ,0x28e7,0x3139 ,
0x289a,0x3179 ,0x284c,0x31b9 ,0x27fe,0x31f8 ,
0x27af,0x3236 ,0x2760,0x3274 ,0x2711,0x32b2 ,
0x26c1,0x32ef ,0x2671,0x332c ,0x2620,0x3368 ,
0x25cf,0x33a3 ,0x257e,0x33df ,0x252c,0x3419 ,
0x24da,0x3453 ,0x2488,0x348d ,0x2435,0x34c6 ,
0x23e2,0x34ff ,0x238e,0x3537 ,0x233b,0x356e ,
0x22e7,0x35a5 ,0x2292,0x35dc ,0x223d,0x3612 ,
0x21e8,0x3648 ,0x2193,0x367d ,0x213d,0x36b1 ,
0x20e7,0x36e5 ,0x2091,0x3718 ,0x203a,0x374b ,
0x1fe3,0x377e ,0x1f8c,0x37b0 ,0x1f34,0x37e1 ,
0x1edc,0x3812 ,0x1e84,0x3842 ,0x1e2b,0x3871 ,
0x1dd3,0x38a1 ,0x1d79,0x38cf ,0x1d20,0x38fd ,
0x1cc6,0x392b ,0x1c6c,0x3958 ,0x1c12,0x3984 ,
0x1bb8,0x39b0 ,0x1b5d,0x39db ,0x1b02,0x3a06 ,
0x1aa7,0x3a30 ,0x1a4b,0x3a59 ,0x19ef,0x3a82 ,
0x1993,0x3aab ,0x1937,0x3ad3 ,0x18db,0x3afa ,
0x187e,0x3b21 ,0x1821,0x3b47 ,0x17c4,0x3b6d ,
0x1766,0x3b92 ,0x1709,0x3bb6 ,0x16ab,0x3bda ,
0x164c,0x3bfd ,0x15ee,0x3c20 ,0x1590,0x3c42 ,
0x1531,0x3c64 ,0x14d2,0x3c85 ,0x1473,0x3ca5 ,
0x1413,0x3cc5 ,0x13b4,0x3ce4 ,0x1354,0x3d03 ,
0x12f4,0x3d21 ,0x1294,0x3d3f ,0x1234,0x3d5b ,
0x11d3,0x3d78 ,0x1173,0x3d93 ,0x1112,0x3daf ,
0x10b1,0x3dc9 ,0x1050,0x3de3 ,0x0fee,0x3dfc ,
0x0f8d,0x3e15 ,0x0f2b,0x3e2d ,0x0eca,0x3e45 ,
0x0e68,0x3e5c ,0x0e06,0x3e72 ,0x0da4,0x3e88 ,
0x0d41,0x3e9d ,0x0cdf,0x3eb1 ,0x0c7c,0x3ec5 ,
0x0c1a,0x3ed8 ,0x0bb7,0x3eeb ,0x0b54,0x3efd ,
0x0af1,0x3f0f ,0x0a8e,0x3f20 ,0x0a2b,0x3f30 ,
0x09c7,0x3f40 ,0x0964,0x3f4f ,0x0901,0x3f5d ,
0x089d,0x3f6b ,0x0839,0x3f78 ,0x07d6,0x3f85 ,
0x0772,0x3f91 ,0x070e,0x3f9c ,0x06aa,0x3fa7 ,
0x0646,0x3fb1 ,0x05e2,0x3fbb ,0x057e,0x3fc4 ,
0x051a,0x3fcc ,0x04b5,0x3fd4 ,0x0451,0x3fdb ,
0x03ed,0x3fe1 ,0x0388,0x3fe7 ,0x0324,0x3fec ,
0x02c0,0x3ff1 ,0x025b,0x3ff5 ,0x01f7,0x3ff8 ,
0x0192,0x3ffb ,0x012e,0x3ffd ,0x00c9,0x3fff ,
0x0065,0x4000 ,0x0000,0x4000 ,0xff9b,0x4000 ,
0xff37,0x3fff ,0xfed2,0x3ffd ,0xfe6e,0x3ffb ,
0xfe09,0x3ff8 ,0xfda5,0x3ff5 ,0xfd40,0x3ff1 ,
0xfcdc,0x3fec ,0xfc78,0x3fe7 ,0xfc13,0x3fe1 ,
0xfbaf,0x3fdb ,0xfb4b,0x3fd4 ,0xfae6,0x3fcc ,
0xfa82,0x3fc4 ,0xfa1e,0x3fbb ,0xf9ba,0x3fb1 ,
0xf956,0x3fa7 ,0xf8f2,0x3f9c ,0xf88e,0x3f91 ,
0xf82a,0x3f85 ,0xf7c7,0x3f78 ,0xf763,0x3f6b ,
0xf6ff,0x3f5d ,0xf69c,0x3f4f ,0xf639,0x3f40 ,
0xf5d5,0x3f30 ,0xf572,0x3f20 ,0xf50f,0x3f0f ,
0xf4ac,0x3efd ,0xf449,0x3eeb ,0xf3e6,0x3ed8 ,
0xf384,0x3ec5 ,0xf321,0x3eb1 ,0xf2bf,0x3e9d ,
0xf25c,0x3e88 ,0xf1fa,0x3e72 ,0xf198,0x3e5c ,
0xf136,0x3e45 ,0xf0d5,0x3e2d ,0xf073,0x3e15 ,
0xf012,0x3dfc ,0xefb0,0x3de3 ,0xef4f,0x3dc9 ,
0xeeee,0x3daf ,0xee8d,0x3d93 ,0xee2d,0x3d78 ,
0xedcc,0x3d5b ,0xed6c,0x3d3f ,0xed0c,0x3d21 ,
0xecac,0x3d03 ,0xec4c,0x3ce4 ,0xebed,0x3cc5 ,
0xeb8d,0x3ca5 ,0xeb2e,0x3c85 ,0xeacf,0x3c64 ,
0xea70,0x3c42 ,0xea12,0x3c20 ,0xe9b4,0x3bfd ,
0xe955,0x3bda ,0xe8f7,0x3bb6 ,0xe89a,0x3b92 ,
0xe83c,0x3b6d ,0xe7df,0x3b47 ,0xe782,0x3b21 ,
0xe725,0x3afa ,0xe6c9,0x3ad3 ,0xe66d,0x3aab ,
0xe611,0x3a82 ,0xe5b5,0x3a59 ,0xe559,0x3a30 ,
0xe4fe,0x3a06 ,0xe4a3,0x39db ,0xe448,0x39b0 ,
0xe3ee,0x3984 ,0xe394,0x3958 ,0xe33a,0x392b ,
0xe2e0,0x38fd ,0xe287,0x38cf ,0xe22d,0x38a1 ,
0xe1d5,0x3871 ,0xe17c,0x3842 ,0xe124,0x3812 ,
0xe0cc,0x37e1 ,0xe074,0x37b0 ,0xe01d,0x377e ,
0xdfc6,0x374b ,0xdf6f,0x3718 ,0xdf19,0x36e5 ,
0xdec3,0x36b1 ,0xde6d,0x367d ,0xde18,0x3648 ,
0xddc3,0x3612 ,0xdd6e,0x35dc ,0xdd19,0x35a5 ,
0xdcc5,0x356e ,0xdc72,0x3537 ,0xdc1e,0x34ff ,
0xdbcb,0x34c6 ,0xdb78,0x348d ,0xdb26,0x3453 ,
0xdad4,0x3419 ,0xda82,0x33df ,0xda31,0x33a3 ,
0xd9e0,0x3368 ,0xd98f,0x332c ,0xd93f,0x32ef ,
0xd8ef,0x32b2 ,0xd8a0,0x3274 ,0xd851,0x3236 ,
0xd802,0x31f8 ,0xd7b4,0x31b9 ,0xd766,0x3179 ,
0xd719,0x3139 ,0xd6cb,0x30f9 ,0xd67f,0x30b8 ,
0xd632,0x3076 ,0xd5e6,0x3034 ,0xd59b,0x2ff2 ,
0xd550,0x2faf ,0xd505,0x2f6c ,0xd4bb,0x2f28 ,
0xd471,0x2ee4 ,0xd428,0x2e9f ,0xd3df,0x2e5a ,
0xd396,0x2e15 ,0xd34e,0x2dcf ,0xd306,0x2d88 ,
0xd2bf,0x2d41 ,0xd278,0x2cfa ,0xd231,0x2cb2 ,
0xd1eb,0x2c6a ,0xd1a6,0x2c21 ,0xd161,0x2bd8 ,
0xd11c,0x2b8f ,0xd0d8,0x2b45 ,0xd094,0x2afb ,
0xd051,0x2ab0 ,0xd00e,0x2a65 ,0xcfcc,0x2a1a ,
0xcf8a,0x29ce ,0xcf48,0x2981 ,0xcf07,0x2935 ,
0xcec7,0x28e7 ,0xce87,0x289a ,0xce47,0x284c ,
0xce08,0x27fe ,0xcdca,0x27af ,0xcd8c,0x2760 ,
0xcd4e,0x2711 ,0xcd11,0x26c1 ,0xccd4,0x2671 ,
0xcc98,0x2620 ,0xcc5d,0x25cf ,0xcc21,0x257e ,
0xcbe7,0x252c ,0xcbad,0x24da ,0xcb73,0x2488 ,
0xcb3a,0x2435 ,0xcb01,0x23e2 ,0xcac9,0x238e ,
0xca92,0x233b ,0xca5b,0x22e7 ,0xca24,0x2292 ,
0xc9ee,0x223d ,0xc9b8,0x21e8 ,0xc983,0x2193 ,
0xc94f,0x213d ,0xc91b,0x20e7 ,0xc8e8,0x2091 ,
0xc8b5,0x203a ,0xc882,0x1fe3 ,0xc850,0x1f8c ,
0xc81f,0x1f34 ,0xc7ee,0x1edc ,0xc7be,0x1e84 ,
0xc78f,0x1e2b ,0xc75f,0x1dd3 ,0xc731,0x1d79 ,
0xc703,0x1d20 ,0xc6d5,0x1cc6 ,0xc6a8,0x1c6c ,
0xc67c,0x1c12 ,0xc650,0x1bb8 ,0xc625,0x1b5d ,
0xc5fa,0x1b02 ,0xc5d0,0x1aa7 ,0xc5a7,0x1a4b ,
0xc57e,0x19ef ,0xc555,0x1993 ,0xc52d,0x1937 ,
0xc506,0x18db ,0xc4df,0x187e ,0xc4b9,0x1821 ,
0xc493,0x17c4 ,0xc46e,0x1766 ,0xc44a,0x1709 ,
0xc426,0x16ab ,0xc403,0x164c ,0xc3e0,0x15ee ,
0xc3be,0x1590 ,0xc39c,0x1531 ,0xc37b,0x14d2 ,
0xc35b,0x1473 ,0xc33b,0x1413 ,0xc31c,0x13b4 ,
0xc2fd,0x1354 ,0xc2df,0x12f4 ,0xc2c1,0x1294 ,
0xc2a5,0x1234 ,0xc288,0x11d3 ,0xc26d,0x1173 ,
0xc251,0x1112 ,0xc237,0x10b1 ,0xc21d,0x1050 ,
0xc204,0x0fee ,0xc1eb,0x0f8d ,0xc1d3,0x0f2b ,
0xc1bb,0x0eca ,0xc1a4,0x0e68 ,0xc18e,0x0e06 ,
0xc178,0x0da4 ,0xc163,0x0d41 ,0xc14f,0x0cdf ,
0xc13b,0x0c7c ,0xc128,0x0c1a ,0xc115,0x0bb7 ,
0xc103,0x0b54 ,0xc0f1,0x0af1 ,0xc0e0,0x0a8e ,
0xc0d0,0x0a2b ,0xc0c0,0x09c7 ,0xc0b1,0x0964 ,
0xc0a3,0x0901 ,0xc095,0x089d ,0xc088,0x0839 ,
0xc07b,0x07d6 ,0xc06f,0x0772 ,0xc064,0x070e ,
0xc059,0x06aa ,0xc04f,0x0646 ,0xc045,0x05e2 ,
0xc03c,0x057e ,0xc034,0x051a ,0xc02c,0x04b5 ,
0xc025,0x0451 ,0xc01f,0x03ed ,0xc019,0x0388 ,
0xc014,0x0324 ,0xc00f,0x02c0 ,0xc00b,0x025b ,
0xc008,0x01f7 ,0xc005,0x0192 ,0xc003,0x012e ,
0xc001,0x00c9 ,0xc000,0x0065 };

View File

@ -0,0 +1,27 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the Q14 radix-2 tables used in ARM9E optimization routines.
*
*/
extern const unsigned short t_Q14S_rad8[2];
const unsigned short t_Q14S_rad8[2] = { 0x0000,0x2d41 };
//extern const int t_Q30S_rad8[2];
//const int t_Q30S_rad8[2] = { 0x00000000,0x2d413ccd };
extern const unsigned short t_Q14R_rad8[2];
const unsigned short t_Q14R_rad8[2] = { 0x2d41,0x2d41 };
//extern const int t_Q30R_rad8[2];
//const int t_Q30R_rad8[2] = { 0x2d413ccd,0x2d413ccd };

View File

@ -0,0 +1,494 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the SPL unit_test.
*
*/
#include "unit_test.h"
#include "signal_processing_library.h"
class SplEnvironment : public ::testing::Environment {
public:
virtual void SetUp() {
}
virtual void TearDown() {
}
};
SplTest::SplTest()
{
}
void SplTest::SetUp() {
}
void SplTest::TearDown() {
}
TEST_F(SplTest, MacroTest) {
// Macros with inputs.
int A = 10;
int B = 21;
int a = -3;
int b = WEBRTC_SPL_WORD32_MAX;
int nr = 2;
int d_ptr1 = 0;
int d_ptr2 = 0;
EXPECT_EQ(10, WEBRTC_SPL_MIN(A, B));
EXPECT_EQ(21, WEBRTC_SPL_MAX(A, B));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W16(a));
EXPECT_EQ(3, WEBRTC_SPL_ABS_W32(a));
EXPECT_EQ(0, WEBRTC_SPL_GET_BYTE(&B, nr));
WEBRTC_SPL_SET_BYTE(&d_ptr2, 1, nr);
EXPECT_EQ(65536, d_ptr2);
EXPECT_EQ(-63, WEBRTC_SPL_MUL(a, B));
EXPECT_EQ(-2147483645, WEBRTC_SPL_MUL(a, b));
EXPECT_EQ(-2147483645, WEBRTC_SPL_UMUL(a, b));
b = WEBRTC_SPL_WORD16_MAX >> 1;
EXPECT_EQ(65535, WEBRTC_SPL_UMUL_RSFT16(a, b));
EXPECT_EQ(1073627139, WEBRTC_SPL_UMUL_16_16(a, b));
EXPECT_EQ(16382, WEBRTC_SPL_UMUL_16_16_RSFT16(a, b));
EXPECT_EQ(-49149, WEBRTC_SPL_UMUL_32_16(a, b));
EXPECT_EQ(65535, WEBRTC_SPL_UMUL_32_16_RSFT16(a, b));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_U16(a, b));
a = b;
b = -3;
EXPECT_EQ(-5461, WEBRTC_SPL_DIV(a, b));
EXPECT_EQ(0, WEBRTC_SPL_UDIV(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT16(a, b));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_32_RSFT15(a, b));
EXPECT_EQ(-3, WEBRTC_SPL_MUL_16_32_RSFT14(a, b));
EXPECT_EQ(-24, WEBRTC_SPL_MUL_16_32_RSFT11(a, b));
int a32 = WEBRTC_SPL_WORD32_MAX;
int a32a = (WEBRTC_SPL_WORD32_MAX >> 16);
int a32b = (WEBRTC_SPL_WORD32_MAX & 0x0000ffff);
EXPECT_EQ(5, WEBRTC_SPL_MUL_32_32_RSFT32(a32a, a32b, A));
EXPECT_EQ(5, WEBRTC_SPL_MUL_32_32_RSFT32BI(a32, A));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_16_16(a, b));
EXPECT_EQ(-12288, WEBRTC_SPL_MUL_16_16_RSFT(a, b, 2));
EXPECT_EQ(-12287, WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, 2));
EXPECT_EQ(-1, WEBRTC_SPL_MUL_16_16_RSFT_WITH_FIXROUND(a, b));
EXPECT_EQ(16380, WEBRTC_SPL_ADD_SAT_W32(a, b));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, A, B));
EXPECT_EQ(21, WEBRTC_SPL_SAT(a, B, A));
EXPECT_EQ(-49149, WEBRTC_SPL_MUL_32_16(a, b));
EXPECT_EQ(16386, WEBRTC_SPL_SUB_SAT_W32(a, b));
EXPECT_EQ(16380, WEBRTC_SPL_ADD_SAT_W16(a, b));
EXPECT_EQ(16386, WEBRTC_SPL_SUB_SAT_W16(a, b));
EXPECT_TRUE(WEBRTC_SPL_IS_NEG(b));
// Shifting with negative numbers allowed
// Positive means left shift
EXPECT_EQ(32766, WEBRTC_SPL_SHIFT_W16(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_SHIFT_W32(a, 1));
// Shifting with negative numbers not allowed
// We cannot do casting here due to signed/unsigned problem
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_W16(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W16(a, 1));
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_W32(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_W32(a, 1));
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_U16(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_U16(a, 1));
EXPECT_EQ(8191, WEBRTC_SPL_RSHIFT_U32(a, 1));
EXPECT_EQ(32766, WEBRTC_SPL_LSHIFT_U32(a, 1));
EXPECT_EQ(1470, WEBRTC_SPL_RAND(A));
}
TEST_F(SplTest, InlineTest) {
WebRtc_Word16 a = 121;
WebRtc_Word16 b = -17;
WebRtc_Word32 A = 111121;
WebRtc_Word32 B = -1711;
char bVersion[8];
EXPECT_EQ(104, WebRtcSpl_AddSatW16(a, b));
EXPECT_EQ(138, WebRtcSpl_SubSatW16(a, b));
EXPECT_EQ(109410, WebRtcSpl_AddSatW32(A, B));
EXPECT_EQ(112832, WebRtcSpl_SubSatW32(A, B));
EXPECT_EQ(17, WebRtcSpl_GetSizeInBits(A));
EXPECT_EQ(14, WebRtcSpl_NormW32(A));
EXPECT_EQ(4, WebRtcSpl_NormW16(B));
EXPECT_EQ(15, WebRtcSpl_NormU32(A));
EXPECT_EQ(0, WebRtcSpl_get_version(bVersion, 8));
}
TEST_F(SplTest, MathOperationsTest) {
int A = 117;
WebRtc_Word32 num = 117;
WebRtc_Word32 den = -5;
WebRtc_UWord16 denU = 5;
EXPECT_EQ(10, WebRtcSpl_Sqrt(A));
EXPECT_EQ(10, WebRtcSpl_SqrtFloor(A));
EXPECT_EQ(-91772805, WebRtcSpl_DivResultInQ31(den, num));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16ResW16(num, (WebRtc_Word16)den));
EXPECT_EQ(-23, WebRtcSpl_DivW32W16(num, (WebRtc_Word16)den));
EXPECT_EQ(23, WebRtcSpl_DivU32U16(num, denU));
EXPECT_EQ(0, WebRtcSpl_DivW32HiLow(128, 0, 256));
}
TEST_F(SplTest, BasicArrayOperationsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
int Bs[] = {2, 6, 66, 550};
WebRtc_UWord8 b8[kVectorSize];
WebRtc_Word16 b16[kVectorSize];
WebRtc_Word32 b32[kVectorSize];
WebRtc_UWord8 bTmp8[kVectorSize];
WebRtc_Word16 bTmp16[kVectorSize];
WebRtc_Word32 bTmp32[kVectorSize];
WebRtcSpl_MemSetW16(b16, 3, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b16[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_ZerosArrayW16(b16, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b16[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_OnesArrayW16(b16, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(1, b16[kk]);
}
WebRtcSpl_MemSetW32(b32, 3, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(3, b32[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_ZerosArrayW32(b32, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(0, b32[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_OnesArrayW32(b32, kVectorSize));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(1, b32[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
bTmp8[kk] = (WebRtc_Word8)kk;
bTmp16[kk] = (WebRtc_Word16)kk;
bTmp32[kk] = (WebRtc_Word32)kk;
}
WEBRTC_SPL_MEMCPY_W8(b8, bTmp8, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b8[kk], bTmp8[kk]);
}
WEBRTC_SPL_MEMCPY_W16(b16, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[kk], bTmp16[kk]);
}
// WEBRTC_SPL_MEMCPY_W32(b32, bTmp32, kVectorSize);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(b32[kk], bTmp32[kk]);
// }
EXPECT_EQ(2, WebRtcSpl_CopyFromEndW16(b16, kVectorSize, 2, bTmp16));
for (int kk = 0; kk < 2; ++kk) {
EXPECT_EQ(kk+2, bTmp16[kk]);
}
for (int kk = 0; kk < kVectorSize; ++kk) {
b32[kk] = B[kk];
b16[kk] = (WebRtc_Word16)B[kk];
}
WebRtcSpl_VectorBitShiftW32ToW16(bTmp16, kVectorSize, b32, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW16(bTmp16, kVectorSize, b16, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp16[kk]);
}
WebRtcSpl_VectorBitShiftW32(bTmp32, kVectorSize, b32, 1);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]>>1), bTmp32[kk]);
}
WebRtcSpl_MemCpyReversedOrder(&bTmp16[3], b16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(b16[3-kk], bTmp16[kk]);
}
}
TEST_F(SplTest, MinMaxOperationsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, -1100};
WebRtc_Word16 b16[kVectorSize];
WebRtc_Word32 b32[kVectorSize];
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = B[kk];
b32[kk] = B[kk];
}
EXPECT_EQ(1100, WebRtcSpl_MaxAbsValueW16(b16, kVectorSize));
EXPECT_EQ(1100, WebRtcSpl_MaxAbsValueW32(b32, kVectorSize));
EXPECT_EQ(133, WebRtcSpl_MaxValueW16(b16, kVectorSize));
EXPECT_EQ(133, WebRtcSpl_MaxValueW32(b32, kVectorSize));
EXPECT_EQ(3, WebRtcSpl_MaxAbsIndexW16(b16, kVectorSize));
EXPECT_EQ(2, WebRtcSpl_MaxIndexW16(b16, kVectorSize));
EXPECT_EQ(2, WebRtcSpl_MaxIndexW32(b32, kVectorSize));
EXPECT_EQ(-1100, WebRtcSpl_MinValueW16(b16, kVectorSize));
EXPECT_EQ(-1100, WebRtcSpl_MinValueW32(b32, kVectorSize));
EXPECT_EQ(3, WebRtcSpl_MinIndexW16(b16, kVectorSize));
EXPECT_EQ(3, WebRtcSpl_MinIndexW32(b32, kVectorSize));
EXPECT_EQ(0, WebRtcSpl_GetScalingSquare(b16, kVectorSize, 1));
}
TEST_F(SplTest, VectorOperationsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
WebRtc_Word16 a16[kVectorSize];
WebRtc_Word16 b16[kVectorSize];
WebRtc_Word32 b32[kVectorSize];
WebRtc_Word16 bTmp16[kVectorSize];
for (int kk = 0; kk < kVectorSize; ++kk) {
a16[kk] = B[kk];
b16[kk] = B[kk];
}
WebRtcSpl_AffineTransformVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]*3+7)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectorsWithRound(b16, 3, b16, 2, 2, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((B[kk]*3+B[kk]*2+2)>>2, bTmp16[kk]);
}
WebRtcSpl_AddAffineVectorToVector(bTmp16, b16, 3, 7, 2, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((B[kk]*3+B[kk]*2+2)>>2)+((b16[kk]*3+7)>>2), bTmp16[kk]);
}
WebRtcSpl_CrossCorrelation(b32, b16, bTmp16, kVectorSize, 2, 2, 0);
for (int kk = 0; kk < 2; ++kk) {
EXPECT_EQ(614236, b32[kk]);
}
// EXPECT_EQ(, WebRtcSpl_DotProduct(b16, bTmp16, 4));
EXPECT_EQ(306962, WebRtcSpl_DotProductWithScale(b16, b16, kVectorSize, 2));
WebRtcSpl_ScaleVector(b16, bTmp16, 13, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleVectorWithSat(b16, bTmp16, 13, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((b16[kk]*13)>>2, bTmp16[kk]);
}
WebRtcSpl_ScaleAndAddVectors(a16, 13, 2, b16, 7, 2, bTmp16, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(((a16[kk]*13)>>2)+((b16[kk]*7)>>2), bTmp16[kk]);
}
WebRtcSpl_AddVectorsAndShift(bTmp16, a16, b16, kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(B[kk] >> 1, bTmp16[kk]);
}
WebRtcSpl_ReverseOrderMultArrayElements(bTmp16, a16, &b16[3], kVectorSize, 2);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk]*b16[3-kk])>>2, bTmp16[kk]);
}
WebRtcSpl_ElementwiseVectorMult(bTmp16, a16, b16, kVectorSize, 6);
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ((a16[kk]*b16[kk])>>6, bTmp16[kk]);
}
WebRtcSpl_SqrtOfOneMinusXSquared(b16, kVectorSize, bTmp16);
for (int kk = 0; kk < kVectorSize - 1; ++kk) {
EXPECT_EQ(32767, bTmp16[kk]);
}
EXPECT_EQ(32749, bTmp16[kVectorSize - 1]);
}
TEST_F(SplTest, EstimatorsTest) {
const int kVectorSize = 4;
int B[] = {4, 12, 133, 1100};
WebRtc_Word16 b16[kVectorSize];
WebRtc_Word32 b32[kVectorSize];
WebRtc_Word16 bTmp16[kVectorSize];
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = B[kk];
b32[kk] = B[kk];
}
EXPECT_EQ(0, WebRtcSpl_LevinsonDurbin(b32, b16, bTmp16, 2));
}
TEST_F(SplTest, FilterTest) {
const int kVectorSize = 4;
WebRtc_Word16 A[] = {1, 2, 33, 100};
WebRtc_Word16 A5[] = {1, 2, 33, 100, -5};
WebRtc_Word16 B[] = {4, 12, 133, 110};
WebRtc_Word16 b16[kVectorSize];
WebRtc_Word16 bTmp16[kVectorSize];
WebRtc_Word16 bTmp16Low[kVectorSize];
WebRtc_Word16 bState[kVectorSize];
WebRtc_Word16 bStateLow[kVectorSize];
WebRtcSpl_ZerosArrayW16(bState, kVectorSize);
WebRtcSpl_ZerosArrayW16(bStateLow, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
// MA filters
WebRtcSpl_FilterMAFastQ12(b16, bTmp16, B, kVectorSize, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
//EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
}
// AR filters
WebRtcSpl_FilterARFastQ12(b16, bTmp16, A, kVectorSize, kVectorSize);
for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
}
EXPECT_EQ(kVectorSize, WebRtcSpl_FilterAR(A5,
5,
b16,
kVectorSize,
bState,
kVectorSize,
bStateLow,
kVectorSize,
bTmp16,
bTmp16Low,
kVectorSize));
}
TEST_F(SplTest, RandTest) {
const int kVectorSize = 4;
WebRtc_Word16 BU[] = {3653, 12446, 8525, 30691};
WebRtc_Word16 BN[] = {3459, -11689, -258, -3738};
WebRtc_Word16 b16[kVectorSize];
WebRtc_UWord32 bSeed = 100000;
EXPECT_EQ(464449057, WebRtcSpl_IncreaseSeed(&bSeed));
EXPECT_EQ(31565, WebRtcSpl_RandU(&bSeed));
EXPECT_EQ(-9786, WebRtcSpl_RandN(&bSeed));
EXPECT_EQ(kVectorSize, WebRtcSpl_RandUArray(b16, kVectorSize, &bSeed));
for (int kk = 0; kk < kVectorSize; ++kk) {
EXPECT_EQ(BU[kk], b16[kk]);
}
}
TEST_F(SplTest, SignalProcessingTest) {
const int kVectorSize = 4;
int A[] = {1, 2, 33, 100};
WebRtc_Word16 b16[kVectorSize];
WebRtc_Word32 b32[kVectorSize];
WebRtc_Word16 bTmp16[kVectorSize];
WebRtc_Word32 bTmp32[kVectorSize];
int bScale = 0;
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
b32[kk] = A[kk];
}
EXPECT_EQ(2, WebRtcSpl_AutoCorrelation(b16, kVectorSize, 1, bTmp32, &bScale));
WebRtcSpl_ReflCoefToLpc(b16, kVectorSize, bTmp16);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
// }
WebRtcSpl_LpcToReflCoef(bTmp16, kVectorSize, b16);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(a16[kk], b16[kk]);
// }
WebRtcSpl_AutoCorrToReflCoef(b32, kVectorSize, bTmp16);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
// }
WebRtcSpl_GetHanningWindow(bTmp16, kVectorSize);
// for (int kk = 0; kk < kVectorSize; ++kk) {
// EXPECT_EQ(aTmp16[kk], bTmp16[kk]);
// }
for (int kk = 0; kk < kVectorSize; ++kk) {
b16[kk] = A[kk];
}
EXPECT_EQ(11094 , WebRtcSpl_Energy(b16, kVectorSize, &bScale));
EXPECT_EQ(0, bScale);
}
TEST_F(SplTest, FFTTest) {
WebRtc_Word16 B[] = {1, 2, 33, 100,
2, 3, 34, 101,
3, 4, 35, 102,
4, 5, 36, 103};
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
EXPECT_EQ(0, WebRtcSpl_ComplexIFFT(B, 3, 1));
// for (int kk = 0; kk < 16; ++kk) {
// EXPECT_EQ(A[kk], B[kk]);
// }
WebRtcSpl_ComplexBitReverse(B, 3);
for (int kk = 0; kk < 16; ++kk) {
//EXPECT_EQ(A[kk], B[kk]);
}
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
SplEnvironment* env = new SplEnvironment;
::testing::AddGlobalTestEnvironment(env);
return RUN_ALL_TESTS();
}

View File

@ -0,0 +1,30 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file contains the function WebRtcSpl_CopyFromBeginU8().
* The description header can be found in signal_processing_library.h
*
*/
#ifndef WEBRTC_SPL_UNIT_TEST_H_
#define WEBRTC_SPL_UNIT_TEST_H_
#include <gtest/gtest.h>
class SplTest: public ::testing::Test
{
protected:
SplTest();
virtual void SetUp();
virtual void TearDown();
};
#endif // WEBRTC_SPL_UNIT_TEST_H_

View File

@ -0,0 +1,2 @@
bjornv@webrtc.org
jan.skoglund@webrtc.org

View File

@ -0,0 +1,159 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the VAD API calls. Specific function calls are given below.
*/
#ifndef WEBRTC_VAD_WEBRTC_VAD_H_
#define WEBRTC_VAD_WEBRTC_VAD_H_
#include "typedefs.h"
typedef struct WebRtcVadInst VadInst;
#ifdef __cplusplus
extern "C"
{
#endif
/****************************************************************************
* WebRtcVad_get_version(...)
*
* This function returns the version number of the code.
*
* Output:
* - version : Pointer to a buffer where the version info will
* be stored.
* Input:
* - size_bytes : Size of the buffer.
*
*/
WebRtc_Word16 WebRtcVad_get_version(char *version, size_t size_bytes);
/****************************************************************************
* WebRtcVad_AssignSize(...)
*
* This functions get the size needed for storing the instance for encoder
* and decoder, respectively
*
* Input/Output:
* - size_in_bytes : Pointer to integer where the size is returned
*
* Return value : 0
*/
WebRtc_Word16 WebRtcVad_AssignSize(int *size_in_bytes);
/****************************************************************************
* WebRtcVad_Assign(...)
*
* This functions Assigns memory for the instances.
*
* Input:
* - vad_inst_addr : Address to where to assign memory
* Output:
* - vad_inst : Pointer to the instance that should be created
*
* Return value : 0 - Ok
* -1 - Error
*/
WebRtc_Word16 WebRtcVad_Assign(VadInst **vad_inst, void *vad_inst_addr);
/****************************************************************************
* WebRtcVad_Create(...)
*
* This function creates an instance to the VAD structure
*
* Input:
* - vad_inst : Pointer to VAD instance that should be created
*
* Output:
* - vad_inst : Pointer to created VAD instance
*
* Return value : 0 - Ok
* -1 - Error
*/
WebRtc_Word16 WebRtcVad_Create(VadInst **vad_inst);
/****************************************************************************
* WebRtcVad_Free(...)
*
* This function frees the dynamic memory of a specified VAD instance
*
* Input:
* - vad_inst : Pointer to VAD instance that should be freed
*
* Return value : 0 - Ok
* -1 - Error
*/
WebRtc_Word16 WebRtcVad_Free(VadInst *vad_inst);
/****************************************************************************
* WebRtcVad_Init(...)
*
* This function initializes a VAD instance
*
* Input:
* - vad_inst : Instance that should be initialized
*
* Output:
* - vad_inst : Initialized instance
*
* Return value : 0 - Ok
* -1 - Error
*/
WebRtc_Word16 WebRtcVad_Init(VadInst *vad_inst);
/****************************************************************************
* WebRtcVad_set_mode(...)
*
* This function initializes a VAD instance
*
* Input:
* - vad_inst : VAD instance
* - mode : Aggressiveness setting (0, 1, 2, or 3)
*
* Output:
* - vad_inst : Initialized instance
*
* Return value : 0 - Ok
* -1 - Error
*/
WebRtc_Word16 WebRtcVad_set_mode(VadInst *vad_inst, WebRtc_Word16 mode);
/****************************************************************************
* WebRtcVad_Process(...)
*
* This functions does a VAD for the inserted speech frame
*
* Input
* - vad_inst : VAD Instance. Needs to be initiated before call.
* - fs : sampling frequency (Hz): 8000, 16000, or 32000
* - speech_frame : Pointer to speech frame buffer
* - frame_length : Length of speech frame buffer in number of samples
*
* Output:
* - vad_inst : Updated VAD instance
*
* Return value : 1 - Active Voice
* 0 - Non-active Voice
* -1 - Error
*/
WebRtc_Word16 WebRtcVad_Process(VadInst *vad_inst,
WebRtc_Word16 fs,
WebRtc_Word16 *speech_frame,
WebRtc_Word16 frame_length);
#ifdef __cplusplus
}
#endif
#endif // WEBRTC_VAD_WEBRTC_VAD_H_

View File

@ -0,0 +1,48 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'vad',
'type': '<(library)',
'dependencies': [
'spl',
],
'include_dirs': [
'../interface',
],
'direct_dependent_settings': {
'include_dirs': [
'../interface',
],
},
'sources': [
'../interface/webrtc_vad.h',
'webrtc_vad.c',
'vad_const.c',
'vad_const.h',
'vad_defines.h',
'vad_core.c',
'vad_core.h',
'vad_filterbank.c',
'vad_filterbank.h',
'vad_gmm.c',
'vad_gmm.h',
'vad_sp.c',
'vad_sp.h',
],
},
],
}
# Local Variables:
# tab-width:2
# indent-tabs-mode:nil
# End:
# vim: set expandtab tabstop=2 shiftwidth=2:

View File

@ -0,0 +1,80 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes the constant values used internally in VAD.
*/
#include "vad_const.h"
// Spectrum Weighting
const WebRtc_Word16 kSpectrumWeight[6] = {6, 8, 10, 12, 14, 16};
const WebRtc_Word16 kCompVar = 22005;
// Constant 160*log10(2) in Q9
const WebRtc_Word16 kLogConst = 24660;
// Constant log2(exp(1)) in Q12
const WebRtc_Word16 kLog10Const = 5909;
// Q15
const WebRtc_Word16 kNoiseUpdateConst = 655;
const WebRtc_Word16 kSpeechUpdateConst = 6554;
// Q8
const WebRtc_Word16 kBackEta = 154;
// Coefficients used by WebRtcVad_HpOutput, Q14
const WebRtc_Word16 kHpZeroCoefs[3] = {6631, -13262, 6631};
const WebRtc_Word16 kHpPoleCoefs[3] = {16384, -7756, 5620};
// Allpass filter coefficients, upper and lower, in Q15
// Upper: 0.64, Lower: 0.17
const WebRtc_Word16 kAllPassCoefsQ15[2] = {20972, 5571};
const WebRtc_Word16 kAllPassCoefsQ13[2] = {5243, 1392}; // Q13
// Minimum difference between the two models, Q5
const WebRtc_Word16 kMinimumDifference[6] = {544, 544, 576, 576, 576, 576};
// Upper limit of mean value for speech model, Q7
const WebRtc_Word16 kMaximumSpeech[6] = {11392, 11392, 11520, 11520, 11520, 11520};
// Minimum value for mean value
const WebRtc_Word16 kMinimumMean[2] = {640, 768};
// Upper limit of mean value for noise model, Q7
const WebRtc_Word16 kMaximumNoise[6] = {9216, 9088, 8960, 8832, 8704, 8576};
// Adjustment for division with two in WebRtcVad_SplitFilter
const WebRtc_Word16 kOffsetVector[6] = {368, 368, 272, 176, 176, 176};
// Start values for the Gaussian models, Q7
// Weights for the two Gaussians for the six channels (noise)
const WebRtc_Word16 kNoiseDataWeights[12] = {34, 62, 72, 66, 53, 25, 94, 66, 56, 62, 75, 103};
// Weights for the two Gaussians for the six channels (speech)
const WebRtc_Word16 kSpeechDataWeights[12] = {48, 82, 45, 87, 50, 47, 80, 46, 83, 41, 78, 81};
// Means for the two Gaussians for the six channels (noise)
const WebRtc_Word16 kNoiseDataMeans[12] = {6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863,
7820, 7266, 5020, 4362};
// Means for the two Gaussians for the six channels (speech)
const WebRtc_Word16 kSpeechDataMeans[12] = {8306, 10085, 10078, 11823, 11843, 6309, 9473,
9571, 10879, 7581, 8180, 7483};
// Stds for the two Gaussians for the six channels (noise)
const WebRtc_Word16 kNoiseDataStds[12] = {378, 1064, 493, 582, 688, 593, 474, 697, 475, 688,
421, 455};
// Stds for the two Gaussians for the six channels (speech)
const WebRtc_Word16 kSpeechDataStds[12] = {555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540,
1079, 850};

View File

@ -0,0 +1,59 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the declarations of the internally used constants.
*/
#ifndef WEBRTC_VAD_CONST_H_
#define WEBRTC_VAD_CONST_H_
#include "typedefs.h"
// TODO(ajm): give these internal-linkage by moving to the appropriate file
// where possible, and otherwise tag with WebRtcVad_.
// Spectrum Weighting
extern const WebRtc_Word16 kSpectrumWeight[];
extern const WebRtc_Word16 kCompVar;
// Logarithm constant
extern const WebRtc_Word16 kLogConst;
extern const WebRtc_Word16 kLog10Const;
// Q15
extern const WebRtc_Word16 kNoiseUpdateConst;
extern const WebRtc_Word16 kSpeechUpdateConst;
// Q8
extern const WebRtc_Word16 kBackEta;
// Coefficients used by WebRtcVad_HpOutput, Q14
extern const WebRtc_Word16 kHpZeroCoefs[];
extern const WebRtc_Word16 kHpPoleCoefs[];
// Allpass filter coefficients, upper and lower, in Q15 resp. Q13
extern const WebRtc_Word16 kAllPassCoefsQ15[];
extern const WebRtc_Word16 kAllPassCoefsQ13[];
// Minimum difference between the two models, Q5
extern const WebRtc_Word16 kMinimumDifference[];
// Maximum value when updating the speech model, Q7
extern const WebRtc_Word16 kMaximumSpeech[];
// Minimum value for mean value
extern const WebRtc_Word16 kMinimumMean[];
// Upper limit of mean value for noise model, Q7
extern const WebRtc_Word16 kMaximumNoise[];
// Adjustment for division with two in WebRtcVad_SplitFilter
extern const WebRtc_Word16 kOffsetVector[];
// Start values for the Gaussian models, Q7
extern const WebRtc_Word16 kNoiseDataWeights[];
extern const WebRtc_Word16 kSpeechDataWeights[];
extern const WebRtc_Word16 kNoiseDataMeans[];
extern const WebRtc_Word16 kSpeechDataMeans[];
extern const WebRtc_Word16 kNoiseDataStds[];
extern const WebRtc_Word16 kSpeechDataStds[];
#endif // WEBRTC_VAD_CONST_H_

View File

@ -0,0 +1,685 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes the implementation of the core functionality in VAD.
* For function description, see vad_core.h.
*/
#include "vad_core.h"
#include "vad_const.h"
#include "vad_defines.h"
#include "vad_filterbank.h"
#include "vad_gmm.h"
#include "vad_sp.h"
#include "signal_processing_library.h"
static const int kInitCheck = 42;
// Initialize VAD
int WebRtcVad_InitCore(VadInstT *inst, short mode)
{
int i;
// Initialization of struct
inst->vad = 1;
inst->frame_counter = 0;
inst->over_hang = 0;
inst->num_of_speech = 0;
// Initialization of downsampling filter state
inst->downsampling_filter_states[0] = 0;
inst->downsampling_filter_states[1] = 0;
inst->downsampling_filter_states[2] = 0;
inst->downsampling_filter_states[3] = 0;
// Read initial PDF parameters
for (i = 0; i < NUM_TABLE_VALUES; i++)
{
inst->noise_means[i] = kNoiseDataMeans[i];
inst->speech_means[i] = kSpeechDataMeans[i];
inst->noise_stds[i] = kNoiseDataStds[i];
inst->speech_stds[i] = kSpeechDataStds[i];
}
// Index and Minimum value vectors are initialized
for (i = 0; i < 16 * NUM_CHANNELS; i++)
{
inst->low_value_vector[i] = 10000;
inst->index_vector[i] = 0;
}
for (i = 0; i < 5; i++)
{
inst->upper_state[i] = 0;
inst->lower_state[i] = 0;
}
for (i = 0; i < 4; i++)
{
inst->hp_filter_state[i] = 0;
}
// Init mean value memory, for FindMin function
inst->mean_value[0] = 1600;
inst->mean_value[1] = 1600;
inst->mean_value[2] = 1600;
inst->mean_value[3] = 1600;
inst->mean_value[4] = 1600;
inst->mean_value[5] = 1600;
if (mode == 0)
{
// Quality mode
inst->over_hang_max_1[0] = OHMAX1_10MS_Q; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_Q; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_Q; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_Q; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_Q; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_Q; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_Q;
inst->individual[1] = INDIVIDUAL_20MS_Q;
inst->individual[2] = INDIVIDUAL_30MS_Q;
inst->total[0] = TOTAL_10MS_Q;
inst->total[1] = TOTAL_20MS_Q;
inst->total[2] = TOTAL_30MS_Q;
} else if (mode == 1)
{
// Low bitrate mode
inst->over_hang_max_1[0] = OHMAX1_10MS_LBR; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_LBR; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_LBR; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_LBR; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_LBR; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_LBR; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_LBR;
inst->individual[1] = INDIVIDUAL_20MS_LBR;
inst->individual[2] = INDIVIDUAL_30MS_LBR;
inst->total[0] = TOTAL_10MS_LBR;
inst->total[1] = TOTAL_20MS_LBR;
inst->total[2] = TOTAL_30MS_LBR;
} else if (mode == 2)
{
// Aggressive mode
inst->over_hang_max_1[0] = OHMAX1_10MS_AGG; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_AGG; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_AGG; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_AGG; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_AGG; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_AGG; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_AGG;
inst->individual[1] = INDIVIDUAL_20MS_AGG;
inst->individual[2] = INDIVIDUAL_30MS_AGG;
inst->total[0] = TOTAL_10MS_AGG;
inst->total[1] = TOTAL_20MS_AGG;
inst->total[2] = TOTAL_30MS_AGG;
} else
{
// Very aggressive mode
inst->over_hang_max_1[0] = OHMAX1_10MS_VAG; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_VAG; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_VAG; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_VAG; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_VAG; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_VAG; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_VAG;
inst->individual[1] = INDIVIDUAL_20MS_VAG;
inst->individual[2] = INDIVIDUAL_30MS_VAG;
inst->total[0] = TOTAL_10MS_VAG;
inst->total[1] = TOTAL_20MS_VAG;
inst->total[2] = TOTAL_30MS_VAG;
}
inst->init_flag = kInitCheck;
return 0;
}
// Set aggressiveness mode
int WebRtcVad_set_mode_core(VadInstT *inst, short mode)
{
if (mode == 0)
{
// Quality mode
inst->over_hang_max_1[0] = OHMAX1_10MS_Q; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_Q; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_Q; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_Q; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_Q; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_Q; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_Q;
inst->individual[1] = INDIVIDUAL_20MS_Q;
inst->individual[2] = INDIVIDUAL_30MS_Q;
inst->total[0] = TOTAL_10MS_Q;
inst->total[1] = TOTAL_20MS_Q;
inst->total[2] = TOTAL_30MS_Q;
} else if (mode == 1)
{
// Low bitrate mode
inst->over_hang_max_1[0] = OHMAX1_10MS_LBR; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_LBR; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_LBR; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_LBR; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_LBR; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_LBR; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_LBR;
inst->individual[1] = INDIVIDUAL_20MS_LBR;
inst->individual[2] = INDIVIDUAL_30MS_LBR;
inst->total[0] = TOTAL_10MS_LBR;
inst->total[1] = TOTAL_20MS_LBR;
inst->total[2] = TOTAL_30MS_LBR;
} else if (mode == 2)
{
// Aggressive mode
inst->over_hang_max_1[0] = OHMAX1_10MS_AGG; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_AGG; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_AGG; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_AGG; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_AGG; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_AGG; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_AGG;
inst->individual[1] = INDIVIDUAL_20MS_AGG;
inst->individual[2] = INDIVIDUAL_30MS_AGG;
inst->total[0] = TOTAL_10MS_AGG;
inst->total[1] = TOTAL_20MS_AGG;
inst->total[2] = TOTAL_30MS_AGG;
} else if (mode == 3)
{
// Very aggressive mode
inst->over_hang_max_1[0] = OHMAX1_10MS_VAG; // Overhang short speech burst
inst->over_hang_max_1[1] = OHMAX1_20MS_VAG; // Overhang short speech burst
inst->over_hang_max_1[2] = OHMAX1_30MS_VAG; // Overhang short speech burst
inst->over_hang_max_2[0] = OHMAX2_10MS_VAG; // Overhang long speech burst
inst->over_hang_max_2[1] = OHMAX2_20MS_VAG; // Overhang long speech burst
inst->over_hang_max_2[2] = OHMAX2_30MS_VAG; // Overhang long speech burst
inst->individual[0] = INDIVIDUAL_10MS_VAG;
inst->individual[1] = INDIVIDUAL_20MS_VAG;
inst->individual[2] = INDIVIDUAL_30MS_VAG;
inst->total[0] = TOTAL_10MS_VAG;
inst->total[1] = TOTAL_20MS_VAG;
inst->total[2] = TOTAL_30MS_VAG;
} else
{
return -1;
}
return 0;
}
// Calculate VAD decision by first extracting feature values and then calculate
// probability for both speech and background noise.
WebRtc_Word16 WebRtcVad_CalcVad32khz(VadInstT *inst, WebRtc_Word16 *speech_frame,
int frame_length)
{
WebRtc_Word16 len, vad;
WebRtc_Word16 speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
WebRtc_Word16 speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
// Downsample signal 32->16->8 before doing VAD
WebRtcVad_Downsampling(speech_frame, speechWB, &(inst->downsampling_filter_states[2]),
frame_length);
len = WEBRTC_SPL_RSHIFT_W16(frame_length, 1);
WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states, len);
len = WEBRTC_SPL_RSHIFT_W16(len, 1);
// Do VAD on an 8 kHz signal
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
return vad;
}
WebRtc_Word16 WebRtcVad_CalcVad16khz(VadInstT *inst, WebRtc_Word16 *speech_frame,
int frame_length)
{
WebRtc_Word16 len, vad;
WebRtc_Word16 speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
// Wideband: Downsample signal before doing VAD
WebRtcVad_Downsampling(speech_frame, speechNB, inst->downsampling_filter_states,
frame_length);
len = WEBRTC_SPL_RSHIFT_W16(frame_length, 1);
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
return vad;
}
WebRtc_Word16 WebRtcVad_CalcVad8khz(VadInstT *inst, WebRtc_Word16 *speech_frame,
int frame_length)
{
WebRtc_Word16 feature_vector[NUM_CHANNELS], total_power;
// Get power in the bands
total_power = WebRtcVad_get_features(inst, speech_frame, frame_length, feature_vector);
// Make a VAD
inst->vad = WebRtcVad_GmmProbability(inst, feature_vector, total_power, frame_length);
return inst->vad;
}
// Calculate probability for both speech and background noise, and perform a
// hypothesis-test.
WebRtc_Word16 WebRtcVad_GmmProbability(VadInstT *inst, WebRtc_Word16 *feature_vector,
WebRtc_Word16 total_power, int frame_length)
{
int n, k;
WebRtc_Word16 backval;
WebRtc_Word16 h0, h1;
WebRtc_Word16 ratvec, xval;
WebRtc_Word16 vadflag;
WebRtc_Word16 shifts0, shifts1;
WebRtc_Word16 tmp16, tmp16_1, tmp16_2;
WebRtc_Word16 diff, nr, pos;
WebRtc_Word16 nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
WebRtc_Word16 delt, ndelt;
WebRtc_Word16 maxspe, maxmu;
WebRtc_Word16 deltaN[NUM_TABLE_VALUES], deltaS[NUM_TABLE_VALUES];
WebRtc_Word16 ngprvec[NUM_TABLE_VALUES], sgprvec[NUM_TABLE_VALUES];
WebRtc_Word32 h0test, h1test;
WebRtc_Word32 tmp32_1, tmp32_2;
WebRtc_Word32 dotVal;
WebRtc_Word32 nmid, smid;
WebRtc_Word32 probn[NUM_MODELS], probs[NUM_MODELS];
WebRtc_Word16 *nmean1ptr, *nmean2ptr, *smean1ptr, *smean2ptr, *nstd1ptr, *nstd2ptr,
*sstd1ptr, *sstd2ptr;
WebRtc_Word16 overhead1, overhead2, individualTest, totalTest;
// Set the thresholds to different values based on frame length
if (frame_length == 80)
{
// 80 input samples
overhead1 = inst->over_hang_max_1[0];
overhead2 = inst->over_hang_max_2[0];
individualTest = inst->individual[0];
totalTest = inst->total[0];
} else if (frame_length == 160)
{
// 160 input samples
overhead1 = inst->over_hang_max_1[1];
overhead2 = inst->over_hang_max_2[1];
individualTest = inst->individual[1];
totalTest = inst->total[1];
} else
{
// 240 input samples
overhead1 = inst->over_hang_max_1[2];
overhead2 = inst->over_hang_max_2[2];
individualTest = inst->individual[2];
totalTest = inst->total[2];
}
if (total_power > MIN_ENERGY)
{ // If signal present at all
// Set pointers to the gaussian parameters
nmean1ptr = &inst->noise_means[0];
nmean2ptr = &inst->noise_means[NUM_CHANNELS];
smean1ptr = &inst->speech_means[0];
smean2ptr = &inst->speech_means[NUM_CHANNELS];
nstd1ptr = &inst->noise_stds[0];
nstd2ptr = &inst->noise_stds[NUM_CHANNELS];
sstd1ptr = &inst->speech_stds[0];
sstd2ptr = &inst->speech_stds[NUM_CHANNELS];
vadflag = 0;
dotVal = 0;
for (n = 0; n < NUM_CHANNELS; n++)
{ // For all channels
pos = WEBRTC_SPL_LSHIFT_W16(n, 1);
xval = feature_vector[n];
// Probability for Noise, Q7 * Q20 = Q27
tmp32_1 = WebRtcVad_GaussianProbability(xval, *nmean1ptr++, *nstd1ptr++,
&deltaN[pos]);
probn[0] = (WebRtc_Word32)(kNoiseDataWeights[n] * tmp32_1);
tmp32_1 = WebRtcVad_GaussianProbability(xval, *nmean2ptr++, *nstd2ptr++,
&deltaN[pos + 1]);
probn[1] = (WebRtc_Word32)(kNoiseDataWeights[n + NUM_CHANNELS] * tmp32_1);
h0test = probn[0] + probn[1]; // Q27
h0 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(h0test, 12); // Q15
// Probability for Speech
tmp32_1 = WebRtcVad_GaussianProbability(xval, *smean1ptr++, *sstd1ptr++,
&deltaS[pos]);
probs[0] = (WebRtc_Word32)(kSpeechDataWeights[n] * tmp32_1);
tmp32_1 = WebRtcVad_GaussianProbability(xval, *smean2ptr++, *sstd2ptr++,
&deltaS[pos + 1]);
probs[1] = (WebRtc_Word32)(kSpeechDataWeights[n + NUM_CHANNELS] * tmp32_1);
h1test = probs[0] + probs[1]; // Q27
h1 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(h1test, 12); // Q15
// Get likelihood ratio. Approximate log2(H1/H0) with shifts0 - shifts1
shifts0 = WebRtcSpl_NormW32(h0test);
shifts1 = WebRtcSpl_NormW32(h1test);
if ((h0test > 0) && (h1test > 0))
{
ratvec = shifts0 - shifts1;
} else if (h1test > 0)
{
ratvec = 31 - shifts1;
} else if (h0test > 0)
{
ratvec = shifts0 - 31;
} else
{
ratvec = 0;
}
// VAD decision with spectrum weighting
dotVal += WEBRTC_SPL_MUL_16_16(ratvec, kSpectrumWeight[n]);
// Individual channel test
if ((ratvec << 2) > individualTest)
{
vadflag = 1;
}
// Probabilities used when updating model
if (h0 > 0)
{
tmp32_1 = probn[0] & 0xFFFFF000; // Q27
tmp32_2 = WEBRTC_SPL_LSHIFT_W32(tmp32_1, 2); // Q29
ngprvec[pos] = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32_2, h0);
ngprvec[pos + 1] = 16384 - ngprvec[pos];
} else
{
ngprvec[pos] = 16384;
ngprvec[pos + 1] = 0;
}
// Probabilities used when updating model
if (h1 > 0)
{
tmp32_1 = probs[0] & 0xFFFFF000;
tmp32_2 = WEBRTC_SPL_LSHIFT_W32(tmp32_1, 2);
sgprvec[pos] = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32_2, h1);
sgprvec[pos + 1] = 16384 - sgprvec[pos];
} else
{
sgprvec[pos] = 0;
sgprvec[pos + 1] = 0;
}
}
// Overall test
if (dotVal >= totalTest)
{
vadflag |= 1;
}
// Set pointers to the means and standard deviations.
nmean1ptr = &inst->noise_means[0];
smean1ptr = &inst->speech_means[0];
nstd1ptr = &inst->noise_stds[0];
sstd1ptr = &inst->speech_stds[0];
maxspe = 12800;
// Update the model's parameters
for (n = 0; n < NUM_CHANNELS; n++)
{
pos = WEBRTC_SPL_LSHIFT_W16(n, 1);
// Get min value in past which is used for long term correction
backval = WebRtcVad_FindMinimum(inst, feature_vector[n], n); // Q4
// Compute the "global" mean, that is the sum of the two means weighted
nmid = WEBRTC_SPL_MUL_16_16(kNoiseDataWeights[n], *nmean1ptr); // Q7 * Q7
nmid += WEBRTC_SPL_MUL_16_16(kNoiseDataWeights[n+NUM_CHANNELS],
*(nmean1ptr+NUM_CHANNELS));
tmp16_1 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(nmid, 6); // Q8
for (k = 0; k < NUM_MODELS; k++)
{
nr = pos + k;
nmean2ptr = nmean1ptr + k * NUM_CHANNELS;
smean2ptr = smean1ptr + k * NUM_CHANNELS;
nstd2ptr = nstd1ptr + k * NUM_CHANNELS;
sstd2ptr = sstd1ptr + k * NUM_CHANNELS;
nmk = *nmean2ptr;
smk = *smean2ptr;
nsk = *nstd2ptr;
ssk = *sstd2ptr;
// Update noise mean vector if the frame consists of noise only
nmk2 = nmk;
if (!vadflag)
{
// deltaN = (x-mu)/sigma^2
// ngprvec[k] = probn[k]/(probn[0] + probn[1])
delt = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(ngprvec[nr],
deltaN[nr], 11); // Q14*Q11
nmk2 = nmk + (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(delt,
kNoiseUpdateConst,
22); // Q7+(Q14*Q15>>22)
}
// Long term correction of the noise mean
ndelt = WEBRTC_SPL_LSHIFT_W16(backval, 4);
ndelt -= tmp16_1; // Q8 - Q8
nmk3 = nmk2 + (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(ndelt,
kBackEta,
9); // Q7+(Q8*Q8)>>9
// Control that the noise mean does not drift to much
tmp16 = WEBRTC_SPL_LSHIFT_W16(k+5, 7);
if (nmk3 < tmp16)
nmk3 = tmp16;
tmp16 = WEBRTC_SPL_LSHIFT_W16(72+k-n, 7);
if (nmk3 > tmp16)
nmk3 = tmp16;
*nmean2ptr = nmk3;
if (vadflag)
{
// Update speech mean vector:
// deltaS = (x-mu)/sigma^2
// sgprvec[k] = probn[k]/(probn[0] + probn[1])
delt = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(sgprvec[nr],
deltaS[nr],
11); // (Q14*Q11)>>11=Q14
tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(delt,
kSpeechUpdateConst,
21) + 1;
smk2 = smk + (tmp16 >> 1); // Q7 + (Q14 * Q15 >> 22)
// Control that the speech mean does not drift to much
maxmu = maxspe + 640;
if (smk2 < kMinimumMean[k])
smk2 = kMinimumMean[k];
if (smk2 > maxmu)
smk2 = maxmu;
*smean2ptr = smk2;
// (Q7>>3) = Q4
tmp16 = WEBRTC_SPL_RSHIFT_W16((smk + 4), 3);
tmp16 = feature_vector[n] - tmp16; // Q4
tmp32_1 = WEBRTC_SPL_MUL_16_16_RSFT(deltaS[nr], tmp16, 3);
tmp32_2 = tmp32_1 - (WebRtc_Word32)4096; // Q12
tmp16 = WEBRTC_SPL_RSHIFT_W16((sgprvec[nr]), 2);
tmp32_1 = (WebRtc_Word32)(tmp16 * tmp32_2);// (Q15>>3)*(Q14>>2)=Q12*Q12=Q24
tmp32_2 = WEBRTC_SPL_RSHIFT_W32(tmp32_1, 4); // Q20
// 0.1 * Q20 / Q7 = Q13
if (tmp32_2 > 0)
tmp16 = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32_2, ssk * 10);
else
{
tmp16 = (WebRtc_Word16)WebRtcSpl_DivW32W16(-tmp32_2, ssk * 10);
tmp16 = -tmp16;
}
// divide by 4 giving an update factor of 0.025
tmp16 += 128; // Rounding
ssk += WEBRTC_SPL_RSHIFT_W16(tmp16, 8);
// Division with 8 plus Q7
if (ssk < MIN_STD)
ssk = MIN_STD;
*sstd2ptr = ssk;
} else
{
// Update GMM variance vectors
// deltaN * (feature_vector[n] - nmk) - 1, Q11 * Q4
tmp16 = feature_vector[n] - WEBRTC_SPL_RSHIFT_W16(nmk, 3);
// (Q15>>3) * (Q14>>2) = Q12 * Q12 = Q24
tmp32_1 = WEBRTC_SPL_MUL_16_16_RSFT(deltaN[nr], tmp16, 3) - 4096;
tmp16 = WEBRTC_SPL_RSHIFT_W16((ngprvec[nr]+2), 2);
tmp32_2 = (WebRtc_Word32)(tmp16 * tmp32_1);
tmp32_1 = WEBRTC_SPL_RSHIFT_W32(tmp32_2, 14);
// Q20 * approx 0.001 (2^-10=0.0009766)
// Q20 / Q7 = Q13
tmp16 = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32_1, nsk);
if (tmp32_1 > 0)
tmp16 = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32_1, nsk);
else
{
tmp16 = (WebRtc_Word16)WebRtcSpl_DivW32W16(-tmp32_1, nsk);
tmp16 = -tmp16;
}
tmp16 += 32; // Rounding
nsk += WEBRTC_SPL_RSHIFT_W16(tmp16, 6);
if (nsk < MIN_STD)
nsk = MIN_STD;
*nstd2ptr = nsk;
}
}
// Separate models if they are too close - nmid in Q14
nmid = WEBRTC_SPL_MUL_16_16(kNoiseDataWeights[n], *nmean1ptr);
nmid += WEBRTC_SPL_MUL_16_16(kNoiseDataWeights[n+NUM_CHANNELS], *nmean2ptr);
// smid in Q14
smid = WEBRTC_SPL_MUL_16_16(kSpeechDataWeights[n], *smean1ptr);
smid += WEBRTC_SPL_MUL_16_16(kSpeechDataWeights[n+NUM_CHANNELS], *smean2ptr);
// diff = "global" speech mean - "global" noise mean
diff = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(smid, 9);
tmp16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(nmid, 9);
diff -= tmp16;
if (diff < kMinimumDifference[n])
{
tmp16 = kMinimumDifference[n] - diff; // Q5
// tmp16_1 = ~0.8 * (kMinimumDifference - diff) in Q7
// tmp16_2 = ~0.2 * (kMinimumDifference - diff) in Q7
tmp16_1 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(13, tmp16, 2);
tmp16_2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(3, tmp16, 2);
// First Gauss, speech model
tmp16 = tmp16_1 + *smean1ptr;
*smean1ptr = tmp16;
smid = WEBRTC_SPL_MUL_16_16(tmp16, kSpeechDataWeights[n]);
// Second Gauss, speech model
tmp16 = tmp16_1 + *smean2ptr;
*smean2ptr = tmp16;
smid += WEBRTC_SPL_MUL_16_16(tmp16, kSpeechDataWeights[n+NUM_CHANNELS]);
// First Gauss, noise model
tmp16 = *nmean1ptr - tmp16_2;
*nmean1ptr = tmp16;
nmid = WEBRTC_SPL_MUL_16_16(tmp16, kNoiseDataWeights[n]);
// Second Gauss, noise model
tmp16 = *nmean2ptr - tmp16_2;
*nmean2ptr = tmp16;
nmid += WEBRTC_SPL_MUL_16_16(tmp16, kNoiseDataWeights[n+NUM_CHANNELS]);
}
// Control that the speech & noise means do not drift to much
maxspe = kMaximumSpeech[n];
tmp16_2 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(smid, 7);
if (tmp16_2 > maxspe)
{ // Upper limit of speech model
tmp16_2 -= maxspe;
*smean1ptr -= tmp16_2;
*smean2ptr -= tmp16_2;
}
tmp16_2 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(nmid, 7);
if (tmp16_2 > kMaximumNoise[n])
{
tmp16_2 -= kMaximumNoise[n];
*nmean1ptr -= tmp16_2;
*nmean2ptr -= tmp16_2;
}
nmean1ptr++;
smean1ptr++;
nstd1ptr++;
sstd1ptr++;
}
inst->frame_counter++;
} else
{
vadflag = 0;
}
// Hangover smoothing
if (!vadflag)
{
if (inst->over_hang > 0)
{
vadflag = 2 + inst->over_hang;
inst->over_hang = inst->over_hang - 1;
}
inst->num_of_speech = 0;
} else
{
inst->num_of_speech = inst->num_of_speech + 1;
if (inst->num_of_speech > NSP_MAX)
{
inst->num_of_speech = NSP_MAX;
inst->over_hang = overhead2;
} else
inst->over_hang = overhead1;
}
return vadflag;
}

View File

@ -0,0 +1,132 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the descriptions of the core VAD calls.
*/
#ifndef WEBRTC_VAD_CORE_H_
#define WEBRTC_VAD_CORE_H_
#include "typedefs.h"
#include "vad_defines.h"
typedef struct VadInstT_
{
WebRtc_Word16 vad;
WebRtc_Word32 downsampling_filter_states[4];
WebRtc_Word16 noise_means[NUM_TABLE_VALUES];
WebRtc_Word16 speech_means[NUM_TABLE_VALUES];
WebRtc_Word16 noise_stds[NUM_TABLE_VALUES];
WebRtc_Word16 speech_stds[NUM_TABLE_VALUES];
WebRtc_Word32 frame_counter;
WebRtc_Word16 over_hang; // Over Hang
WebRtc_Word16 num_of_speech;
WebRtc_Word16 index_vector[16 * NUM_CHANNELS];
WebRtc_Word16 low_value_vector[16 * NUM_CHANNELS];
WebRtc_Word16 mean_value[NUM_CHANNELS];
WebRtc_Word16 upper_state[5];
WebRtc_Word16 lower_state[5];
WebRtc_Word16 hp_filter_state[4];
WebRtc_Word16 over_hang_max_1[3];
WebRtc_Word16 over_hang_max_2[3];
WebRtc_Word16 individual[3];
WebRtc_Word16 total[3];
short init_flag;
} VadInstT;
/****************************************************************************
* WebRtcVad_InitCore(...)
*
* This function initializes a VAD instance
*
* Input:
* - inst : Instance that should be initialized
* - mode : Aggressiveness degree
* 0 (High quality) - 3 (Highly aggressive)
*
* Output:
* - inst : Initialized instance
*
* Return value : 0 - Ok
* -1 - Error
*/
int WebRtcVad_InitCore(VadInstT* inst, short mode);
/****************************************************************************
* WebRtcVad_set_mode_core(...)
*
* This function changes the VAD settings
*
* Input:
* - inst : VAD instance
* - mode : Aggressiveness degree
* 0 (High quality) - 3 (Highly aggressive)
*
* Output:
* - inst : Changed instance
*
* Return value : 0 - Ok
* -1 - Error
*/
int WebRtcVad_set_mode_core(VadInstT* inst, short mode);
/****************************************************************************
* WebRtcVad_CalcVad32khz(...)
* WebRtcVad_CalcVad16khz(...)
* WebRtcVad_CalcVad8khz(...)
*
* Calculate probability for active speech and make VAD decision.
*
* Input:
* - inst : Instance that should be initialized
* - speech_frame : Input speech frame
* - frame_length : Number of input samples
*
* Output:
* - inst : Updated filter states etc.
*
* Return value : VAD decision
* 0 - No active speech
* 1-6 - Active speech
*/
WebRtc_Word16 WebRtcVad_CalcVad32khz(VadInstT* inst, WebRtc_Word16* speech_frame,
int frame_length);
WebRtc_Word16 WebRtcVad_CalcVad16khz(VadInstT* inst, WebRtc_Word16* speech_frame,
int frame_length);
WebRtc_Word16 WebRtcVad_CalcVad8khz(VadInstT* inst, WebRtc_Word16* speech_frame,
int frame_length);
/****************************************************************************
* WebRtcVad_GmmProbability(...)
*
* This function calculates the probabilities for background noise and
* speech using Gaussian Mixture Models. A hypothesis-test is performed to decide
* which type of signal is most probable.
*
* Input:
* - inst : Pointer to VAD instance
* - feature_vector : Feature vector = log10(energy in frequency band)
* - total_power : Total power in frame.
* - frame_length : Number of input samples
*
* Output:
* VAD decision : 0 - noise, 1 - speech
*
*/
WebRtc_Word16 WebRtcVad_GmmProbability(VadInstT* inst, WebRtc_Word16* feature_vector,
WebRtc_Word16 total_power, int frame_length);
#endif // WEBRTC_VAD_CORE_H_

View File

@ -0,0 +1,95 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the macros used in VAD.
*/
#ifndef WEBRTC_VAD_DEFINES_H_
#define WEBRTC_VAD_DEFINES_H_
#define NUM_CHANNELS 6 // Eight frequency bands
#define NUM_MODELS 2 // Number of Gaussian models
#define NUM_TABLE_VALUES NUM_CHANNELS * NUM_MODELS
#define MIN_ENERGY 10
#define ALPHA1 6553 // 0.2 in Q15
#define ALPHA2 32439 // 0.99 in Q15
#define NSP_MAX 6 // Maximum number of VAD=1 frames in a row counted
#define MIN_STD 384 // Minimum standard deviation
// Mode 0, Quality thresholds - Different thresholds for the different frame lengths
#define INDIVIDUAL_10MS_Q 24
#define INDIVIDUAL_20MS_Q 21 // (log10(2)*66)<<2 ~=16
#define INDIVIDUAL_30MS_Q 24
#define TOTAL_10MS_Q 57
#define TOTAL_20MS_Q 48
#define TOTAL_30MS_Q 57
#define OHMAX1_10MS_Q 8 // Max Overhang 1
#define OHMAX2_10MS_Q 14 // Max Overhang 2
#define OHMAX1_20MS_Q 4 // Max Overhang 1
#define OHMAX2_20MS_Q 7 // Max Overhang 2
#define OHMAX1_30MS_Q 3
#define OHMAX2_30MS_Q 5
// Mode 1, Low bitrate thresholds - Different thresholds for the different frame lengths
#define INDIVIDUAL_10MS_LBR 37
#define INDIVIDUAL_20MS_LBR 32
#define INDIVIDUAL_30MS_LBR 37
#define TOTAL_10MS_LBR 100
#define TOTAL_20MS_LBR 80
#define TOTAL_30MS_LBR 100
#define OHMAX1_10MS_LBR 8 // Max Overhang 1
#define OHMAX2_10MS_LBR 14 // Max Overhang 2
#define OHMAX1_20MS_LBR 4
#define OHMAX2_20MS_LBR 7
#define OHMAX1_30MS_LBR 3
#define OHMAX2_30MS_LBR 5
// Mode 2, Very aggressive thresholds - Different thresholds for the different frame lengths
#define INDIVIDUAL_10MS_AGG 82
#define INDIVIDUAL_20MS_AGG 78
#define INDIVIDUAL_30MS_AGG 82
#define TOTAL_10MS_AGG 285 //580
#define TOTAL_20MS_AGG 260
#define TOTAL_30MS_AGG 285
#define OHMAX1_10MS_AGG 6 // Max Overhang 1
#define OHMAX2_10MS_AGG 9 // Max Overhang 2
#define OHMAX1_20MS_AGG 3
#define OHMAX2_20MS_AGG 5
#define OHMAX1_30MS_AGG 2
#define OHMAX2_30MS_AGG 3
// Mode 3, Super aggressive thresholds - Different thresholds for the different frame lengths
#define INDIVIDUAL_10MS_VAG 94
#define INDIVIDUAL_20MS_VAG 94
#define INDIVIDUAL_30MS_VAG 94
#define TOTAL_10MS_VAG 1100 //1700
#define TOTAL_20MS_VAG 1050
#define TOTAL_30MS_VAG 1100
#define OHMAX1_10MS_VAG 6 // Max Overhang 1
#define OHMAX2_10MS_VAG 9 // Max Overhang 2
#define OHMAX1_20MS_VAG 3
#define OHMAX2_20MS_VAG 5
#define OHMAX1_30MS_VAG 2
#define OHMAX2_30MS_VAG 3
#endif // WEBRTC_VAD_DEFINES_H_

View File

@ -0,0 +1,267 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes the implementation of the internal filterbank associated functions.
* For function description, see vad_filterbank.h.
*/
#include "vad_filterbank.h"
#include "vad_defines.h"
#include "vad_const.h"
#include "signal_processing_library.h"
void WebRtcVad_HpOutput(WebRtc_Word16 *in_vector,
WebRtc_Word16 in_vector_length,
WebRtc_Word16 *out_vector,
WebRtc_Word16 *filter_state)
{
WebRtc_Word16 i, *pi, *outPtr;
WebRtc_Word32 tmpW32;
pi = &in_vector[0];
outPtr = &out_vector[0];
// The sum of the absolute values of the impulse response:
// The zero/pole-filter has a max amplification of a single sample of: 1.4546
// Impulse response: 0.4047 -0.6179 -0.0266 0.1993 0.1035 -0.0194
// The all-zero section has a max amplification of a single sample of: 1.6189
// Impulse response: 0.4047 -0.8094 0.4047 0 0 0
// The all-pole section has a max amplification of a single sample of: 1.9931
// Impulse response: 1.0000 0.4734 -0.1189 -0.2187 -0.0627 0.04532
for (i = 0; i < in_vector_length; i++)
{
// all-zero section (filter coefficients in Q14)
tmpW32 = (WebRtc_Word32)WEBRTC_SPL_MUL_16_16(kHpZeroCoefs[0], (*pi));
tmpW32 += (WebRtc_Word32)WEBRTC_SPL_MUL_16_16(kHpZeroCoefs[1], filter_state[0]);
tmpW32 += (WebRtc_Word32)WEBRTC_SPL_MUL_16_16(kHpZeroCoefs[2], filter_state[1]); // Q14
filter_state[1] = filter_state[0];
filter_state[0] = *pi++;
// all-pole section
tmpW32 -= (WebRtc_Word32)WEBRTC_SPL_MUL_16_16(kHpPoleCoefs[1], filter_state[2]); // Q14
tmpW32 -= (WebRtc_Word32)WEBRTC_SPL_MUL_16_16(kHpPoleCoefs[2], filter_state[3]);
filter_state[3] = filter_state[2];
filter_state[2] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32 (tmpW32, 14);
*outPtr++ = filter_state[2];
}
}
void WebRtcVad_Allpass(WebRtc_Word16 *in_vector,
WebRtc_Word16 *out_vector,
WebRtc_Word16 filter_coefficients,
int vector_length,
WebRtc_Word16 *filter_state)
{
// The filter can only cause overflow (in the w16 output variable)
// if more than 4 consecutive input numbers are of maximum value and
// has the the same sign as the impulse responses first taps.
// First 6 taps of the impulse response: 0.6399 0.5905 -0.3779
// 0.2418 -0.1547 0.0990
int n;
WebRtc_Word16 tmp16;
WebRtc_Word32 tmp32, in32, state32;
state32 = WEBRTC_SPL_LSHIFT_W32(((WebRtc_Word32)(*filter_state)), 16); // Q31
for (n = 0; n < vector_length; n++)
{
tmp32 = state32 + WEBRTC_SPL_MUL_16_16(filter_coefficients, (*in_vector));
tmp16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 16);
*out_vector++ = tmp16;
in32 = WEBRTC_SPL_LSHIFT_W32(((WebRtc_Word32)(*in_vector)), 14);
state32 = in32 - WEBRTC_SPL_MUL_16_16(filter_coefficients, tmp16);
state32 = WEBRTC_SPL_LSHIFT_W32(state32, 1);
in_vector += 2;
}
*filter_state = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(state32, 16);
}
void WebRtcVad_SplitFilter(WebRtc_Word16 *in_vector,
WebRtc_Word16 *out_vector_hp,
WebRtc_Word16 *out_vector_lp,
WebRtc_Word16 *upper_state,
WebRtc_Word16 *lower_state,
int in_vector_length)
{
WebRtc_Word16 tmpOut;
int k, halflen;
// Downsampling by 2 and get two branches
halflen = WEBRTC_SPL_RSHIFT_W16(in_vector_length, 1);
// All-pass filtering upper branch
WebRtcVad_Allpass(&in_vector[0], out_vector_hp, kAllPassCoefsQ15[0], halflen, upper_state);
// All-pass filtering lower branch
WebRtcVad_Allpass(&in_vector[1], out_vector_lp, kAllPassCoefsQ15[1], halflen, lower_state);
// Make LP and HP signals
for (k = 0; k < halflen; k++)
{
tmpOut = *out_vector_hp;
*out_vector_hp++ -= *out_vector_lp;
*out_vector_lp++ += tmpOut;
}
}
WebRtc_Word16 WebRtcVad_get_features(VadInstT *inst,
WebRtc_Word16 *in_vector,
int frame_size,
WebRtc_Word16 *out_vector)
{
int curlen, filtno;
WebRtc_Word16 vecHP1[120], vecLP1[120];
WebRtc_Word16 vecHP2[60], vecLP2[60];
WebRtc_Word16 *ptin;
WebRtc_Word16 *hptout, *lptout;
WebRtc_Word16 power = 0;
// Split at 2000 Hz and downsample
filtno = 0;
ptin = in_vector;
hptout = vecHP1;
lptout = vecLP1;
curlen = frame_size;
WebRtcVad_SplitFilter(ptin, hptout, lptout, &inst->upper_state[filtno],
&inst->lower_state[filtno], curlen);
// Split at 3000 Hz and downsample
filtno = 1;
ptin = vecHP1;
hptout = vecHP2;
lptout = vecLP2;
curlen = WEBRTC_SPL_RSHIFT_W16(frame_size, 1);
WebRtcVad_SplitFilter(ptin, hptout, lptout, &inst->upper_state[filtno],
&inst->lower_state[filtno], curlen);
// Energy in 3000 Hz - 4000 Hz
curlen = WEBRTC_SPL_RSHIFT_W16(curlen, 1);
WebRtcVad_LogOfEnergy(vecHP2, &out_vector[5], &power, kOffsetVector[5], curlen);
// Energy in 2000 Hz - 3000 Hz
WebRtcVad_LogOfEnergy(vecLP2, &out_vector[4], &power, kOffsetVector[4], curlen);
// Split at 1000 Hz and downsample
filtno = 2;
ptin = vecLP1;
hptout = vecHP2;
lptout = vecLP2;
curlen = WEBRTC_SPL_RSHIFT_W16(frame_size, 1);
WebRtcVad_SplitFilter(ptin, hptout, lptout, &inst->upper_state[filtno],
&inst->lower_state[filtno], curlen);
// Energy in 1000 Hz - 2000 Hz
curlen = WEBRTC_SPL_RSHIFT_W16(curlen, 1);
WebRtcVad_LogOfEnergy(vecHP2, &out_vector[3], &power, kOffsetVector[3], curlen);
// Split at 500 Hz
filtno = 3;
ptin = vecLP2;
hptout = vecHP1;
lptout = vecLP1;
WebRtcVad_SplitFilter(ptin, hptout, lptout, &inst->upper_state[filtno],
&inst->lower_state[filtno], curlen);
// Energy in 500 Hz - 1000 Hz
curlen = WEBRTC_SPL_RSHIFT_W16(curlen, 1);
WebRtcVad_LogOfEnergy(vecHP1, &out_vector[2], &power, kOffsetVector[2], curlen);
// Split at 250 Hz
filtno = 4;
ptin = vecLP1;
hptout = vecHP2;
lptout = vecLP2;
WebRtcVad_SplitFilter(ptin, hptout, lptout, &inst->upper_state[filtno],
&inst->lower_state[filtno], curlen);
// Energy in 250 Hz - 500 Hz
curlen = WEBRTC_SPL_RSHIFT_W16(curlen, 1);
WebRtcVad_LogOfEnergy(vecHP2, &out_vector[1], &power, kOffsetVector[1], curlen);
// Remove DC and LFs
WebRtcVad_HpOutput(vecLP2, curlen, vecHP1, inst->hp_filter_state);
// Power in 80 Hz - 250 Hz
WebRtcVad_LogOfEnergy(vecHP1, &out_vector[0], &power, kOffsetVector[0], curlen);
return power;
}
void WebRtcVad_LogOfEnergy(WebRtc_Word16 *vector,
WebRtc_Word16 *enerlogval,
WebRtc_Word16 *power,
WebRtc_Word16 offset,
int vector_length)
{
WebRtc_Word16 enerSum = 0;
WebRtc_Word16 zeros, frac, log2;
WebRtc_Word32 energy;
int shfts = 0, shfts2;
energy = WebRtcSpl_Energy(vector, vector_length, &shfts);
if (energy > 0)
{
shfts2 = 16 - WebRtcSpl_NormW32(energy);
shfts += shfts2;
// "shfts" is the total number of right shifts that has been done to enerSum.
enerSum = (WebRtc_Word16)WEBRTC_SPL_SHIFT_W32(energy, -shfts2);
// Find:
// 160*log10(enerSum*2^shfts) = 160*log10(2)*log2(enerSum*2^shfts) =
// 160*log10(2)*(log2(enerSum) + log2(2^shfts)) =
// 160*log10(2)*(log2(enerSum) + shfts)
zeros = WebRtcSpl_NormU32(enerSum);
frac = (WebRtc_Word16)(((WebRtc_UWord32)((WebRtc_Word32)(enerSum) << zeros)
& 0x7FFFFFFF) >> 21);
log2 = (WebRtc_Word16)(((31 - zeros) << 10) + frac);
*enerlogval = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(kLogConst, log2, 19)
+ (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(shfts, kLogConst, 9);
if (*enerlogval < 0)
{
*enerlogval = 0;
}
} else
{
*enerlogval = 0;
shfts = -15;
enerSum = 0;
}
*enerlogval += offset;
// Total power in frame
if (*power <= MIN_ENERGY)
{
if (shfts > 0)
{
*power += MIN_ENERGY + 1;
} else if (WEBRTC_SPL_SHIFT_W16(enerSum, shfts) > MIN_ENERGY)
{
*power += MIN_ENERGY + 1;
} else
{
*power += WEBRTC_SPL_SHIFT_W16(enerSum, shfts);
}
}
}

View File

@ -0,0 +1,143 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the description of the internal VAD call
* WebRtcVad_GaussianProbability.
*/
#ifndef WEBRTC_VAD_FILTERBANK_H_
#define WEBRTC_VAD_FILTERBANK_H_
#include "vad_core.h"
/****************************************************************************
* WebRtcVad_HpOutput(...)
*
* This function removes DC from the lowest frequency band
*
* Input:
* - in_vector : Samples in the frequency interval 0 - 250 Hz
* - in_vector_length : Length of input and output vector
* - filter_state : Current state of the filter
*
* Output:
* - out_vector : Samples in the frequency interval 80 - 250 Hz
* - filter_state : Updated state of the filter
*
*/
void WebRtcVad_HpOutput(WebRtc_Word16* in_vector,
WebRtc_Word16 in_vector_length,
WebRtc_Word16* out_vector,
WebRtc_Word16* filter_state);
/****************************************************************************
* WebRtcVad_Allpass(...)
*
* This function is used when before splitting a speech file into
* different frequency bands
*
* Note! Do NOT let the arrays in_vector and out_vector correspond to the same address.
*
* Input:
* - in_vector : (Q0)
* - filter_coefficients : (Q15)
* - vector_length : Length of input and output vector
* - filter_state : Current state of the filter (Q(-1))
*
* Output:
* - out_vector : Output speech signal (Q(-1))
* - filter_state : Updated state of the filter (Q(-1))
*
*/
void WebRtcVad_Allpass(WebRtc_Word16* in_vector,
WebRtc_Word16* outw16,
WebRtc_Word16 filter_coefficients,
int vector_length,
WebRtc_Word16* filter_state);
/****************************************************************************
* WebRtcVad_SplitFilter(...)
*
* This function is used when before splitting a speech file into
* different frequency bands
*
* Input:
* - in_vector : Input signal to be split into two frequency bands.
* - upper_state : Current state of the upper filter
* - lower_state : Current state of the lower filter
* - in_vector_length : Length of input vector
*
* Output:
* - out_vector_hp : Upper half of the spectrum
* - out_vector_lp : Lower half of the spectrum
* - upper_state : Updated state of the upper filter
* - lower_state : Updated state of the lower filter
*
*/
void WebRtcVad_SplitFilter(WebRtc_Word16* in_vector,
WebRtc_Word16* out_vector_hp,
WebRtc_Word16* out_vector_lp,
WebRtc_Word16* upper_state,
WebRtc_Word16* lower_state,
int in_vector_length);
/****************************************************************************
* WebRtcVad_get_features(...)
*
* This function is used to get the logarithm of the power of each of the
* 6 frequency bands used by the VAD:
* 80 Hz - 250 Hz
* 250 Hz - 500 Hz
* 500 Hz - 1000 Hz
* 1000 Hz - 2000 Hz
* 2000 Hz - 3000 Hz
* 3000 Hz - 4000 Hz
*
* Input:
* - inst : Pointer to VAD instance
* - in_vector : Input speech signal
* - frame_size : Frame size, in number of samples
*
* Output:
* - out_vector : 10*log10(power in each freq. band), Q4
*
* Return: total power in the signal (NOTE! This value is not exact since it
* is only used in a comparison.
*/
WebRtc_Word16 WebRtcVad_get_features(VadInstT* inst,
WebRtc_Word16* in_vector,
int frame_size,
WebRtc_Word16* out_vector);
/****************************************************************************
* WebRtcVad_LogOfEnergy(...)
*
* This function is used to get the logarithm of the power of one frequency band.
*
* Input:
* - vector : Input speech samples for one frequency band
* - offset : Offset value for the current frequency band
* - vector_length : Length of input vector
*
* Output:
* - enerlogval : 10*log10(energy);
* - power : Update total power in speech frame. NOTE! This value
* is not exact since it is only used in a comparison.
*
*/
void WebRtcVad_LogOfEnergy(WebRtc_Word16* vector,
WebRtc_Word16* enerlogval,
WebRtc_Word16* power,
WebRtc_Word16 offset,
int vector_length);
#endif // WEBRTC_VAD_FILTERBANK_H_

View File

@ -0,0 +1,70 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes the implementation of the internal VAD call
* WebRtcVad_GaussianProbability. For function description, see vad_gmm.h.
*/
#include "vad_gmm.h"
#include "signal_processing_library.h"
#include "vad_const.h"
WebRtc_Word32 WebRtcVad_GaussianProbability(WebRtc_Word16 in_sample,
WebRtc_Word16 mean,
WebRtc_Word16 std,
WebRtc_Word16 *delta)
{
WebRtc_Word16 tmp16, tmpDiv, tmpDiv2, expVal, tmp16_1, tmp16_2;
WebRtc_Word32 tmp32, y32;
// Calculate tmpDiv=1/std, in Q10
tmp32 = (WebRtc_Word32)WEBRTC_SPL_RSHIFT_W16(std,1) + (WebRtc_Word32)131072; // 1 in Q17
tmpDiv = (WebRtc_Word16)WebRtcSpl_DivW32W16(tmp32, std); // Q17/Q7 = Q10
// Calculate tmpDiv2=1/std^2, in Q14
tmp16 = WEBRTC_SPL_RSHIFT_W16(tmpDiv, 2); // From Q10 to Q8
tmpDiv2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(tmp16, tmp16, 2); // (Q8 * Q8)>>2 = Q14
tmp16 = WEBRTC_SPL_LSHIFT_W16(in_sample, 3); // Q7
tmp16 = tmp16 - mean; // Q7 - Q7 = Q7
// To be used later, when updating noise/speech model
// delta = (x-m)/std^2, in Q11
*delta = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(tmpDiv2, tmp16, 10); //(Q14*Q7)>>10 = Q11
// Calculate tmp32=(x-m)^2/(2*std^2), in Q10
tmp32 = (WebRtc_Word32)WEBRTC_SPL_MUL_16_16_RSFT(*delta, tmp16, 9); // One shift for /2
// Calculate expVal ~= exp(-(x-m)^2/(2*std^2)) ~= exp2(-log2(exp(1))*tmp32)
if (tmp32 < kCompVar)
{
// Calculate tmp16 = log2(exp(1))*tmp32 , in Q10
tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT((WebRtc_Word16)tmp32,
kLog10Const, 12);
tmp16 = -tmp16;
tmp16_2 = (WebRtc_Word16)(0x0400 | (tmp16 & 0x03FF));
tmp16_1 = (WebRtc_Word16)(tmp16 ^ 0xFFFF);
tmp16 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W16(tmp16_1, 10);
tmp16 += 1;
// Calculate expVal=log2(-tmp32), in Q10
expVal = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((WebRtc_Word32)tmp16_2, tmp16);
} else
{
expVal = 0;
}
// Calculate y32=(1/std)*exp(-(x-m)^2/(2*std^2)), in Q20
y32 = WEBRTC_SPL_MUL_16_16(tmpDiv, expVal); // Q10 * Q10 = Q20
return y32; // Q20
}

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the description of the internal VAD call
* WebRtcVad_GaussianProbability.
*/
#ifndef WEBRTC_VAD_GMM_H_
#define WEBRTC_VAD_GMM_H_
#include "typedefs.h"
/****************************************************************************
* WebRtcVad_GaussianProbability(...)
*
* This function calculates the probability for the value 'in_sample', given that in_sample
* comes from a normal distribution with mean 'mean' and standard deviation 'std'.
*
* Input:
* - in_sample : Input sample in Q4
* - mean : mean value in the statistical model, Q7
* - std : standard deviation, Q7
*
* Output:
*
* - delta : Value used when updating the model, Q11
*
* Return:
* - out : out = 1/std * exp(-(x-m)^2/(2*std^2));
* Probability for x.
*
*/
WebRtc_Word32 WebRtcVad_GaussianProbability(WebRtc_Word16 in_sample,
WebRtc_Word16 mean,
WebRtc_Word16 std,
WebRtc_Word16 *delta);
#endif // WEBRTC_VAD_GMM_H_

View File

@ -0,0 +1,231 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes the implementation of the VAD internal calls for Downsampling and
* FindMinimum.
* For function call descriptions; See vad_sp.h.
*/
#include "vad_sp.h"
#include "vad_defines.h"
#include "vad_const.h"
#include "signal_processing_library.h"
// Downsampling filter based on the splitting filter and the allpass functions
// in vad_filterbank.c
void WebRtcVad_Downsampling(WebRtc_Word16* signal_in,
WebRtc_Word16* signal_out,
WebRtc_Word32* filter_state,
int inlen)
{
WebRtc_Word16 tmp16_1, tmp16_2;
WebRtc_Word32 tmp32_1, tmp32_2;
int n, halflen;
// Downsampling by 2 and get two branches
halflen = WEBRTC_SPL_RSHIFT_W16(inlen, 1);
tmp32_1 = filter_state[0];
tmp32_2 = filter_state[1];
// Filter coefficients in Q13, filter state in Q0
for (n = 0; n < halflen; n++)
{
// All-pass filtering upper branch
tmp16_1 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32_1, 1)
+ (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT((kAllPassCoefsQ13[0]),
*signal_in, 14);
*signal_out = tmp16_1;
tmp32_1 = (WebRtc_Word32)(*signal_in++)
- (WebRtc_Word32)WEBRTC_SPL_MUL_16_16_RSFT((kAllPassCoefsQ13[0]), tmp16_1, 12);
// All-pass filtering lower branch
tmp16_2 = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32_2, 1)
+ (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT((kAllPassCoefsQ13[1]),
*signal_in, 14);
*signal_out++ += tmp16_2;
tmp32_2 = (WebRtc_Word32)(*signal_in++)
- (WebRtc_Word32)WEBRTC_SPL_MUL_16_16_RSFT((kAllPassCoefsQ13[1]), tmp16_2, 12);
}
filter_state[0] = tmp32_1;
filter_state[1] = tmp32_2;
}
WebRtc_Word16 WebRtcVad_FindMinimum(VadInstT* inst,
WebRtc_Word16 x,
int n)
{
int i, j, k, II = -1, offset;
WebRtc_Word16 meanV, alpha;
WebRtc_Word32 tmp32, tmp32_1;
WebRtc_Word16 *valptr, *idxptr, *p1, *p2, *p3;
// Offset to beginning of the 16 minimum values in memory
offset = WEBRTC_SPL_LSHIFT_W16(n, 4);
// Pointer to memory for the 16 minimum values and the age of each value
idxptr = &inst->index_vector[offset];
valptr = &inst->low_value_vector[offset];
// Each value in low_value_vector is getting 1 loop older.
// Update age of each value in indexVal, and remove old values.
for (i = 0; i < 16; i++)
{
p3 = idxptr + i;
if (*p3 != 100)
{
*p3 += 1;
} else
{
p1 = valptr + i + 1;
p2 = p3 + 1;
for (j = i; j < 16; j++)
{
*(valptr + j) = *p1++;
*(idxptr + j) = *p2++;
}
*(idxptr + 15) = 101;
*(valptr + 15) = 10000;
}
}
// Check if x smaller than any of the values in low_value_vector.
// If so, find position.
if (x < *(valptr + 7))
{
if (x < *(valptr + 3))
{
if (x < *(valptr + 1))
{
if (x < *valptr)
{
II = 0;
} else
{
II = 1;
}
} else if (x < *(valptr + 2))
{
II = 2;
} else
{
II = 3;
}
} else if (x < *(valptr + 5))
{
if (x < *(valptr + 4))
{
II = 4;
} else
{
II = 5;
}
} else if (x < *(valptr + 6))
{
II = 6;
} else
{
II = 7;
}
} else if (x < *(valptr + 15))
{
if (x < *(valptr + 11))
{
if (x < *(valptr + 9))
{
if (x < *(valptr + 8))
{
II = 8;
} else
{
II = 9;
}
} else if (x < *(valptr + 10))
{
II = 10;
} else
{
II = 11;
}
} else if (x < *(valptr + 13))
{
if (x < *(valptr + 12))
{
II = 12;
} else
{
II = 13;
}
} else if (x < *(valptr + 14))
{
II = 14;
} else
{
II = 15;
}
}
// Put new min value on right position and shift bigger values up
if (II > -1)
{
for (i = 15; i > II; i--)
{
k = i - 1;
*(valptr + i) = *(valptr + k);
*(idxptr + i) = *(idxptr + k);
}
*(valptr + II) = x;
*(idxptr + II) = 1;
}
meanV = 0;
if ((inst->frame_counter) > 4)
{
j = 5;
} else
{
j = inst->frame_counter;
}
if (j > 2)
{
meanV = *(valptr + 2);
} else if (j > 0)
{
meanV = *valptr;
} else
{
meanV = 1600;
}
if (inst->frame_counter > 0)
{
if (meanV < inst->mean_value[n])
{
alpha = (WebRtc_Word16)ALPHA1; // 0.2 in Q15
} else
{
alpha = (WebRtc_Word16)ALPHA2; // 0.99 in Q15
}
} else
{
alpha = 0;
}
tmp32 = WEBRTC_SPL_MUL_16_16((alpha+1), inst->mean_value[n]);
tmp32_1 = WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX - alpha, meanV);
tmp32 += tmp32_1;
tmp32 += 16384;
inst->mean_value[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 15);
return inst->mean_value[n];
}

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the VAD internal calls for Downsampling and FindMinimum.
* Specific function calls are given below.
*/
#ifndef WEBRTC_VAD_SP_H_
#define WEBRTC_VAD_SP_H_
#include "vad_core.h"
/****************************************************************************
* WebRtcVad_Downsampling(...)
*
* Downsamples the signal a factor 2, eg. 32->16 or 16->8
*
* Input:
* - signal_in : Input signal
* - in_length : Length of input signal in samples
*
* Input & Output:
* - filter_state : Filter state for first all-pass filters
*
* Output:
* - signal_out : Downsampled signal (of length len/2)
*/
void WebRtcVad_Downsampling(WebRtc_Word16* signal_in,
WebRtc_Word16* signal_out,
WebRtc_Word32* filter_state,
int in_length);
/****************************************************************************
* WebRtcVad_FindMinimum(...)
*
* Find the five lowest values of x in 100 frames long window. Return a mean
* value of these five values.
*
* Input:
* - feature_value : Feature value
* - channel : Channel number
*
* Input & Output:
* - inst : State information
*
* Output:
* return value : Weighted minimum value for a moving window.
*/
WebRtc_Word16 WebRtcVad_FindMinimum(VadInstT* inst, WebRtc_Word16 feature_value, int channel);
#endif // WEBRTC_VAD_SP_H_

View File

@ -0,0 +1,197 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes the VAD API calls. For a specific function call description,
* see webrtc_vad.h
*/
#include <stdlib.h>
#include <string.h>
#include "webrtc_vad.h"
#include "vad_core.h"
static const int kInitCheck = 42;
WebRtc_Word16 WebRtcVad_get_version(char *version, size_t size_bytes)
{
const char my_version[] = "VAD 1.2.0";
if (version == NULL)
{
return -1;
}
if (size_bytes < sizeof(my_version))
{
return -1;
}
memcpy(version, my_version, sizeof(my_version));
return 0;
}
WebRtc_Word16 WebRtcVad_AssignSize(int *size_in_bytes)
{
*size_in_bytes = sizeof(VadInstT) * 2 / sizeof(WebRtc_Word16);
return 0;
}
WebRtc_Word16 WebRtcVad_Assign(VadInst **vad_inst, void *vad_inst_addr)
{
if (vad_inst == NULL)
{
return -1;
}
if (vad_inst_addr != NULL)
{
*vad_inst = (VadInst*)vad_inst_addr;
return 0;
} else
{
return -1;
}
}
WebRtc_Word16 WebRtcVad_Create(VadInst **vad_inst)
{
VadInstT *vad_ptr = NULL;
if (vad_inst == NULL)
{
return -1;
}
*vad_inst = NULL;
vad_ptr = (VadInstT *)malloc(sizeof(VadInstT));
*vad_inst = (VadInst *)vad_ptr;
if (vad_ptr == NULL)
{
return -1;
}
vad_ptr->init_flag = 0;
return 0;
}
WebRtc_Word16 WebRtcVad_Free(VadInst *vad_inst)
{
if (vad_inst == NULL)
{
return -1;
}
free(vad_inst);
return 0;
}
WebRtc_Word16 WebRtcVad_Init(VadInst *vad_inst)
{
short mode = 0; // Default high quality
if (vad_inst == NULL)
{
return -1;
}
return WebRtcVad_InitCore((VadInstT*)vad_inst, mode);
}
WebRtc_Word16 WebRtcVad_set_mode(VadInst *vad_inst, WebRtc_Word16 mode)
{
VadInstT* vad_ptr;
if (vad_inst == NULL)
{
return -1;
}
vad_ptr = (VadInstT*)vad_inst;
if (vad_ptr->init_flag != kInitCheck)
{
return -1;
}
return WebRtcVad_set_mode_core((VadInstT*)vad_inst, mode);
}
WebRtc_Word16 WebRtcVad_Process(VadInst *vad_inst,
WebRtc_Word16 fs,
WebRtc_Word16 *speech_frame,
WebRtc_Word16 frame_length)
{
WebRtc_Word16 vad;
VadInstT* vad_ptr;
if (vad_inst == NULL)
{
return -1;
}
vad_ptr = (VadInstT*)vad_inst;
if (vad_ptr->init_flag != kInitCheck)
{
return -1;
}
if (speech_frame == NULL)
{
return -1;
}
if (fs == 32000)
{
if ((frame_length != 320) && (frame_length != 640) && (frame_length != 960))
{
return -1;
}
vad = WebRtcVad_CalcVad32khz((VadInstT*)vad_inst, speech_frame, frame_length);
} else if (fs == 16000)
{
if ((frame_length != 160) && (frame_length != 320) && (frame_length != 480))
{
return -1;
}
vad = WebRtcVad_CalcVad16khz((VadInstT*)vad_inst, speech_frame, frame_length);
} else if (fs == 8000)
{
if ((frame_length != 80) && (frame_length != 160) && (frame_length != 240))
{
return -1;
}
vad = WebRtcVad_CalcVad8khz((VadInstT*)vad_inst, speech_frame, frame_length);
} else
{
return -1; // Not a supported sampling frequency
}
if (vad > 0)
{
return 1;
} else if (vad == 0)
{
return 0;
} else
{
return -1;
}
}

View File

@ -0,0 +1,123 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes the implementation of the VAD unit tests.
*/
#include <cstring>
#include "unit_test.h"
#include "webrtc_vad.h"
class VadEnvironment : public ::testing::Environment {
public:
virtual void SetUp() {
}
virtual void TearDown() {
}
};
VadTest::VadTest()
{
}
void VadTest::SetUp() {
}
void VadTest::TearDown() {
}
TEST_F(VadTest, ApiTest) {
VadInst *vad_inst;
int i, j, k;
short zeros[960];
short speech[960];
char version[32];
// Valid test cases
int fs[3] = {8000, 16000, 32000};
int nMode[4] = {0, 1, 2, 3};
int framelen[3][3] = {{80, 160, 240},
{160, 320, 480}, {320, 640, 960}} ;
int vad_counter = 0;
memset(zeros, 0, sizeof(short) * 960);
memset(speech, 1, sizeof(short) * 960);
speech[13] = 1374;
speech[73] = -3747;
// WebRtcVad_get_version()
WebRtcVad_get_version(version);
//printf("API Test for %s\n", version);
// Null instance tests
EXPECT_EQ(-1, WebRtcVad_Create(NULL));
EXPECT_EQ(-1, WebRtcVad_Init(NULL));
EXPECT_EQ(-1, WebRtcVad_Assign(NULL, NULL));
EXPECT_EQ(-1, WebRtcVad_Free(NULL));
EXPECT_EQ(-1, WebRtcVad_set_mode(NULL, nMode[0]));
EXPECT_EQ(-1, WebRtcVad_Process(NULL, fs[0], speech, framelen[0][0]));
EXPECT_EQ(WebRtcVad_Create(&vad_inst), 0);
// Not initialized tests
EXPECT_EQ(-1, WebRtcVad_Process(vad_inst, fs[0], speech, framelen[0][0]));
EXPECT_EQ(-1, WebRtcVad_set_mode(vad_inst, nMode[0]));
// WebRtcVad_Init() tests
EXPECT_EQ(WebRtcVad_Init(vad_inst), 0);
// WebRtcVad_set_mode() tests
EXPECT_EQ(-1, WebRtcVad_set_mode(vad_inst, -1));
EXPECT_EQ(-1, WebRtcVad_set_mode(vad_inst, 4));
for (i = 0; i < sizeof(nMode)/sizeof(nMode[0]); i++) {
EXPECT_EQ(WebRtcVad_set_mode(vad_inst, nMode[i]), 0);
}
// WebRtcVad_Process() tests
EXPECT_EQ(-1, WebRtcVad_Process(vad_inst, fs[0], NULL, framelen[0][0]));
EXPECT_EQ(-1, WebRtcVad_Process(vad_inst, 12000, speech, framelen[0][0]));
EXPECT_EQ(-1, WebRtcVad_Process(vad_inst, fs[0], speech, framelen[1][1]));
EXPECT_EQ(WebRtcVad_Process(vad_inst, fs[0], zeros, framelen[0][0]), 0);
for (i = 0; i < sizeof(fs)/sizeof(fs[0]); i++) {
for (j = 0; j < sizeof(framelen[0])/sizeof(framelen[0][0]); j++) {
for (k = 0; k < sizeof(nMode)/sizeof(nMode[0]); k++) {
EXPECT_EQ(WebRtcVad_set_mode(vad_inst, nMode[k]), 0);
// printf("%d\n", WebRtcVad_Process(vad_inst, fs[i], speech, framelen[i][j]));
if (vad_counter < 9)
{
EXPECT_EQ(WebRtcVad_Process(vad_inst, fs[i], speech, framelen[i][j]), 1);
} else
{
EXPECT_EQ(WebRtcVad_Process(vad_inst, fs[i], speech, framelen[i][j]), 0);
}
vad_counter++;
}
}
}
EXPECT_EQ(0, WebRtcVad_Free(vad_inst));
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
VadEnvironment* env = new VadEnvironment;
::testing::AddGlobalTestEnvironment(env);
return RUN_ALL_TESTS();
}

View File

@ -0,0 +1,28 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This header file includes the declaration of the VAD unit test.
*/
#ifndef WEBRTC_VAD_UNIT_TEST_H_
#define WEBRTC_VAD_UNIT_TEST_H_
#include <gtest/gtest.h>
class VadTest : public ::testing::Test {
protected:
VadTest();
virtual void SetUp();
virtual void TearDown();
};
#endif // WEBRTC_VAD_UNIT_TEST_H_

595
src/common_types.h Normal file
View File

@ -0,0 +1,595 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_COMMON_TYPES_H
#define WEBRTC_COMMON_TYPES_H
#include "typedefs.h"
#ifdef WEBRTC_EXPORT
#define WEBRTC_DLLEXPORT _declspec(dllexport)
#elif WEBRTC_DLL
#define WEBRTC_DLLEXPORT _declspec(dllimport)
#else
#define WEBRTC_DLLEXPORT
#endif
#ifndef NULL
#define NULL 0
#endif
namespace webrtc {
class InStream
{
public:
virtual int Read(void *buf,int len) = 0;
virtual int Rewind() {return -1;}
virtual ~InStream() {}
protected:
InStream() {}
};
class OutStream
{
public:
virtual bool Write(const void *buf,int len) = 0;
virtual int Rewind() {return -1;}
virtual ~OutStream() {}
protected:
OutStream() {}
};
enum TraceModule
{
// not a module, triggered from the engine code
kTraceVoice = 0x0001,
// not a module, triggered from the engine code
kTraceVideo = 0x0002,
// not a module, triggered from the utility code
kTraceUtility = 0x0003,
kTraceRtpRtcp = 0x0004,
kTraceTransport = 0x0005,
kTraceSrtp = 0x0006,
kTraceAudioCoding = 0x0007,
kTraceAudioMixerServer = 0x0008,
kTraceAudioMixerClient = 0x0009,
kTraceFile = 0x000a,
kTraceAudioProcessing = 0x000b,
kTraceVideoCoding = 0x0010,
kTraceVideoMixer = 0x0011,
kTraceAudioDevice = 0x0012,
kTraceVideoRenderer = 0x0014,
kTraceVideoCapture = 0x0015,
kTraceVideoPreocessing = 0x0016
};
enum TraceLevel
{
kTraceNone = 0x0000, // no trace
kTraceStateInfo = 0x0001,
kTraceWarning = 0x0002,
kTraceError = 0x0004,
kTraceCritical = 0x0008,
kTraceApiCall = 0x0010,
kTraceDefault = 0x00ff,
kTraceModuleCall = 0x0020,
kTraceMemory = 0x0100, // memory info
kTraceTimer = 0x0200, // timing info
kTraceStream = 0x0400, // "continuous" stream of data
// used for debug purposes
kTraceDebug = 0x0800, // debug
kTraceInfo = 0x1000, // debug info
kTraceAll = 0xffff
};
// External Trace API
class TraceCallback
{
public:
virtual void Print(const TraceLevel level,
const char *traceString,
const int length) = 0;
protected:
virtual ~TraceCallback() {}
TraceCallback() {}
};
enum FileFormats
{
kFileFormatWavFile = 1,
kFileFormatCompressedFile = 2,
kFileFormatAviFile = 3,
kFileFormatPreencodedFile = 4,
kFileFormatPcm16kHzFile = 7,
kFileFormatPcm8kHzFile = 8,
kFileFormatPcm32kHzFile = 9
};
enum ProcessingTypes
{
kPlaybackPerChannel = 0,
kPlaybackAllChannelsMixed,
kRecordingPerChannel,
kRecordingAllChannelsMixed
};
// Encryption enums
enum CipherTypes
{
kCipherNull = 0,
kCipherAes128CounterMode = 1
};
enum AuthenticationTypes
{
kAuthNull = 0,
kAuthHmacSha1 = 3
};
enum SecurityLevels
{
kNoProtection = 0,
kEncryption = 1,
kAuthentication = 2,
kEncryptionAndAuthentication = 3
};
class Encryption
{
public:
virtual void encrypt(
int channel_no,
unsigned char* in_data,
unsigned char* out_data,
int bytes_in,
int* bytes_out) = 0;
virtual void decrypt(
int channel_no,
unsigned char* in_data,
unsigned char* out_data,
int bytes_in,
int* bytes_out) = 0;
virtual void encrypt_rtcp(
int channel_no,
unsigned char* in_data,
unsigned char* out_data,
int bytes_in,
int* bytes_out) = 0;
virtual void decrypt_rtcp(
int channel_no,
unsigned char* in_data,
unsigned char* out_data,
int bytes_in,
int* bytes_out) = 0;
protected:
virtual ~Encryption() {}
Encryption() {}
};
// External transport callback interface
class Transport
{
public:
virtual int SendPacket(int channel, const void *data, int len) = 0;
virtual int SendRTCPPacket(int channel, const void *data, int len) = 0;
protected:
virtual ~Transport() {}
Transport() {}
};
// ==================================================================
// Voice specific types
// ==================================================================
// Each codec supported can be described by this structure.
struct CodecInst
{
int pltype;
char plname[32];
int plfreq;
int pacsize;
int channels;
int rate;
};
enum FrameType
{
kFrameEmpty = 0,
kAudioFrameSpeech = 1,
kAudioFrameCN = 2,
kVideoFrameKey = 3, // independent frame
kVideoFrameDelta = 4, // depends on the previus frame
kVideoFrameGolden = 5, // depends on a old known previus frame
kVideoFrameAltRef = 6
};
// RTP
enum {kRtpCsrcSize = 15}; // RFC 3550 page 13
enum RTPDirections
{
kRtpIncoming = 0,
kRtpOutgoing
};
enum PayloadFrequencies
{
kFreq8000Hz = 8000,
kFreq16000Hz = 16000,
kFreq32000Hz = 32000
};
enum VadModes // degree of bandwidth reduction
{
kVadConventional = 0, // lowest reduction
kVadAggressiveLow,
kVadAggressiveMid,
kVadAggressiveHigh // highest reduction
};
struct NetworkStatistics // NETEQ statistics
{
// current jitter buffer size in ms
WebRtc_UWord16 currentBufferSize;
// preferred (optimal) buffer size in ms
WebRtc_UWord16 preferredBufferSize;
// loss rate (network + late) in percent (in Q14)
WebRtc_UWord16 currentPacketLossRate;
// late loss rate in percent (in Q14)
WebRtc_UWord16 currentDiscardRate;
// fraction (of original stream) of synthesized speech inserted through
// expansion (in Q14)
WebRtc_UWord16 currentExpandRate;
// fraction of synthesized speech inserted through pre-emptive expansion
// (in Q14)
WebRtc_UWord16 currentPreemptiveRate;
// fraction of data removed through acceleration (in Q14)
WebRtc_UWord16 currentAccelerateRate;
};
struct JitterStatistics
{
// smallest Jitter Buffer size during call in ms
WebRtc_UWord32 jbMinSize;
// largest Jitter Buffer size during call in ms
WebRtc_UWord32 jbMaxSize;
// the average JB size, measured over time - ms
WebRtc_UWord32 jbAvgSize;
// number of times the Jitter Buffer changed (using Accelerate or
// Pre-emptive Expand)
WebRtc_UWord32 jbChangeCount;
// amount (in ms) of audio data received late
WebRtc_UWord32 lateLossMs;
// milliseconds removed to reduce jitter buffer size
WebRtc_UWord32 accelerateMs;
// milliseconds discarded through buffer flushing
WebRtc_UWord32 flushedMs;
// milliseconds of generated silence
WebRtc_UWord32 generatedSilentMs;
// milliseconds of synthetic audio data (non-background noise)
WebRtc_UWord32 interpolatedVoiceMs;
// milliseconds of synthetic audio data (background noise level)
WebRtc_UWord32 interpolatedSilentMs;
// count of tiny expansions in output audio
WebRtc_UWord32 countExpandMoreThan120ms;
// count of small expansions in output audio
WebRtc_UWord32 countExpandMoreThan250ms;
// count of medium expansions in output audio
WebRtc_UWord32 countExpandMoreThan500ms;
// count of long expansions in output audio
WebRtc_UWord32 countExpandMoreThan2000ms;
// duration of longest audio drop-out
WebRtc_UWord32 longestExpandDurationMs;
// count of times we got small network outage (inter-arrival time in
// [500, 1000) ms)
WebRtc_UWord32 countIAT500ms;
// count of times we got medium network outage (inter-arrival time in
// [1000, 2000) ms)
WebRtc_UWord32 countIAT1000ms;
// count of times we got large network outage (inter-arrival time >=
// 2000 ms)
WebRtc_UWord32 countIAT2000ms;
// longest packet inter-arrival time in ms
WebRtc_UWord32 longestIATms;
// min time incoming Packet "waited" to be played
WebRtc_UWord32 minPacketDelayMs;
// max time incoming Packet "waited" to be played
WebRtc_UWord32 maxPacketDelayMs;
// avg time incoming Packet "waited" to be played
WebRtc_UWord32 avgPacketDelayMs;
};
typedef struct
{
int min; // minumum
int max; // maximum
int average; // average
} StatVal;
typedef struct // All levels are reported in dBm0
{
StatVal speech_rx; // long-term speech levels on receiving side
StatVal speech_tx; // long-term speech levels on transmitting side
StatVal noise_rx; // long-term noise/silence levels on receiving side
StatVal noise_tx; // long-term noise/silence levels on transmitting side
} LevelStatistics;
typedef struct // All levels are reported in dB
{
StatVal erl; // Echo Return Loss
StatVal erle; // Echo Return Loss Enhancement
StatVal rerl; // RERL = ERL + ERLE
// Echo suppression inside EC at the point just before its NLP
StatVal a_nlp;
} EchoStatistics;
enum TelephoneEventDetectionMethods
{
kInBand = 0,
kOutOfBand = 1,
kInAndOutOfBand = 2
};
enum NsModes // type of Noise Suppression
{
kNsUnchanged = 0, // previously set mode
kNsDefault, // platform default
kNsConference, // conferencing default
kNsLowSuppression, // lowest suppression
kNsModerateSuppression,
kNsHighSuppression,
kNsVeryHighSuppression, // highest suppression
};
enum AgcModes // type of Automatic Gain Control
{
kAgcUnchanged = 0, // previously set mode
kAgcDefault, // platform default
// adaptive mode for use when analog volume control exists (e.g. for
// PC softphone)
kAgcAdaptiveAnalog,
// scaling takes place in the digital domain (e.g. for conference servers
// and embedded devices)
kAgcAdaptiveDigital,
// can be used on embedded devices where the the capture signal is level
// is predictable
kAgcFixedDigital
};
// EC modes
enum EcModes // type of Echo Control
{
kEcUnchanged = 0, // previously set mode
kEcDefault, // platform default
kEcConference, // conferencing default (aggressive AEC)
kEcAec, // Acoustic Echo Cancellation
kEcAecm, // AEC mobile
};
// AECM modes
enum AecmModes // mode of AECM
{
kAecmQuietEarpieceOrHeadset = 0,
// Quiet earpiece or headset use
kAecmEarpiece, // most earpiece use
kAecmLoudEarpiece, // Loud earpiece or quiet speakerphone use
kAecmSpeakerphone, // most speakerphone use (default)
kAecmLoudSpeakerphone // Loud speakerphone
};
// AGC configuration
typedef struct
{
unsigned short targetLeveldBOv;
unsigned short digitalCompressionGaindB;
bool limiterEnable;
} AgcConfig; // AGC configuration parameters
enum StereoChannel
{
kStereoLeft = 0,
kStereoRight,
kStereoBoth
};
// Audio device layers
enum AudioLayers
{
kAudioPlatformDefault = 0,
kAudioWindowsWave = 1,
kAudioWindowsCore = 2,
kAudioLinuxAlsa = 3,
kAudioLinuxPulse = 4
};
enum NetEqModes // NetEQ playout configurations
{
// Optimized trade-off between low delay and jitter robustness for two-way
// communication.
kNetEqDefault = 0,
// Improved jitter robustness at the cost of increased delay. Can be
// used in one-way communication.
kNetEqStreaming = 1,
// Optimzed for decodability of fax signals rather than for perceived audio
// quality.
kNetEqFax = 2,
};
enum NetEqBgnModes // NetEQ Background Noise (BGN) configurations
{
// BGN is always on and will be generated when the incoming RTP stream
// stops (default).
kBgnOn = 0,
// The BGN is faded to zero (complete silence) after a few seconds.
kBgnFade = 1,
// BGN is not used at all. Silence is produced after speech extrapolation
// has faded.
kBgnOff = 2,
};
enum OnHoldModes // On Hold direction
{
kHoldSendAndPlay = 0, // Put both sending and playing in on-hold state.
kHoldSendOnly, // Put only sending in on-hold state.
kHoldPlayOnly // Put only playing in on-hold state.
};
enum AmrMode
{
kRfc3267BwEfficient = 0,
kRfc3267OctetAligned = 1,
kRfc3267FileStorage = 2,
};
// ==================================================================
// Video specific types
// ==================================================================
// Raw video types
enum RawVideoType
{
kVideoI420 = 0,
kVideoYV12 = 1,
kVideoYUY2 = 2,
kVideoUYVY = 3,
kVideoIYUV = 4,
kVideoARGB = 5,
kVideoRGB24 = 6,
kVideoRGB565 = 7,
kVideoARGB4444 = 8,
kVideoARGB1555 = 9,
kVideoMJPEG = 10,
kVideoNV12 = 11,
kVideoNV21 = 12,
kVideoUnknown = 99
};
// Video codec
enum { kConfigParameterSize = 128};
enum { kPayloadNameSize = 32};
// H.263 specific
struct VideoCodecH263
{
char quality;
};
// H.264 specific
enum H264Packetization
{
kH264SingleMode = 0,
kH264NonInterleavedMode = 1
};
enum VideoCodecComplexity
{
kComplexityNormal = 0,
kComplexityHigh = 1,
kComplexityHigher = 2,
kComplexityMax = 3
};
enum VideoCodecProfile
{
kProfileBase = 0x00,
kProfileMain = 0x01
};
struct VideoCodecH264
{
H264Packetization packetization;
VideoCodecComplexity complexity;
VideoCodecProfile profile;
char level;
char quality;
bool useFMO;
unsigned char configParameters[kConfigParameterSize];
unsigned char configParametersSize;
};
// VP8 specific
struct VideoCodecVP8
{
bool pictureLossIndicationOn;
bool feedbackModeOn;
VideoCodecComplexity complexity;
};
// MPEG-4 specific
struct VideoCodecMPEG4
{
unsigned char configParameters[kConfigParameterSize];
unsigned char configParametersSize;
char level;
};
// Unknown specific
struct VideoCodecGeneric
{
};
// Video codec types
enum VideoCodecType
{
kVideoCodecH263,
kVideoCodecH264,
kVideoCodecVP8,
kVideoCodecMPEG4,
kVideoCodecI420,
kVideoCodecRED,
kVideoCodecULPFEC,
kVideoCodecUnknown
};
union VideoCodecUnion
{
VideoCodecH263 H263;
VideoCodecH264 H264;
VideoCodecVP8 VP8;
VideoCodecMPEG4 MPEG4;
VideoCodecGeneric Generic;
};
// Common video codec properties
struct VideoCodec
{
VideoCodecType codecType;
char plName[kPayloadNameSize];
unsigned char plType;
unsigned short width;
unsigned short height;
unsigned int startBitrate;
unsigned int maxBitrate;
unsigned int minBitrate;
unsigned char maxFramerate;
VideoCodecUnion codecSpecific;
unsigned int qpMax;
};
} // namespace webrtc
#endif // WEBRTC_COMMON_TYPES_H

View File

@ -0,0 +1,2 @@
andrew@webrtc.org
bjornv@webrtc.org

View File

@ -0,0 +1,260 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_INTERFACE_ECHO_CANCELLATION_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_INTERFACE_ECHO_CANCELLATION_H_
#include "typedefs.h"
// Errors
#define AEC_UNSPECIFIED_ERROR 12000
#define AEC_UNSUPPORTED_FUNCTION_ERROR 12001
#define AEC_UNINITIALIZED_ERROR 12002
#define AEC_NULL_POINTER_ERROR 12003
#define AEC_BAD_PARAMETER_ERROR 12004
// Warnings
#define AEC_BAD_PARAMETER_WARNING 12050
enum {
kAecNlpConservative = 0,
kAecNlpModerate,
kAecNlpAggressive
};
enum {
kAecFalse = 0,
kAecTrue
};
typedef struct {
WebRtc_Word16 nlpMode; // default kAecNlpModerate
WebRtc_Word16 skewMode; // default kAecFalse
WebRtc_Word16 metricsMode; // default kAecFalse
//float realSkew;
} AecConfig;
typedef struct {
WebRtc_Word16 instant;
WebRtc_Word16 average;
WebRtc_Word16 max;
WebRtc_Word16 min;
} AecLevel;
typedef struct {
AecLevel rerl;
AecLevel erl;
AecLevel erle;
AecLevel aNlp;
} AecMetrics;
#ifdef __cplusplus
extern "C" {
#endif
/*
* Allocates the memory needed by the AEC. The memory needs to be initialized
* separately using the WebRtcAec_Init() function.
*
* Inputs Description
* -------------------------------------------------------------------
* void **aecInst Pointer to the AEC instance to be created
* and initilized
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Create(void **aecInst);
/*
* This function releases the memory allocated by WebRtcAec_Create().
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Free(void *aecInst);
/*
* Initializes an AEC instance.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* WebRtc_Word32 sampFreq Sampling frequency of data
* WebRtc_Word32 scSampFreq Soundcard sampling frequency
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Init(void *aecInst,
WebRtc_Word32 sampFreq,
WebRtc_Word32 scSampFreq);
/*
* Inserts an 80 or 160 sample block of data into the farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* WebRtc_Word16 *farend In buffer containing one frame of
* farend signal for L band
* WebRtc_Word16 nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst,
const WebRtc_Word16 *farend,
WebRtc_Word16 nrOfSamples);
/*
* Runs the echo canceller on an 80 or 160 sample blocks of data.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* WebRtc_Word16 *nearend In buffer containing one frame of
* nearend+echo signal for L band
* WebRtc_Word16 *nearendH In buffer containing one frame of
* nearend+echo signal for H band
* WebRtc_Word16 nrOfSamples Number of samples in nearend buffer
* WebRtc_Word16 msInSndCardBuf Delay estimate for sound card and
* system buffers
* WebRtc_Word16 skew Difference between number of samples played
* and recorded at the soundcard (for clock skew
* compensation)
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word16 *out Out buffer, one frame of processed nearend
* for L band
* WebRtc_Word16 *outH Out buffer, one frame of processed nearend
* for H band
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Process(void *aecInst,
const WebRtc_Word16 *nearend,
const WebRtc_Word16 *nearendH,
WebRtc_Word16 *out,
WebRtc_Word16 *outH,
WebRtc_Word16 nrOfSamples,
WebRtc_Word16 msInSndCardBuf,
WebRtc_Word32 skew);
/*
* This function enables the user to set certain parameters on-the-fly.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* AecConfig config Config instance that contains all
* properties to be set
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config);
/*
* Gets the on-the-fly paramters.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecConfig *config Pointer to the config instance that
* all properties will be written to
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config);
/*
* Gets the current echo status of the nearend signal.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word16 *status 0: Almost certainly nearend single-talk
* 1: Might not be neared single-talk
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status);
/*
* Gets the current echo metrics for the session.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecMetrics *metrics Struct which will be filled out with the
* current echo metrics.
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics);
/*
* Gets the last error code.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 11000-11100: error code
*/
WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst);
/*
* Gets a version string.
*
* Inputs Description
* -------------------------------------------------------------------
* char *versionStr Pointer to a string array
* WebRtc_Word16 len The maximum length of the string
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word8 *versionStr Pointer to a string array
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len);
#ifdef __cplusplus
}
#endif
#endif /* WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_INTERFACE_ECHO_CANCELLATION_H_ */

View File

@ -0,0 +1,953 @@
% Partitioned block frequency domain adaptive filtering NLMS and
% standard time-domain sample-based NLMS
%fid=fopen('aecFar-samsung.pcm', 'rb'); % Load far end
fid=fopen('aecFar.pcm', 'rb'); % Load far end
%fid=fopen(farFile, 'rb'); % Load far end
rrin=fread(fid,inf,'int16');
fclose(fid);
%rrin=loadsl('data/far_me2.pcm'); % Load far end
%fid=fopen('aecNear-samsung.pcm', 'rb'); % Load near end
fid=fopen('aecNear.pcm', 'rb'); % Load near end
%fid=fopen(nearFile, 'rb'); % Load near end
ssin=fread(fid,inf,'int16');
%ssin = [zeros(1024,1) ; ssin(1:end-1024)];
fclose(fid);
rand('state',13);
fs=16000;
mult=fs/8000;
%rrin=rrin(fs*0+1:round(fs*120));
%ssin=ssin(fs*0+1:round(fs*120));
if fs == 8000
cohRange = 2:3;
elseif fs==16000
cohRange = 2;
end
% Flags
NLPon=1; % NLP
CNon=1; % Comfort noise
PLTon=1; % Plotting
M = 16; % Number of partitions
N = 64; % Partition length
L = M*N; % Filter length
if fs == 8000
mufb = 0.6;
else
mufb = 0.5;
end
%mufb=1;
VADtd=48;
alp = 0.1; % Power estimation factor alc = 0.1; % Coherence estimation factor
beta = 0.9; % Plotting factor
%% Changed a little %%
step = 0.3;%0.1875; % Downward step size
%%
if fs == 8000
threshold=2e-6; % DTrob threshold
else
%threshold=0.7e-6;
threshold=1.5e-6; end
if fs == 8000
echoBandRange = ceil(300*2/fs*N):floor(1800*2/fs*N);
%echoBandRange = ceil(1500*2/fs*N):floor(2500*2/fs*N);
else
echoBandRange = ceil(300*2/fs*N):floor(1800*2/fs*N);
%echoBandRange = ceil(300*2/fs*N):floor(1800*2/fs*N);
end
%echoBandRange = ceil(1600*2/fs*N):floor(1900*2/fs*N);
%echoBandRange = ceil(2000*2/fs*N):floor(4000*2/fs*N);
suppState = 1;
transCtr = 0;
Nt=1;
vt=1;
ramp = 1.0003; % Upward ramp
rampd = 0.999; % Downward ramp
cvt = 20; % Subband VAD threshold;
nnthres = 20; % Noise threshold
shh=logspace(-1.3,-2.2,N+1)';
sh=[shh;flipud(shh(2:end-1))]; % Suppression profile
len=length(ssin);
w=zeros(L,1); % Sample-based TD NLMS
WFb=zeros(N+1,M); % Block-based FD NLMS
WFbOld=zeros(N+1,M); % Block-based FD NLMS
YFb=zeros(N+1,M);
erfb=zeros(len,1);
erfb3=zeros(len,1);
ercn=zeros(len,1);
zm=zeros(N,1);
XFm=zeros(N+1,M);
YFm=zeros(N+1,M);
pn0=10*ones(N+1,1);
pn=zeros(N+1,1);
NN=len;
Nb=floor(NN/N)-M;
erifb=zeros(Nb+1,1)+0.1;
erifb3=zeros(Nb+1,1)+0.1;
ericn=zeros(Nb+1,1)+0.1;
dri=zeros(Nb+1,1)+0.1;
start=1;
xo=zeros(N,1);
do=xo;
eo=xo;
echoBands=zeros(Nb+1,1);
cohxdAvg=zeros(Nb+1,1);
cohxdSlow=zeros(Nb+1,N+1);
cohedSlow=zeros(Nb+1,N+1);
%overdriveM=zeros(Nb+1,N+1);
cohxdFastAvg=zeros(Nb+1,1);
cohxdAvgBad=zeros(Nb+1,1);
cohedAvg=zeros(Nb+1,1);
cohedFastAvg=zeros(Nb+1,1);
hnledAvg=zeros(Nb+1,1);
hnlxdAvg=zeros(Nb+1,1);
ovrdV=zeros(Nb+1,1);
dIdxV=zeros(Nb+1,1);
SLxV=zeros(Nb+1,1);
hnlSortQV=zeros(Nb+1,1);
hnlPrefAvgV=zeros(Nb+1,1);
mutInfAvg=zeros(Nb+1,1);
%overdrive=zeros(Nb+1,1);
hnled = zeros(N+1, 1);
weight=zeros(N+1,1);
hnlMax = zeros(N+1, 1);
hnl = zeros(N+1, 1);
overdrive = ones(1, N+1);
xfwm=zeros(N+1,M);
dfm=zeros(N+1,M);
WFbD=ones(N+1,1);
fbSupp = 0;
hnlLocalMin = 1;
cohxdLocalMin = 1;
hnlLocalMinV=zeros(Nb+1,1);
cohxdLocalMinV=zeros(Nb+1,1);
hnlMinV=zeros(Nb+1,1);
dkEnV=zeros(Nb+1,1);
ekEnV=zeros(Nb+1,1);
ovrd = 2;
ovrdPos = floor((N+1)/4);
ovrdSm = 2;
hnlMin = 1;
minCtr = 0;
SeMin = 0;
SdMin = 0;
SeLocalAvg = 0;
SeMinSm = 0;
divergeFact = 1;
dIdx = 1;
hnlMinCtr = 0;
hnlNewMin = 0;
divergeState = 0;
Sy=ones(N+1,1);
Sym=1e7*ones(N+1,1);
wins=[0;sqrt(hanning(2*N-1))];
ubufn=zeros(2*N,1);
ebuf=zeros(2*N,1);
ebuf2=zeros(2*N,1);
ebuf4=zeros(2*N,1);
mbuf=zeros(2*N,1);
cohedFast = zeros(N+1,1);
cohxdFast = zeros(N+1,1);
cohxd = zeros(N+1,1);
Se = zeros(N+1,1);
Sd = zeros(N+1,1);
Sx = zeros(N+1,1);
SxBad = zeros(N+1,1);
Sed = zeros(N+1,1);
Sxd = zeros(N+1,1);
SxdBad = zeros(N+1,1);
hnledp=[];
cohxdMax = 0;
%hh=waitbar(0,'Please wait...');
progressbar(0);
%spaces = ' ';
%spaces = repmat(spaces, 50, 1);
%spaces = ['[' ; spaces ; ']'];
%fprintf(1, spaces);
%fprintf(1, '\n');
for kk=1:Nb
pos = N * (kk-1) + start;
% FD block method
% ---------------------- Organize data
xk = rrin(pos:pos+N-1);
dk = ssin(pos:pos+N-1);
xx = [xo;xk];
xo = xk;
tmp = fft(xx);
XX = tmp(1:N+1);
dd = [do;dk]; % Overlap
do = dk;
tmp = fft(dd); % Frequency domain
DD = tmp(1:N+1);
% ------------------------ Power estimation
pn0 = (1 - alp) * pn0 + alp * real(XX.* conj(XX));
pn = pn0;
%pn = (1 - alp) * pn + alp * M * pn0;
if (CNon)
Yp = real(conj(DD).*DD); % Instantaneous power
Sy = (1 - alp) * Sy + alp * Yp; % Averaged power
mm = min(Sy,Sym);
diff = Sym - mm;
if (kk>50)
Sym = (mm + step*diff) * ramp; % Estimated background noise power
end
end
% ---------------------- Filtering
XFm(:,1) = XX;
for mm=0:(M-1)
m=mm+1;
YFb(:,m) = XFm(:,m) .* WFb(:,m);
end
yfk = sum(YFb,2);
tmp = [yfk ; flipud(conj(yfk(2:N)))];
ykt = real(ifft(tmp));
ykfb = ykt(end-N+1:end);
% ---------------------- Error estimation
ekfb = dk - ykfb;
%if sum(abs(ekfb)) < sum(abs(dk))
%ekfb = dk - ykfb;
% erfb(pos:pos+N-1) = ekfb;
%else
%ekfb = dk;
% erfb(pos:pos+N-1) = dk;
%end
%(kk-1)*(N*2)+1
erfb(pos:pos+N-1) = ekfb;
tmp = fft([zm;ekfb]); % FD version for cancelling part (overlap-save)
Ek = tmp(1:N+1);
% ------------------------ Adaptation
Ek2 = Ek ./(M*pn + 0.001); % Normalized error
%Ek2 = Ek ./(pn + 0.001); % Normalized error
%Ek2 = Ek ./(100*pn + 0.001); % Normalized error
absEf = max(abs(Ek2), threshold);
absEf = ones(N+1,1)*threshold./absEf;
Ek2 = Ek2.*absEf;
mEk = mufb.*Ek2;
PP = conj(XFm).*(ones(M,1) * mEk')';
tmp = [PP ; flipud(conj(PP(2:N,:)))];
IFPP = real(ifft(tmp));
PH = IFPP(1:N,:);
tmp = fft([PH;zeros(N,M)]);
FPH = tmp(1:N+1,:);
WFb = WFb + FPH;
if mod(kk, 10*mult) == 0
WFbEn = sum(real(WFb.*conj(WFb)));
%WFbEn = sum(abs(WFb));
[tmp, dIdx] = max(WFbEn);
WFbD = sum(abs(WFb(:, dIdx)),2);
%WFbD = WFbD / (mean(WFbD) + 1e-10);
WFbD = min(max(WFbD, 0.5), 4);
end
dIdxV(kk) = dIdx;
% NLP
if (NLPon)
ee = [eo;ekfb];
eo = ekfb;
window = wins;
if fs == 8000
%gamma = 0.88;
gamma = 0.9;
else
%gamma = 0.92;
gamma = 0.93;
end
%gamma = 0.9;
tmp = fft(xx.*window);
xf = tmp(1:N+1);
tmp = fft(dd.*window);
df = tmp(1:N+1);
tmp = fft(ee.*window);
ef = tmp(1:N+1);
xfwm(:,1) = xf;
xf = xfwm(:,dIdx);
%fprintf(1,'%d: %f\n', kk, xf(4));
dfm(:,1) = df;
SxOld = Sx;
Se = gamma*Se + (1-gamma)*real(ef.*conj(ef));
Sd = gamma*Sd + (1-gamma)*real(df.*conj(df));
Sx = gamma*Sx + (1 - gamma)*real(xf.*conj(xf));
%xRatio = real(xfwm(:,1).*conj(xfwm(:,1))) ./ ...
% (real(xfwm(:,2).*conj(xfwm(:,2))) + 1e-10);
%xRatio = Sx ./ (SxOld + 1e-10);
%SLx = log(1/(N+1)*sum(xRatio)) - 1/(N+1)*sum(log(xRatio));
%SLxV(kk) = SLx;
%freqSm = 0.9;
%Sx = filter(freqSm, [1 -(1-freqSm)], Sx);
%Sx(end:1) = filter(freqSm, [1 -(1-freqSm)], Sx(end:1));
%Se = filter(freqSm, [1 -(1-freqSm)], Se);
%Se(end:1) = filter(freqSm, [1 -(1-freqSm)], Se(end:1));
%Sd = filter(freqSm, [1 -(1-freqSm)], Sd);
%Sd(end:1) = filter(freqSm, [1 -(1-freqSm)], Sd(end:1));
%SeFast = ef.*conj(ef);
%SdFast = df.*conj(df);
%SxFast = xf.*conj(xf);
%cohedFast = 0.9*cohedFast + 0.1*SeFast ./ (SdFast + 1e-10);
%cohedFast(find(cohedFast > 1)) = 1;
%cohedFast(find(cohedFast > 1)) = 1 ./ cohedFast(find(cohedFast>1));
%cohedFastAvg(kk) = mean(cohedFast(echoBandRange));
%cohedFastAvg(kk) = min(cohedFast);
%cohxdFast = 0.8*cohxdFast + 0.2*log(SdFast ./ (SxFast + 1e-10));
%cohxdFastAvg(kk) = mean(cohxdFast(echoBandRange));
% coherence
Sxd = gamma*Sxd + (1 - gamma)*xf.*conj(df);
Sed = gamma*Sed + (1-gamma)*ef.*conj(df);
%Sxd = filter(freqSm, [1 -(1-freqSm)], Sxd);
%Sxd(end:1) = filter(freqSm, [1 -(1-freqSm)], Sxd(end:1));
%Sed = filter(freqSm, [1 -(1-freqSm)], Sed);
%Sed(end:1) = filter(freqSm, [1 -(1-freqSm)], Sed(end:1));
cohed = real(Sed.*conj(Sed))./(Se.*Sd + 1e-10);
%cohedAvg(kk) = mean(cohed(echoBandRange));
%cohedAvg(kk) = cohed(6);
%cohedAvg(kk) = min(cohed);
cohxd = real(Sxd.*conj(Sxd))./(Sx.*Sd + 1e-10);
%freqSm = 0.5;
%cohxd(3:end) = filter(freqSm, [1 -(1-freqSm)], cohxd(3:end));
%cohxd(end:3) = filter(freqSm, [1 -(1-freqSm)], cohxd(end:3));
%cohxdAvg(kk) = mean(cohxd(echoBandRange));
%cohxdAvg(kk) = (cohxd(32));
%cohxdAvg(kk) = max(cohxd);
%xf = xfm(:,dIdx);
%SxBad = gamma*SxBad + (1 - gamma)*real(xf.*conj(xf));
%SxdBad = gamma*SxdBad + (1 - gamma)*xf.*conj(df);
%cohxdBad = real(SxdBad.*conj(SxdBad))./(SxBad.*Sd + 0.01);
%cohxdAvgBad(kk) = mean(cohxdBad);
%for j=1:N+1
% mutInf(j) = 0.9*mutInf(j) + 0.1*information(abs(xfm(j,:)), abs(dfm(j,:)));
%end
%mutInfAvg(kk) = mean(mutInf);
%hnled = cohedFast;
%xIdx = find(cohxd > 1 - cohed);
%hnled(xIdx) = 1 - cohxd(xIdx);
%hnled = 1 - max(cohxd, 1-cohedFast);
hnled = min(1 - cohxd, cohed);
%hnled = 1 - cohxd;
%hnled = max(1 - (cohxd + (1-cohedFast)), 0);
%hnled = 1 - max(cohxd, 1-cohed);
if kk > 1
cohxdSlow(kk,:) = 0.99*cohxdSlow(kk-1,:) + 0.01*cohxd';
cohedSlow(kk,:) = 0.99*cohedSlow(kk-1,:) + 0.01*(1-cohed)';
end
if 0
%if kk > 50
%idx = find(hnled > 0.3);
hnlMax = hnlMax*0.9999;
%hnlMax(idx) = max(hnlMax(idx), hnled(idx));
hnlMax = max(hnlMax, hnled);
%overdrive(idx) = max(log(hnlMax(idx))/log(0.99), 1);
avgHnl = mean(hnlMax(echoBandRange));
if avgHnl > 0.3
overdrive = max(log(avgHnl)/log(0.99), 1);
end
weight(4:end) = max(hnlMax) - hnlMax(4:end);
end
%[hg, gidx] = max(hnled);
%fnrg = Sx(gidx) / (Sd(gidx) + 1e-10);
%[tmp, bidx] = find((Sx / Sd + 1e-10) > fnrg);
%hnled(bidx) = hg;
%cohed1 = mean(cohed(cohRange)); % range depends on bandwidth
%cohed1 = cohed1^2;
%echoBands(kk) = length(find(cohed(echoBandRange) < 0.25))/length(echoBandRange);
%if (fbSupp == 0)
% if (echoBands(kk) > 0.8)
% fbSupp = 1;
% end
%else
% if (echoBands(kk) < 0.6)
% fbSupp = 0;
% end
%end
%overdrive(kk) = 7.5*echoBands(kk) + 0.5;
% Factor by which to weight other bands
%if (cohed1 < 0.1)
% w = 0.8 - cohed1*10*0.4;
%else
% w = 0.4;
%end
% Weight coherence subbands
%hnled = w*cohed1 + (1 - w)*cohed;
%hnled = (hnled).^2;
%cohed(floor(N/2):end) = cohed(floor(N/2):end).^2;
%if fbSupp == 1
% cohed = zeros(size(cohed));
%end
%cohed = cohed.^overdrive(kk);
%hnled = gamma*hnled + (1 - gamma)*cohed;
% Additional hf suppression
%hnledp = [hnledp ; mean(hnled)];
%hnled(floor(N/2):end) = hnled(floor(N/2):end).^2;
%ef = ef.*((weight*(min(1 - hnled)).^2 + (1 - weight).*(1 - hnled)).^2);
cohedMean = mean(cohed(echoBandRange));
%aggrFact = 4*(1-mean(hnled(echoBandRange))) + 1;
%[hnlSort, hnlSortIdx] = sort(hnled(echoBandRange));
[hnlSort, hnlSortIdx] = sort(1-cohxd(echoBandRange));
[xSort, xSortIdx] = sort(Sx);
%aggrFact = (1-mean(hnled(echoBandRange)));
%hnlSortQ = hnlSort(qIdx);
hnlSortQ = mean(1 - cohxd(echoBandRange));
%hnlSortQ = mean(1 - cohxd);
[hnlSort2, hnlSortIdx2] = sort(hnled(echoBandRange));
%[hnlSort2, hnlSortIdx2] = sort(hnled);
hnlQuant = 0.75;
hnlQuantLow = 0.5;
qIdx = floor(hnlQuant*length(hnlSort2));
qIdxLow = floor(hnlQuantLow*length(hnlSort2));
hnlPrefAvg = hnlSort2(qIdx);
hnlPrefAvgLow = hnlSort2(qIdxLow);
%hnlPrefAvgLow = mean(hnled);
%hnlPrefAvg = max(hnlSort2);
%hnlPrefAvgLow = min(hnlSort2);
%hnlPref = hnled(echoBandRange);
%hnlPrefAvg = mean(hnlPref(xSortIdx((0.5*length(xSortIdx)):end)));
%hnlPrefAvg = min(hnlPrefAvg, hnlSortQ);
%hnlSortQIdx = hnlSortIdx(qIdx);
%SeQ = Se(qIdx + echoBandRange(1) - 1);
%SdQ = Sd(qIdx + echoBandRange(1) - 1);
%SeQ = Se(qIdxLow + echoBandRange(1) - 1);
%SdQ = Sd(qIdxLow + echoBandRange(1) - 1);
%propLow = length(find(hnlSort < 0.1))/length(hnlSort);
%aggrFact = min((1 - hnlSortQ)/2, 0.5);
%aggrTerm = 1/aggrFact;
%hnlg = mean(hnled(echoBandRange));
%hnlg = hnlSortQ;
%if suppState == 0
% if hnlg < 0.05
% suppState = 2;
% transCtr = 0;
% elseif hnlg < 0.75
% suppState = 1;
% transCtr = 0;
% end
%elseif suppState == 1
% if hnlg > 0.8
% suppState = 0;
% transCtr = 0;
% elseif hnlg < 0.05
% suppState = 2;
% transCtr = 0;
% end
%else
% if hnlg > 0.8
% suppState = 0;
% transCtr = 0;
% elseif hnlg > 0.25
% suppState = 1;
% transCtr = 0;
% end
%end
%if kk > 50
if cohedMean > 0.98 & hnlSortQ > 0.9
%if suppState == 1
% hnled = 0.5*hnled + 0.5*cohed;
% %hnlSortQ = 0.5*hnlSortQ + 0.5*cohedMean;
% hnlPrefAvg = 0.5*hnlPrefAvg + 0.5*cohedMean;
%else
% hnled = cohed;
% %hnlSortQ = cohedMean;
% hnlPrefAvg = cohedMean;
%end
suppState = 0;
elseif cohedMean < 0.95 | hnlSortQ < 0.8
%if suppState == 0
% hnled = 0.5*hnled + 0.5*cohed;
% %hnlSortQ = 0.5*hnlSortQ + 0.5*cohedMean;
% hnlPrefAvg = 0.5*hnlPrefAvg + 0.5*cohedMean;
%end
suppState = 1;
end
if hnlSortQ < cohxdLocalMin & hnlSortQ < 0.75
cohxdLocalMin = hnlSortQ;
end
if cohxdLocalMin == 1
ovrd = 3;
hnled = 1-cohxd;
hnlPrefAvg = hnlSortQ;
hnlPrefAvgLow = hnlSortQ;
end
if suppState == 0
hnled = cohed;
hnlPrefAvg = cohedMean;
hnlPrefAvgLow = cohedMean;
end
%if hnlPrefAvg < hnlLocalMin & hnlPrefAvg < 0.6
if hnlPrefAvgLow < hnlLocalMin & hnlPrefAvgLow < 0.6
%hnlLocalMin = hnlPrefAvg;
%hnlMin = hnlPrefAvg;
hnlLocalMin = hnlPrefAvgLow;
hnlMin = hnlPrefAvgLow;
hnlNewMin = 1;
hnlMinCtr = 0;
%if hnlMinCtr == 0
% hnlMinCtr = hnlMinCtr + 1;
%else
% hnlMinCtr = 0;
% hnlMin = hnlLocalMin;
%SeLocalMin = SeQ;
%SdLocalMin = SdQ;
%SeLocalAvg = 0;
%minCtr = 0;
% ovrd = max(log(0.0001)/log(hnlMin), 2);
%divergeFact = hnlLocalMin;
end
if hnlNewMin == 1
hnlMinCtr = hnlMinCtr + 1;
end
if hnlMinCtr == 2
hnlNewMin = 0;
hnlMinCtr = 0;
%ovrd = max(log(0.0001)/log(hnlMin), 2);
ovrd = max(log(0.00001)/(log(hnlMin + 1e-10) + 1e-10), 3);
%ovrd = max(log(0.00000001)/(log(hnlMin + 1e-10) + 1e-10), 5);
%ovrd = max(log(0.0001)/log(hnlPrefAvg), 2);
%ovrd = max(log(0.001)/log(hnlMin), 2);
end
hnlLocalMin = min(hnlLocalMin + 0.0008/mult, 1);
cohxdLocalMin = min(cohxdLocalMin + 0.0004/mult, 1);
%divergeFact = hnlSortQ;
%if minCtr > 0 & hnlLocalMin < 1
% hnlMin = hnlLocalMin;
% %SeMin = 0.9*SeMin + 0.1*sqrt(SeLocalMin);
% SdMin = sqrt(SdLocalMin);
% %SeMin = sqrt(SeLocalMin)*hnlSortQ;
% SeMin = sqrt(SeLocalMin);
% %ovrd = log(100/SeMin)/log(hnlSortQ);
% %ovrd = log(100/SeMin)/log(hnlSortQ);
% ovrd = log(0.01)/log(hnlMin);
% ovrd = max(ovrd, 2);
% ovrdPos = hnlSortQIdx;
% %ovrd = max(ovrd, 1);
% %SeMin = sqrt(SeLocalAvg/5);
% minCtr = 0;
%else
% %SeLocalMin = 0.9*SeLocalMin +0.1*SeQ;
% SeLocalAvg = SeLocalAvg + SeQ;
% minCtr = minCtr + 1;
%end
if ovrd < ovrdSm
ovrdSm = 0.99*ovrdSm + 0.01*ovrd;
else
ovrdSm = 0.9*ovrdSm + 0.1*ovrd;
end
%end
%ekEn = sum(real(ekfb.^2));
%dkEn = sum(real(dk.^2));
ekEn = sum(Se);
dkEn = sum(Sd);
if divergeState == 0
if ekEn > dkEn
ef = df;
divergeState = 1;
%hnlPrefAvg = hnlSortQ;
%hnled = (1 - cohxd);
end
else
%if ekEn*1.1 < dkEn
%if ekEn*1.26 < dkEn
if ekEn*1.05 < dkEn
divergeState = 0;
else
ef = df;
end
end
if ekEn > dkEn*19.95
WFb=zeros(N+1,M); % Block-based FD NLMS
end
ekEnV(kk) = ekEn;
dkEnV(kk) = dkEn;
hnlLocalMinV(kk) = hnlLocalMin;
cohxdLocalMinV(kk) = cohxdLocalMin;
hnlMinV(kk) = hnlMin;
%cohxdMaxLocal = max(cohxdSlow(kk,:));
%if kk > 50
%cohxdMaxLocal = 1-hnlSortQ;
%if cohxdMaxLocal > 0.5
% %if cohxdMaxLocal > cohxdMax
% odScale = max(log(cohxdMaxLocal)/log(0.95), 1);
% %overdrive(7:end) = max(log(cohxdSlow(kk,7:end))/log(0.9), 1);
% cohxdMax = cohxdMaxLocal;
% end
%end
%end
%cohxdMax = cohxdMax*0.999;
%overdriveM(kk,:) = max(overdrive, 1);
%aggrFact = 0.25;
aggrFact = 0.3;
%aggrFact = 0.5*propLow;
%if fs == 8000
% wCurve = [0 ; 0 ; aggrFact*sqrt(linspace(0,1,N-1))' + 0.1];
%else
% wCurve = [0; 0; 0; aggrFact*sqrt(linspace(0,1,N-2))' + 0.1];
%end
wCurve = [0; aggrFact*sqrt(linspace(0,1,N))' + 0.1];
% For sync with C
%if fs == 8000
% wCurve = wCurve(2:end);
%else
% wCurve = wCurve(1:end-1);
%end
%weight = aggrFact*(sqrt(linspace(0,1,N+1)'));
%weight = aggrFact*wCurve;
weight = wCurve;
%weight = aggrFact*ones(N+1,1);
%weight = zeros(N+1,1);
%hnled = weight.*min(hnled) + (1 - weight).*hnled;
%hnled = weight.*min(mean(hnled(echoBandRange)), hnled) + (1 - weight).*hnled;
%hnled = weight.*min(hnlSortQ, hnled) + (1 - weight).*hnled;
%hnlSortQV(kk) = mean(hnled);
%hnlPrefAvgV(kk) = mean(hnled(echoBandRange));
hnled = weight.*min(hnlPrefAvg, hnled) + (1 - weight).*hnled;
%od = aggrFact*(sqrt(linspace(0,1,N+1)') + aggrTerm);
%od = 4*(sqrt(linspace(0,1,N+1)') + 1/4);
%ovrdFact = (ovrdSm - 1) / sqrt(ovrdPos/(N+1));
%ovrdFact = ovrdSm / sqrt(echoBandRange(floor(length(echoBandRange)/2))/(N+1));
%od = ovrdFact*sqrt(linspace(0,1,N+1))' + 1;
%od = ovrdSm*ones(N+1,1).*abs(WFb(:,dIdx))/(max(abs(WFb(:,dIdx)))+1e-10);
%od = ovrdSm*ones(N+1,1);
%od = ovrdSm*WFbD.*(sqrt(linspace(0,1,N+1))' + 1);
od = ovrdSm*(sqrt(linspace(0,1,N+1))' + 1);
%od = 4*(sqrt(linspace(0,1,N+1))' + 1);
%od = 2*ones(N+1,1);
%od = 2*ones(N+1,1);
%sshift = ((1-hnled)*2-1).^3+1;
sshift = ones(N+1,1);
hnled = hnled.^(od.*sshift);
%if hnlg > 0.75
%if (suppState ~= 0)
% transCtr = 0;
%end
% suppState = 0;
%elseif hnlg < 0.6 & hnlg > 0.2
% suppState = 1;
%elseif hnlg < 0.1
%hnled = zeros(N+1, 1);
%if (suppState ~= 2)
% transCtr = 0;
%end
% suppState = 2;
%else
% if (suppState ~= 2)
% transCtr = 0;
% end
% suppState = 2;
%end
%if suppState == 0
% hnled = ones(N+1, 1);
%elseif suppState == 2
% hnled = zeros(N+1, 1);
%end
%hnled(find(hnled < 0.1)) = 0;
%hnled = hnled.^2;
%if transCtr < 5
%hnl = 0.75*hnl + 0.25*hnled;
% transCtr = transCtr + 1;
%else
hnl = hnled;
%end
%hnled(find(hnled < 0.05)) = 0;
ef = ef.*(hnl);
%ef = ef.*(min(1 - cohxd, cohed).^2);
%ef = ef.*((1-cohxd).^2);
ovrdV(kk) = ovrdSm;
%ovrdV(kk) = dIdx;
%ovrdV(kk) = divergeFact;
%hnledAvg(kk) = 1-mean(1-cohedFast(echoBandRange));
hnledAvg(kk) = 1-mean(1-cohed(echoBandRange));
hnlxdAvg(kk) = 1-mean(cohxd(echoBandRange));
%hnlxdAvg(kk) = cohxd(5);
%hnlSortQV(kk) = mean(hnled);
hnlSortQV(kk) = hnlPrefAvgLow;
hnlPrefAvgV(kk) = hnlPrefAvg;
%hnlAvg(kk) = propLow;
%ef(N/2:end) = 0;
%ner = (sum(Sd) ./ (sum(Se.*(hnl.^2)) + 1e-10));
% Comfort noise
if (CNon)
snn=sqrt(Sym);
snn(1)=0; % Reject LF noise
Un=snn.*exp(j*2*pi.*[0;rand(N-1,1);0]);
% Weight comfort noise by suppression
Un = sqrt(1-hnled.^2).*Un;
Fmix = ef + Un;
else
Fmix = ef;
end
% Overlap and add in time domain for smoothness
tmp = [Fmix ; flipud(conj(Fmix(2:N)))];
mixw = wins.*real(ifft(tmp));
mola = mbuf(end-N+1:end) + mixw(1:N);
mbuf = mixw;
ercn(pos:pos+N-1) = mola;
end % NLPon
% Filter update
%Ek2 = Ek ./(12*pn + 0.001); % Normalized error
%Ek2 = Ek2 * divergeFact;
%Ek2 = Ek ./(pn + 0.001); % Normalized error
%Ek2 = Ek ./(100*pn + 0.001); % Normalized error
%divergeIdx = find(abs(Ek) > abs(DD));
%divergeIdx = find(Se > Sd);
%threshMod = threshold*ones(N+1,1);
%if length(divergeIdx) > 0
%if sum(abs(Ek)) > sum(abs(DD))
%WFb(divergeIdx,:) = WFb(divergeIdx,:) .* repmat(sqrt(Sd(divergeIdx)./(Se(divergeIdx)+1e-10))),1,M);
%Ek2(divergeIdx) = Ek2(divergeIdx) .* sqrt(Sd(divergeIdx)./(Se(divergeIdx)+1e-10));
%Ek2(divergeIdx) = Ek2(divergeIdx) .* abs(DD(divergeIdx))./(abs(Ek(divergeIdx))+1e-10);
%WFb(divergeIdx,:) = WFbOld(divergeIdx,:);
%WFb = WFbOld;
%threshMod(divergeIdx) = threshMod(divergeIdx) .* abs(DD(divergeIdx))./(abs(Ek(divergeIdx))+1e-10);
% threshMod(divergeIdx) = threshMod(divergeIdx) .* sqrt(Sd(divergeIdx)./(Se(divergeIdx)+1e-10));
%end
%absEf = max(abs(Ek2), threshold);
%absEf = ones(N+1,1)*threshold./absEf;
%absEf = max(abs(Ek2), threshMod);
%absEf = threshMod./absEf;
%Ek2 = Ek2.*absEf;
%if sum(Se) <= sum(Sd)
% mEk = mufb.*Ek2;
% PP = conj(XFm).*(ones(M,1) * mEk')';
% tmp = [PP ; flipud(conj(PP(2:N,:)))];
% IFPP = real(ifft(tmp));
% PH = IFPP(1:N,:);
% tmp = fft([PH;zeros(N,M)]);
% FPH = tmp(1:N+1,:);
% %WFbOld = WFb;
% WFb = WFb + FPH;
%else
% WF = WFbOld;
%end
% Shift old FFTs
%for m=M:-1:2
% XFm(:,m) = XFm(:,m-1);
% YFm(:,m) = YFm(:,m-1);
%end
XFm(:,2:end) = XFm(:,1:end-1);
YFm(:,2:end) = YFm(:,1:end-1);
xfwm(:,2:end) = xfwm(:,1:end-1);
dfm(:,2:end) = dfm(:,1:end-1);
%if mod(kk, floor(Nb/50)) == 0
% fprintf(1, '.');
%end
if mod(kk, floor(Nb/100)) == 0
%if mod(kk, floor(Nb/500)) == 0
progressbar(kk/Nb);
%figure(5)
%plot(abs(WFb));
%legend('1','2','3','4','5','6','7','8','9','10','11','12');
%title(kk*N/fs);
%figure(6)
%plot(WFbD);
%figure(6)
%plot(threshMod)
%if length(divergeIdx) > 0
% plot(abs(DD))
% hold on
% plot(abs(Ek), 'r')
% hold off
%plot(min(sqrt(Sd./(Se+1e-10)),1))
%axis([0 N 0 1]);
%end
%figure(6)
%plot(cohedFast);
%axis([1 N+1 0 1]);
%plot(WFbEn);
%figure(7)
%plot(weight);
%plot([cohxd 1-cohed]);
%plot([cohxd 1-cohed 1-cohedFast hnled]);
%plot([cohxd cohxdFast/max(cohxdFast)]);
%legend('cohxd', '1-cohed', '1-cohedFast');
%axis([1 65 0 1]);
%pause(0.5);
%overdrive
end
end
progressbar(1);
%figure(2);
%plot([feat(:,1) feat(:,2)+1 feat(:,3)+2 mfeat+3]);
%plot([feat(:,1) mfeat+1]);
%figure(3);
%plot(10*log10([dri erifb erifb3 ericn]));
%legend('Near-end','Error','Post NLP','Final',4);
% Compensate for delay
%ercn=[ercn(N+1:end);zeros(N,1)];
%ercn_=[ercn_(N+1:end);zeros(N,1)];
%figure(11);
%plot(cohxdSlow);
%figure(12);
%surf(cohxdSlow);
%shading interp;
%figure(13);
%plot(overdriveM);
%figure(14);
%surf(overdriveM);
%shading interp;
figure(10);
t = (0:Nb)*N/fs;
rrinSubSamp = rrin(N*(1:(Nb+1)));
plot(t, rrinSubSamp/max(abs(rrinSubSamp)),'b');
hold on
plot(t, hnledAvg, 'r');
plot(t, hnlxdAvg, 'g');
plot(t, hnlSortQV, 'y');
plot(t, hnlLocalMinV, 'k');
plot(t, cohxdLocalMinV, 'c');
plot(t, hnlPrefAvgV, 'm');
%plot(t, cohxdAvg, 'r');
%plot(cohxdFastAvg, 'r');
%plot(cohxdAvgBad, 'k');
%plot(t, cohedAvg, 'k');
%plot(t, 1-cohedFastAvg, 'k');
%plot(ssin(N*(1:floor(length(ssin)/N)))/max(abs(ssin)));
%plot(echoBands,'r');
%plot(overdrive, 'g');
%plot(erfb(N*(1:floor(length(erfb)/N)))/max(abs(erfb)));
hold off
tightx;
figure(11)
plot(t, ovrdV);
tightx;
%plot(mfeat,'r');
%plot(1-cohxyp_,'r');
%plot(Hnlxydp,'y');
%plot(hnledp,'k');
%plot(Hnlxydp, 'c');
%plot(ccohpd_,'k');
%plot(supplot_, 'g');
%plot(ones(length(mfeat),1)*rr1_, 'k');
%plot(ones(length(mfeat),1)*rr2_, 'k');
%plot(N*(1:length(feat)), feat);
%plot(Sep_,'r');
%axis([1 floor(length(erfb)/N) -1 1])
%hold off
%plot(10*log10([Se_, Sx_, Seu_, real(sf_.*conj(sf_))]));
%legend('Se','Sx','Seu','S');
%figure(5)
%plot([ercn ercn_]);
figure(12)
plot(t, dIdxV);
%plot(t, SLxV);
tightx;
%figure(13)
%plot(t, [ekEnV dkEnV]);
%plot(t, dkEnV./(ekEnV+1e-10));
%tightx;
%close(hh);
%spclab(fs,ssin,erfb,ercn,'outxd.pcm');
%spclab(fs,rrin,ssin,erfb,1.78*ercn,'vqeOut-1.pcm');
%spclab(fs,erfb,'aecOutLp.pcm');
%spclab(fs,rrin,ssin,erfb,1.78*ercn,'aecOut25.pcm','vqeOut-1.pcm');
%spclab(fs,rrin,ssin,erfb,ercn,'aecOut-mba.pcm');
%spclab(fs,rrin,ssin,erfb,ercn,'aecOut.pcm');
%spclab(fs, ssin, erfb, ercn, 'out0.pcm');

View File

@ -0,0 +1,46 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'aec',
'type': '<(library)',
'dependencies': [
'<(webrtc_root)/common_audio/common_audio.gyp:spl',
'apm_util'
],
'include_dirs': [
'../interface',
],
'direct_dependent_settings': {
'include_dirs': [
'../interface',
],
},
'sources': [
'../interface/echo_cancellation.h',
'echo_cancellation.c',
'aec_core.h',
'aec_core.c',
'aec_core_sse2.c',
'aec_rdft.h',
'aec_rdft.c',
'aec_rdft_sse2.c',
'resampler.h',
'resampler.c',
],
},
],
}
# Local Variables:
# tab-width:2
# indent-tabs-mode:nil
# End:
# vim: set expandtab tabstop=2 shiftwidth=2:

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,176 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Specifies the interface for the AEC core.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_CORE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_CORE_H_
#include <stdio.h>
#include "signal_processing_library.h"
#include "typedefs.h"
//#define UNCONSTR // time-unconstrained filter
//#define AEC_DEBUG // for recording files
#define FRAME_LEN 80
#define PART_LEN 64 // Length of partition
#define PART_LEN1 (PART_LEN + 1) // Unique fft coefficients
#define PART_LEN2 (PART_LEN * 2) // Length of partition * 2
#define NR_PART 12 // Number of partitions
#define FILT_LEN (PART_LEN * NR_PART) // Filter length
#define FILT_LEN2 (FILT_LEN * 2) // Double filter length
#define FAR_BUF_LEN (FILT_LEN2 * 2)
#define PREF_BAND_SIZE 24
#define BLOCKL_MAX FRAME_LEN
typedef float complex_t[2];
// For performance reasons, some arrays of complex numbers are replaced by twice
// as long arrays of float, all the real parts followed by all the imaginary
// ones (complex_t[SIZE] -> float[2][SIZE]). This allows SIMD optimizations and
// is better than two arrays (one for the real parts and one for the imaginary
// parts) as this other way would require two pointers instead of one and cause
// extra register spilling. This also allows the offsets to be calculated at
// compile time.
// Metrics
enum {offsetLevel = -100};
typedef struct {
float sfrsum;
int sfrcounter;
float framelevel;
float frsum;
int frcounter;
float minlevel;
float averagelevel;
} power_level_t;
typedef struct {
float instant;
float average;
float min;
float max;
float sum;
float hisum;
float himean;
int counter;
int hicounter;
} stats_t;
typedef struct {
int farBufWritePos, farBufReadPos;
int knownDelay;
int inSamples, outSamples;
int delayEstCtr;
void *farFrBuf, *nearFrBuf, *outFrBuf;
void *nearFrBufH;
void *outFrBufH;
float xBuf[PART_LEN2]; // farend
float dBuf[PART_LEN2]; // nearend
float eBuf[PART_LEN2]; // error
float dBufH[PART_LEN2]; // nearend
float xPow[PART_LEN1];
float dPow[PART_LEN1];
float dMinPow[PART_LEN1];
float dInitMinPow[PART_LEN1];
float *noisePow;
float xfBuf[2][NR_PART * PART_LEN1]; // farend fft buffer
float wfBuf[2][NR_PART * PART_LEN1]; // filter fft
complex_t sde[PART_LEN1]; // cross-psd of nearend and error
complex_t sxd[PART_LEN1]; // cross-psd of farend and nearend
complex_t xfwBuf[NR_PART * PART_LEN1]; // farend windowed fft buffer
float sx[PART_LEN1], sd[PART_LEN1], se[PART_LEN1]; // far, near and error psd
float hNs[PART_LEN1];
float hNlFbMin, hNlFbLocalMin;
float hNlXdAvgMin;
int hNlNewMin, hNlMinCtr;
float overDrive, overDriveSm;
float targetSupp, minOverDrive;
float outBuf[PART_LEN];
int delayIdx;
short stNearState, echoState;
short divergeState;
int xfBufBlockPos;
short farBuf[FILT_LEN2 * 2];
short mult; // sampling frequency multiple
int sampFreq;
WebRtc_UWord32 seed;
float mu; // stepsize
float errThresh; // error threshold
int noiseEstCtr;
power_level_t farlevel;
power_level_t nearlevel;
power_level_t linoutlevel;
power_level_t nlpoutlevel;
int metricsMode;
int stateCounter;
stats_t erl;
stats_t erle;
stats_t aNlp;
stats_t rerl;
// Quantities to control H band scaling for SWB input
int freq_avg_ic; //initial bin for averaging nlp gain
int flag_Hband_cn; //for comfort noise
float cn_scale_Hband; //scale for comfort noise in H band
#ifdef AEC_DEBUG
FILE *farFile;
FILE *nearFile;
FILE *outFile;
FILE *outLpFile;
#endif
} aec_t;
typedef void (*WebRtcAec_FilterFar_t)(aec_t *aec, float yf[2][PART_LEN1]);
extern WebRtcAec_FilterFar_t WebRtcAec_FilterFar;
typedef void (*WebRtcAec_ScaleErrorSignal_t)(aec_t *aec, float ef[2][PART_LEN1]);
extern WebRtcAec_ScaleErrorSignal_t WebRtcAec_ScaleErrorSignal;
typedef void (*WebRtcAec_FilterAdaptation_t)
(aec_t *aec, float *fft, float ef[2][PART_LEN1]);
extern WebRtcAec_FilterAdaptation_t WebRtcAec_FilterAdaptation;
typedef void (*WebRtcAec_OverdriveAndSuppress_t)
(aec_t *aec, float hNl[PART_LEN1], const float hNlFb, float efw[2][PART_LEN1]);
extern WebRtcAec_OverdriveAndSuppress_t WebRtcAec_OverdriveAndSuppress;
int WebRtcAec_CreateAec(aec_t **aec);
int WebRtcAec_FreeAec(aec_t *aec);
int WebRtcAec_InitAec(aec_t *aec, int sampFreq);
void WebRtcAec_InitAec_SSE2(void);
void WebRtcAec_InitMetrics(aec_t *aec);
void WebRtcAec_ProcessFrame(aec_t *aec, const short *farend,
const short *nearend, const short *nearendH,
short *out, short *outH,
int knownDelay);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_CORE_H_

View File

@ -0,0 +1,429 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, SSE2 version of speed-critical functions.
*/
#include "typedefs.h"
#if defined(WEBRTC_USE_SSE2)
#include <emmintrin.h>
#include <math.h>
#include "aec_core.h"
#include "aec_rdft.h"
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm)
{
return aRe * bRe - aIm * bIm;
}
__inline static float MulIm(float aRe, float aIm, float bRe, float bIm)
{
return aRe * bIm + aIm * bRe;
}
static void FilterFarSSE2(aec_t *aec, float yf[2][PART_LEN1])
{
int i;
for (i = 0; i < NR_PART; i++) {
int j;
int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + aec->xfBufBlockPos >= NR_PART) {
xPos -= NR_PART*(PART_LEN1);
}
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
const __m128 yf_re = _mm_loadu_ps(&yf[0][j]);
const __m128 yf_im = _mm_loadu_ps(&yf[1][j]);
const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re);
const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im);
const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im);
const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re);
const __m128 e = _mm_sub_ps(a, b);
const __m128 f = _mm_add_ps(c, d);
const __m128 g = _mm_add_ps(yf_re, e);
const __m128 h = _mm_add_ps(yf_im, f);
_mm_storeu_ps(&yf[0][j], g);
_mm_storeu_ps(&yf[1][j], h);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
}
}
}
static void ScaleErrorSignalSSE2(aec_t *aec, float ef[2][PART_LEN1])
{
const __m128 k1e_10f = _mm_set1_ps(1e-10f);
const __m128 kThresh = _mm_set1_ps(aec->errThresh);
const __m128 kMu = _mm_set1_ps(aec->mu);
int i;
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 xPow = _mm_loadu_ps(&aec->xPow[i]);
const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
const __m128 xPowPlus = _mm_add_ps(xPow, k1e_10f);
__m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
__m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
const __m128 absEf = _mm_sqrt_ps(ef_sum2);
const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
__m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
__m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
__m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
ef_re_if = _mm_and_ps(bigger, ef_re_if);
ef_im_if = _mm_and_ps(bigger, ef_im_if);
ef_re = _mm_andnot_ps(bigger, ef_re);
ef_im = _mm_andnot_ps(bigger, ef_im);
ef_re = _mm_or_ps(ef_re, ef_re_if);
ef_im = _mm_or_ps(ef_im, ef_im_if);
ef_re = _mm_mul_ps(ef_re, kMu);
ef_im = _mm_mul_ps(ef_im, kMu);
_mm_storeu_ps(&ef[0][i], ef_re);
_mm_storeu_ps(&ef[1][i], ef_im);
}
// scalar code for the remaining items.
for (; i < (PART_LEN1); i++) {
float absEf;
ef[0][i] /= (aec->xPow[i] + 1e-10f);
ef[1][i] /= (aec->xPow[i] + 1e-10f);
absEf = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
if (absEf > aec->errThresh) {
absEf = aec->errThresh / (absEf + 1e-10f);
ef[0][i] *= absEf;
ef[1][i] *= absEf;
}
// Stepsize factor
ef[0][i] *= aec->mu;
ef[1][i] *= aec->mu;
}
}
static void FilterAdaptationSSE2(aec_t *aec, float *fft, float ef[2][PART_LEN1]) {
int i, j;
for (i = 0; i < NR_PART; i++) {
int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1);
int pos = i * PART_LEN1;
// Check for wrap
if (i + aec->xfBufBlockPos >= NR_PART) {
xPos -= NR_PART * PART_LEN1;
}
#ifdef UNCONSTR
for (j = 0; j < PART_LEN1; j++) {
aec->wfBuf[pos + j][0] += MulRe(aec->xfBuf[xPos + j][0],
-aec->xfBuf[xPos + j][1],
ef[j][0], ef[j][1]);
aec->wfBuf[pos + j][1] += MulIm(aec->xfBuf[xPos + j][0],
-aec->xfBuf[xPos + j][1],
ef[j][0], ef[j][1]);
}
#else
// Process the whole array...
for (j = 0; j < PART_LEN; j+= 4) {
// Load xfBuf and ef.
const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
const __m128 ef_re = _mm_loadu_ps(&ef[0][j]);
const __m128 ef_im = _mm_loadu_ps(&ef[1][j]);
// Calculate the product of conjugate(xfBuf) by ef.
// re(conjugate(a) * b) = aRe * bRe + aIm * bIm
// im(conjugate(a) * b)= aRe * bIm - aIm * bRe
const __m128 a = _mm_mul_ps(xfBuf_re, ef_re);
const __m128 b = _mm_mul_ps(xfBuf_im, ef_im);
const __m128 c = _mm_mul_ps(xfBuf_re, ef_im);
const __m128 d = _mm_mul_ps(xfBuf_im, ef_re);
const __m128 e = _mm_add_ps(a, b);
const __m128 f = _mm_sub_ps(c, d);
// Interleave real and imaginary parts.
const __m128 g = _mm_unpacklo_ps(e, f);
const __m128 h = _mm_unpackhi_ps(e, f);
// Store
_mm_storeu_ps(&fft[2*j + 0], g);
_mm_storeu_ps(&fft[2*j + 4], h);
}
// ... and fixup the first imaginary entry.
fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
-aec->xfBuf[1][xPos + PART_LEN],
ef[0][PART_LEN], ef[1][PART_LEN]);
aec_rdft_inverse_128(fft);
memset(fft + PART_LEN, 0, sizeof(float)*PART_LEN);
// fft scaling
{
float scale = 2.0f / PART_LEN2;
const __m128 scale_ps = _mm_load_ps1(&scale);
for (j = 0; j < PART_LEN; j+=4) {
const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
_mm_storeu_ps(&fft[j], fft_scale);
}
}
aec_rdft_forward_128(fft);
{
float wt1 = aec->wfBuf[1][pos];
aec->wfBuf[0][pos + PART_LEN] += fft[1];
for (j = 0; j < PART_LEN; j+= 4) {
__m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
__m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2 ,0));
const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3 ,1));
wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
_mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re);
_mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im);
}
aec->wfBuf[1][pos] = wt1;
}
#endif // UNCONSTR
}
}
static __m128 mm_pow_ps(__m128 a, __m128 b)
{
// a^b = exp2(b * log2(a))
// exp2(x) and log2(x) are calculated using polynomial approximations.
__m128 log2_a, b_log2_a, a_exp_b;
// Calculate log2(x), x = a.
{
// To calculate log2(x), we decompose x like this:
// x = y * 2^n
// n is an integer
// y is in the [1.0, 2.0) range
//
// log2(x) = log2(y) + n
// n can be evaluated by playing with float representation.
// log2(y) in a small range can be approximated, this code uses an order
// five polynomial approximation. The coefficients have been
// estimated with the Remez algorithm and the resulting
// polynomial has a maximum relative error of 0.00086%.
// Compute n.
// This is done by masking the exponent, shifting it into the top bit of
// the mantissa, putting eight into the biased exponent (to shift/
// compensate the fact that the exponent has been shifted in the top/
// fractional part and finally getting rid of the implicit leading one
// from the mantissa by substracting it out.
static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END =
{0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END =
{0x43800000, 0x43800000, 0x43800000, 0x43800000};
static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END =
{0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
static const int shift_exponent_into_top_mantissa = 8;
const __m128 two_n = _mm_and_ps(a, *((__m128 *)float_exponent_mask));
const __m128 n_1 = (__m128)_mm_srli_epi32((__m128i)two_n,
shift_exponent_into_top_mantissa);
const __m128 n_0 = _mm_or_ps(
(__m128)n_1, *((__m128 *)eight_biased_exponent));
const __m128 n = _mm_sub_ps(n_0, *((__m128 *)implicit_leading_one));
// Compute y.
static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END =
{0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END =
{0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
const __m128 mantissa = _mm_and_ps(a, *((__m128 *)mantissa_mask));
const __m128 y = _mm_or_ps(
mantissa, *((__m128 *)zero_biased_exponent_is_one));
// Approximate log2(y) ~= (y - 1) * pol5(y).
// pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
static const ALIGN16_BEG float ALIGN16_END C5[4] =
{-3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
static const ALIGN16_BEG float ALIGN16_END C4[4] =
{3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
static const ALIGN16_BEG float ALIGN16_END C3[4] =
{-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
static const ALIGN16_BEG float ALIGN16_END C2[4] =
{2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f};
static const ALIGN16_BEG float ALIGN16_END C1[4] =
{-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
static const ALIGN16_BEG float ALIGN16_END C0[4] =
{3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f};
const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128 *)C5));
const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128 *)C4));
const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128 *)C3));
const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128 *)C2));
const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128 *)C1));
const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128 *)C0));
const __m128 y_minus_one = _mm_sub_ps(
y, *((__m128 *)zero_biased_exponent_is_one));
const __m128 log2_y = _mm_mul_ps(y_minus_one , pol5_y);
// Combine parts.
log2_a = _mm_add_ps(n, log2_y);
}
// b * log2(a)
b_log2_a = _mm_mul_ps(b, log2_a);
// Calculate exp2(x), x = b * log2(a).
{
// To calculate 2^x, we decompose x like this:
// x = n + y
// n is an integer, the value of x - 0.5 rounded down, therefore
// y is in the [0.5, 1.5) range
//
// 2^x = 2^n * 2^y
// 2^n can be evaluated by playing with float representation.
// 2^y in a small range can be approximated, this code uses an order two
// polynomial approximation. The coefficients have been estimated
// with the Remez algorithm and the resulting polynomial has a
// maximum relative error of 0.17%.
// To avoid over/underflow, we reduce the range of input to ]-127, 129].
static const ALIGN16_BEG float max_input[4] ALIGN16_END =
{129.f, 129.f, 129.f, 129.f};
static const ALIGN16_BEG float min_input[4] ALIGN16_END =
{-126.99999f, -126.99999f, -126.99999f, -126.99999f};
const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128 *)max_input));
const __m128 x_max = _mm_max_ps(x_min, *((__m128 *)min_input));
// Compute n.
static const ALIGN16_BEG float half[4] ALIGN16_END =
{0.5f, 0.5f, 0.5f, 0.5f};
const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128 *)half));
const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
// Compute 2^n.
static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END =
{127, 127, 127, 127};
static const int float_exponent_shift = 23;
const __m128i two_n_exponent = _mm_add_epi32(
x_minus_half_floor, *((__m128i *)float_exponent_bias));
const __m128 two_n = (__m128)_mm_slli_epi32(
two_n_exponent, float_exponent_shift);
// Compute y.
const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
// Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
static const ALIGN16_BEG float C2[4] ALIGN16_END =
{3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
static const ALIGN16_BEG float C1[4] ALIGN16_END =
{6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
static const ALIGN16_BEG float C0[4] ALIGN16_END =
{1.0017247f, 1.0017247f, 1.0017247f, 1.0017247f};
const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128 *)C2));
const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128 *)C1));
const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128 *)C0));
// Combine parts.
a_exp_b = _mm_mul_ps(exp2_y, two_n);
}
return a_exp_b;
}
extern const float WebRtcAec_weightCurve[65];
extern const float WebRtcAec_overDriveCurve[65];
static void OverdriveAndSuppressSSE2(aec_t *aec, float hNl[PART_LEN1],
const float hNlFb,
float efw[2][PART_LEN1]) {
int i;
const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
const __m128 vec_one = _mm_set1_ps(1.0f);
const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i+=4) {
// Weight subbands
__m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(
vec_weightCurve, vec_hNlFb);
const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
const __m128 vec_one_weightCurve_hNl = _mm_mul_ps(
vec_one_weightCurve, vec_hNl);
const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
const __m128 vec_if1 = _mm_and_ps(
bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
vec_hNl = _mm_or_ps(vec_if0, vec_if1);
{
const __m128 vec_overDriveCurve = _mm_loadu_ps(
&WebRtcAec_overDriveCurve[i]);
const __m128 vec_overDriveSm_overDriveCurve = _mm_mul_ps(
vec_overDriveSm, vec_overDriveCurve);
vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
_mm_storeu_ps(&hNl[i], vec_hNl);
}
// Suppress error signal
{
__m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
__m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
_mm_storeu_ps(&efw[0][i], vec_efw_re);
_mm_storeu_ps(&efw[1][i], vec_efw_im);
}
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
// Weight subbands
if (hNl[i] > hNlFb) {
hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
(1 - WebRtcAec_weightCurve[i]) * hNl[i];
}
hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
// Suppress error signal
efw[0][i] *= hNl[i];
efw[1][i] *= hNl[i];
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
efw[1][i] *= -1;
}
}
void WebRtcAec_InitAec_SSE2(void) {
WebRtcAec_FilterFar = FilterFarSSE2;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
}
#endif // WEBRTC_USE_SSE2

View File

@ -0,0 +1,587 @@
/*
* http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
* Copyright Takuya OOURA, 1996-2001
*
* You may use, copy, modify and distribute this code for any purpose (include
* commercial use) and without fee. Please refer to this package when you modify
* this code.
*
* Changes by the WebRTC authors:
* - Trivial type modifications.
* - Minimal code subset to do rdft of length 128.
* - Optimizations because of known length.
*
* All changes are covered by the WebRTC license and IP grant:
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "aec_rdft.h"
#include <math.h>
#include "system_wrappers/interface/cpu_features_wrapper.h"
#include "typedefs.h"
// constants shared by all paths (C, SSE2).
float rdft_w[64];
// constants used by the C path.
float rdft_wk3ri_first[32];
float rdft_wk3ri_second[32];
// constants used by SSE2 but initialized in C path.
ALIGN16_BEG float ALIGN16_END rdft_wk1r[32];
ALIGN16_BEG float ALIGN16_END rdft_wk2r[32];
ALIGN16_BEG float ALIGN16_END rdft_wk3r[32];
ALIGN16_BEG float ALIGN16_END rdft_wk1i[32];
ALIGN16_BEG float ALIGN16_END rdft_wk2i[32];
ALIGN16_BEG float ALIGN16_END rdft_wk3i[32];
ALIGN16_BEG float ALIGN16_END cftmdl_wk1r[4];
static int ip[16];
static void bitrv2_32or128(int n, int *ip, float *a) {
// n is 32 or 128
int j, j1, k, k1, m, m2;
float xr, xi, yr, yi;
ip[0] = 0;
{
int l = n;
m = 1;
while ((m << 3) < l) {
l >>= 1;
for (j = 0; j < m; j++) {
ip[m + j] = ip[j] + l;
}
m <<= 1;
}
}
m2 = 2 * m;
for (k = 0; k < m; k++) {
for (j = 0; j < k; j++) {
j1 = 2 * j + ip[k];
k1 = 2 * k + ip[j];
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
j1 += m2;
k1 += 2 * m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
j1 += m2;
k1 -= m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
j1 += m2;
k1 += 2 * m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
}
j1 = 2 * k + m2 + ip[k];
k1 = j1 + m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
}
}
static void makewt_32(void) {
const int nw = 32;
int j, nwh;
float delta, x, y;
ip[0] = nw;
ip[1] = 1;
nwh = nw >> 1;
delta = atanf(1.0f) / nwh;
rdft_w[0] = 1;
rdft_w[1] = 0;
rdft_w[nwh] = cosf(delta * nwh);
rdft_w[nwh + 1] = rdft_w[nwh];
for (j = 2; j < nwh; j += 2) {
x = cosf(delta * j);
y = sinf(delta * j);
rdft_w[j] = x;
rdft_w[j + 1] = y;
rdft_w[nw - j] = y;
rdft_w[nw - j + 1] = x;
}
bitrv2_32or128(nw, ip + 2, rdft_w);
// pre-calculate constants used by cft1st_128 and cftmdl_128...
cftmdl_wk1r[0] = rdft_w[2];
cftmdl_wk1r[1] = rdft_w[2];
cftmdl_wk1r[2] = rdft_w[2];
cftmdl_wk1r[3] = -rdft_w[2];
{
int k1;
for (k1 = 0, j = 0; j < 128; j += 16, k1 += 2) {
const int k2 = 2 * k1;
const float wk2r = rdft_w[k1 + 0];
const float wk2i = rdft_w[k1 + 1];
float wk1r, wk1i;
// ... scalar version.
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
rdft_wk3ri_first[k1 + 0] = wk1r - 2 * wk2i * wk1i;
rdft_wk3ri_first[k1 + 1] = 2 * wk2i * wk1r - wk1i;
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
rdft_wk3ri_second[k1 + 0] = wk1r - 2 * wk2r * wk1i;
rdft_wk3ri_second[k1 + 1] = 2 * wk2r * wk1r - wk1i;
// ... vector version.
rdft_wk1r[k2 + 0] = rdft_w[k2 + 0];
rdft_wk1r[k2 + 1] = rdft_w[k2 + 0];
rdft_wk1r[k2 + 2] = rdft_w[k2 + 2];
rdft_wk1r[k2 + 3] = rdft_w[k2 + 2];
rdft_wk2r[k2 + 0] = rdft_w[k1 + 0];
rdft_wk2r[k2 + 1] = rdft_w[k1 + 0];
rdft_wk2r[k2 + 2] = -rdft_w[k1 + 1];
rdft_wk2r[k2 + 3] = -rdft_w[k1 + 1];
rdft_wk3r[k2 + 0] = rdft_wk3ri_first[k1 + 0];
rdft_wk3r[k2 + 1] = rdft_wk3ri_first[k1 + 0];
rdft_wk3r[k2 + 2] = rdft_wk3ri_second[k1 + 0];
rdft_wk3r[k2 + 3] = rdft_wk3ri_second[k1 + 0];
rdft_wk1i[k2 + 0] = -rdft_w[k2 + 1];
rdft_wk1i[k2 + 1] = rdft_w[k2 + 1];
rdft_wk1i[k2 + 2] = -rdft_w[k2 + 3];
rdft_wk1i[k2 + 3] = rdft_w[k2 + 3];
rdft_wk2i[k2 + 0] = -rdft_w[k1 + 1];
rdft_wk2i[k2 + 1] = rdft_w[k1 + 1];
rdft_wk2i[k2 + 2] = -rdft_w[k1 + 0];
rdft_wk2i[k2 + 3] = rdft_w[k1 + 0];
rdft_wk3i[k2 + 0] = -rdft_wk3ri_first[k1 + 1];
rdft_wk3i[k2 + 1] = rdft_wk3ri_first[k1 + 1];
rdft_wk3i[k2 + 2] = -rdft_wk3ri_second[k1 + 1];
rdft_wk3i[k2 + 3] = rdft_wk3ri_second[k1 + 1];
}
}
}
static void makect_32(void) {
float *c = rdft_w + 32;
const int nc = 32;
int j, nch;
float delta;
ip[1] = nc;
nch = nc >> 1;
delta = atanf(1.0f) / nch;
c[0] = cosf(delta * nch);
c[nch] = 0.5f * c[0];
for (j = 1; j < nch; j++) {
c[j] = 0.5f * cosf(delta * j);
c[nc - j] = 0.5f * sinf(delta * j);
}
}
static void cft1st_128_C(float *a) {
const int n = 128;
int j, k1, k2;
float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
x0r = a[0] + a[2];
x0i = a[1] + a[3];
x1r = a[0] - a[2];
x1i = a[1] - a[3];
x2r = a[4] + a[6];
x2i = a[5] + a[7];
x3r = a[4] - a[6];
x3i = a[5] - a[7];
a[0] = x0r + x2r;
a[1] = x0i + x2i;
a[4] = x0r - x2r;
a[5] = x0i - x2i;
a[2] = x1r - x3i;
a[3] = x1i + x3r;
a[6] = x1r + x3i;
a[7] = x1i - x3r;
wk1r = rdft_w[2];
x0r = a[8] + a[10];
x0i = a[9] + a[11];
x1r = a[8] - a[10];
x1i = a[9] - a[11];
x2r = a[12] + a[14];
x2i = a[13] + a[15];
x3r = a[12] - a[14];
x3i = a[13] - a[15];
a[8] = x0r + x2r;
a[9] = x0i + x2i;
a[12] = x2i - x0i;
a[13] = x0r - x2r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[10] = wk1r * (x0r - x0i);
a[11] = wk1r * (x0r + x0i);
x0r = x3i + x1r;
x0i = x3r - x1i;
a[14] = wk1r * (x0i - x0r);
a[15] = wk1r * (x0i + x0r);
k1 = 0;
for (j = 16; j < n; j += 16) {
k1 += 2;
k2 = 2 * k1;
wk2r = rdft_w[k1 + 0];
wk2i = rdft_w[k1 + 1];
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
wk3r = rdft_wk3ri_first[k1 + 0];
wk3i = rdft_wk3ri_first[k1 + 1];
x0r = a[j + 0] + a[j + 2];
x0i = a[j + 1] + a[j + 3];
x1r = a[j + 0] - a[j + 2];
x1i = a[j + 1] - a[j + 3];
x2r = a[j + 4] + a[j + 6];
x2i = a[j + 5] + a[j + 7];
x3r = a[j + 4] - a[j + 6];
x3i = a[j + 5] - a[j + 7];
a[j + 0] = x0r + x2r;
a[j + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j + 4] = wk2r * x0r - wk2i * x0i;
a[j + 5] = wk2r * x0i + wk2i * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j + 2] = wk1r * x0r - wk1i * x0i;
a[j + 3] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j + 6] = wk3r * x0r - wk3i * x0i;
a[j + 7] = wk3r * x0i + wk3i * x0r;
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
wk3r = rdft_wk3ri_second[k1 + 0];
wk3i = rdft_wk3ri_second[k1 + 1];
x0r = a[j + 8] + a[j + 10];
x0i = a[j + 9] + a[j + 11];
x1r = a[j + 8] - a[j + 10];
x1i = a[j + 9] - a[j + 11];
x2r = a[j + 12] + a[j + 14];
x2i = a[j + 13] + a[j + 15];
x3r = a[j + 12] - a[j + 14];
x3i = a[j + 13] - a[j + 15];
a[j + 8] = x0r + x2r;
a[j + 9] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j + 12] = -wk2i * x0r - wk2r * x0i;
a[j + 13] = -wk2i * x0i + wk2r * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j + 10] = wk1r * x0r - wk1i * x0i;
a[j + 11] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j + 14] = wk3r * x0r - wk3i * x0i;
a[j + 15] = wk3r * x0i + wk3i * x0r;
}
}
static void cftmdl_128_C(float *a) {
const int l = 8;
const int n = 128;
const int m = 32;
int j0, j1, j2, j3, k, k1, k2, m2;
float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
for (j0 = 0; j0 < l; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
a[j2 + 0] = x0r - x2r;
a[j2 + 1] = x0i - x2i;
a[j1 + 0] = x1r - x3i;
a[j1 + 1] = x1i + x3r;
a[j3 + 0] = x1r + x3i;
a[j3 + 1] = x1i - x3r;
}
wk1r = rdft_w[2];
for (j0 = m; j0 < l + m; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
a[j2 + 0] = x2i - x0i;
a[j2 + 1] = x0r - x2r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * (x0r - x0i);
a[j1 + 1] = wk1r * (x0r + x0i);
x0r = x3i + x1r;
x0i = x3r - x1i;
a[j3 + 0] = wk1r * (x0i - x0r);
a[j3 + 1] = wk1r * (x0i + x0r);
}
k1 = 0;
m2 = 2 * m;
for (k = m2; k < n; k += m2) {
k1 += 2;
k2 = 2 * k1;
wk2r = rdft_w[k1 + 0];
wk2i = rdft_w[k1 + 1];
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
wk3r = rdft_wk3ri_first[k1 + 0];
wk3i = rdft_wk3ri_first[k1 + 1];
for (j0 = k; j0 < l + k; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j2 + 0] = wk2r * x0r - wk2i * x0i;
a[j2 + 1] = wk2r * x0i + wk2i * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * x0r - wk1i * x0i;
a[j1 + 1] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j3 + 0] = wk3r * x0r - wk3i * x0i;
a[j3 + 1] = wk3r * x0i + wk3i * x0r;
}
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
wk3r = rdft_wk3ri_second[k1 + 0];
wk3i = rdft_wk3ri_second[k1 + 1];
for (j0 = k + m; j0 < l + (k + m); j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j2 + 0] = -wk2i * x0r - wk2r * x0i;
a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * x0r - wk1i * x0i;
a[j1 + 1] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j3 + 0] = wk3r * x0r - wk3i * x0i;
a[j3 + 1] = wk3r * x0i + wk3i * x0r;
}
}
}
static void cftfsub_128(float *a) {
int j, j1, j2, j3, l;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
cft1st_128(a);
cftmdl_128(a);
l = 32;
for (j = 0; j < l; j += 2) {
j1 = j + l;
j2 = j1 + l;
j3 = j2 + l;
x0r = a[j] + a[j1];
x0i = a[j + 1] + a[j1 + 1];
x1r = a[j] - a[j1];
x1i = a[j + 1] - a[j1 + 1];
x2r = a[j2] + a[j3];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2] - a[j3];
x3i = a[j2 + 1] - a[j3 + 1];
a[j] = x0r + x2r;
a[j + 1] = x0i + x2i;
a[j2] = x0r - x2r;
a[j2 + 1] = x0i - x2i;
a[j1] = x1r - x3i;
a[j1 + 1] = x1i + x3r;
a[j3] = x1r + x3i;
a[j3 + 1] = x1i - x3r;
}
}
static void cftbsub_128(float *a) {
int j, j1, j2, j3, l;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
cft1st_128(a);
cftmdl_128(a);
l = 32;
for (j = 0; j < l; j += 2) {
j1 = j + l;
j2 = j1 + l;
j3 = j2 + l;
x0r = a[j] + a[j1];
x0i = -a[j + 1] - a[j1 + 1];
x1r = a[j] - a[j1];
x1i = -a[j + 1] + a[j1 + 1];
x2r = a[j2] + a[j3];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2] - a[j3];
x3i = a[j2 + 1] - a[j3 + 1];
a[j] = x0r + x2r;
a[j + 1] = x0i - x2i;
a[j2] = x0r - x2r;
a[j2 + 1] = x0i + x2i;
a[j1] = x1r - x3i;
a[j1 + 1] = x1i - x3r;
a[j3] = x1r + x3i;
a[j3 + 1] = x1i + x3r;
}
}
static void rftfsub_128_C(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
for (j1 = 1, j2 = 2; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr - wki * xi;
yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
static void rftbsub_128_C(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
a[1] = -a[1];
for (j1 = 1, j2 = 2; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr + wki * xi;
yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
void aec_rdft_forward_128(float *a) {
const int n = 128;
float xi;
bitrv2_32or128(n, ip + 2, a);
cftfsub_128(a);
rftfsub_128(a);
xi = a[0] - a[1];
a[0] += a[1];
a[1] = xi;
}
void aec_rdft_inverse_128(float *a) {
const int n = 128;
a[1] = 0.5f * (a[0] - a[1]);
a[0] -= a[1];
rftbsub_128(a);
bitrv2_32or128(n, ip + 2, a);
cftbsub_128(a);
}
// code path selection
rft_sub_128_t cft1st_128;
rft_sub_128_t cftmdl_128;
rft_sub_128_t rftfsub_128;
rft_sub_128_t rftbsub_128;
void aec_rdft_init(void) {
cft1st_128 = cft1st_128_C;
cftmdl_128 = cftmdl_128_C;
rftfsub_128 = rftfsub_128_C;
rftbsub_128 = rftbsub_128_C;
if (WebRtc_GetCPUInfo(kSSE2)) {
#if defined(WEBRTC_USE_SSE2)
aec_rdft_init_sse2();
#endif
}
// init library constants.
makewt_32();
makect_32();
}

View File

@ -0,0 +1,49 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_RDFT_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_RDFT_H_
#ifdef _MSC_VER /* visual c++ */
# define ALIGN16_BEG __declspec(align(16))
# define ALIGN16_END
#else /* gcc or icc */
# define ALIGN16_BEG
# define ALIGN16_END __attribute__((aligned(16)))
#endif
// constants shared by all paths (C, SSE2).
extern float rdft_w[64];
// constants used by the C path.
extern float rdft_wk3ri_first[32];
extern float rdft_wk3ri_second[32];
// constants used by SSE2 but initialized in C path.
extern float rdft_wk1r[32];
extern float rdft_wk2r[32];
extern float rdft_wk3r[32];
extern float rdft_wk1i[32];
extern float rdft_wk2i[32];
extern float rdft_wk3i[32];
extern float cftmdl_wk1r[4];
// code path selection function pointers
typedef void (*rft_sub_128_t)(float *a);
extern rft_sub_128_t rftfsub_128;
extern rft_sub_128_t rftbsub_128;
extern rft_sub_128_t cft1st_128;
extern rft_sub_128_t cftmdl_128;
// entry points
void aec_rdft_init(void);
void aec_rdft_init_sse2(void);
void aec_rdft_forward_128(float *a);
void aec_rdft_inverse_128(float *a);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_RDFT_H_

View File

@ -0,0 +1,397 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "typedefs.h"
#if defined(WEBRTC_USE_SSE2)
#include <emmintrin.h>
#include "aec_rdft.h"
static const ALIGN16_BEG float ALIGN16_END k_swap_sign[4] =
{-1.f, 1.f, -1.f, 1.f};
static void cft1st_128_SSE2(float *a) {
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j, k2;
for (k2 = 0, j = 0; j < 128; j += 16, k2 += 4) {
__m128 a00v = _mm_loadu_ps(&a[j + 0]);
__m128 a04v = _mm_loadu_ps(&a[j + 4]);
__m128 a08v = _mm_loadu_ps(&a[j + 8]);
__m128 a12v = _mm_loadu_ps(&a[j + 12]);
__m128 a01v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(1, 0, 1 ,0));
__m128 a23v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(3, 2, 3 ,2));
__m128 a45v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(1, 0, 1 ,0));
__m128 a67v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(3, 2, 3 ,2));
const __m128 wk1rv = _mm_load_ps(&rdft_wk1r[k2]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2]);
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2]);
__m128 x0v = _mm_add_ps(a01v, a23v);
const __m128 x1v = _mm_sub_ps(a01v, a23v);
const __m128 x2v = _mm_add_ps(a45v, a67v);
const __m128 x3v = _mm_sub_ps(a45v, a67v);
a01v = _mm_add_ps(x0v, x2v);
x0v = _mm_sub_ps(x0v, x2v);
__m128 x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0 ,1));
const __m128 a45_0v = _mm_mul_ps(wk2rv, x0v);
const __m128 a45_1v = _mm_mul_ps(wk2iv, x0w);
a45v = _mm_add_ps(a45_0v, a45_1v);
const __m128 x3w = _mm_shuffle_ps(x3v, x3v, _MM_SHUFFLE(2, 3, 0 ,1));
const __m128 x3s = _mm_mul_ps(mm_swap_sign, x3w);
x0v = _mm_add_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0 ,1));
const __m128 a23_0v = _mm_mul_ps(wk1rv, x0v);
const __m128 a23_1v = _mm_mul_ps(wk1iv, x0w);
a23v = _mm_add_ps(a23_0v, a23_1v);
x0v = _mm_sub_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0 ,1));
const __m128 a67_0v = _mm_mul_ps(wk3rv, x0v);
const __m128 a67_1v = _mm_mul_ps(wk3iv, x0w);
a67v = _mm_add_ps(a67_0v, a67_1v);
a00v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(1, 0, 1 ,0));
a04v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(1, 0, 1 ,0));
a08v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(3, 2, 3 ,2));
a12v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(3, 2, 3 ,2));
_mm_storeu_ps(&a[j + 0], a00v);
_mm_storeu_ps(&a[j + 4], a04v);
_mm_storeu_ps(&a[j + 8], a08v);
_mm_storeu_ps(&a[j + 12], a12v);
}
}
static void cftmdl_128_SSE2(float *a) {
const int l = 8;
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j0, k, k1, k2;
__m128 wk1rv = _mm_load_ps(cftmdl_wk1r);
for (j0 = 0; j0 < l; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 = _mm_shuffle_ps((__m128)a_00, (__m128)a_32,
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_08_40 = _mm_shuffle_ps((__m128)a_08, (__m128)a_40,
_MM_SHUFFLE(1, 0, 1 ,0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 = _mm_shuffle_ps((__m128)a_16, (__m128)a_48,
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_24_56 = _mm_shuffle_ps((__m128)a_24, (__m128)a_56,
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx0 = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
_mm_storel_epi64((__m128i*)&a[j0 + 0], (__m128i)xx0);
_mm_storel_epi64((__m128i*)&a[j0 + 32],
_mm_shuffle_epi32((__m128i)xx0, _MM_SHUFFLE(3, 2, 3, 2)));
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
_mm_storel_epi64((__m128i*)&a[j0 + 16], (__m128i)xx1);
_mm_storel_epi64((__m128i*)&a[j0 + 48],
_mm_shuffle_epi32((__m128i)xx1, _MM_SHUFFLE(2, 3, 2, 3)));
a[j0 + 48] = -a[j0 + 48];
const __m128 x3i0_3r0_3i1_x3r1 = (__m128)
_mm_shuffle_epi32((__m128i)x3r0_3i0_3r1_x3i1, _MM_SHUFFLE(2, 3, 0, 1));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
_mm_storel_epi64((__m128i*)&a[j0 + 8], (__m128i)x1_x3_add);
_mm_storel_epi64((__m128i*)&a[j0 + 24], (__m128i)x1_x3_sub);
const __m128 yy0 = _mm_shuffle_ps(x1_x3_add, x1_x3_sub,
_MM_SHUFFLE(2, 2, 2 ,2));
const __m128 yy1 = _mm_shuffle_ps(x1_x3_add, x1_x3_sub,
_MM_SHUFFLE(3, 3, 3 ,3));
const __m128 yy2 = _mm_mul_ps(mm_swap_sign, yy1);
const __m128 yy3 = _mm_add_ps(yy0, yy2);
const __m128 yy4 = _mm_mul_ps(wk1rv, yy3);
_mm_storel_epi64((__m128i*)&a[j0 + 40], (__m128i)yy4);
_mm_storel_epi64((__m128i*)&a[j0 + 56],
_mm_shuffle_epi32((__m128i)yy4, _MM_SHUFFLE(2, 3, 2, 3)));
}
k1 = 0;
k = 64;
k1 += 2;
k2 = 2 * k1;
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2+0]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2+0]);
wk1rv = _mm_load_ps(&rdft_wk1r[k2+0]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2+0]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2+0]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2+0]);
for (j0 = k; j0 < l + k; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 = _mm_shuffle_ps((__m128)a_00, (__m128)a_32,
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_08_40 = _mm_shuffle_ps((__m128)a_08, (__m128)a_40,
_MM_SHUFFLE(1, 0, 1 ,0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 = _mm_shuffle_ps((__m128)a_16, (__m128)a_48,
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_24_56 = _mm_shuffle_ps((__m128)a_24, (__m128)a_56,
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
_mm_storel_epi64((__m128i*)&a[j0 + 0], (__m128i)xx);
_mm_storel_epi64((__m128i*)&a[j0 + 32],
_mm_shuffle_epi32((__m128i)xx, _MM_SHUFFLE(3, 2, 3, 2)));
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx2 = _mm_mul_ps(xx1 , wk2rv);
const __m128 xx3 = _mm_mul_ps(wk2iv,
(__m128)_mm_shuffle_epi32((__m128i)xx1, _MM_SHUFFLE(2, 3, 0, 1)));
const __m128 xx4 = _mm_add_ps(xx2, xx3);
_mm_storel_epi64((__m128i*)&a[j0 + 16], (__m128i)xx4);
_mm_storel_epi64((__m128i*)&a[j0 + 48],
_mm_shuffle_epi32((__m128i)xx4, _MM_SHUFFLE(3, 2, 3, 2)));
const __m128 x3i0_3r0_3i1_x3r1 = (__m128)
_mm_shuffle_epi32((__m128i)x3r0_3i0_3r1_x3i1, _MM_SHUFFLE(2, 3, 0, 1));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 xx10 = _mm_mul_ps(x1_x3_add, wk1rv);
const __m128 xx11 = _mm_mul_ps(wk1iv,
(__m128)_mm_shuffle_epi32((__m128i)x1_x3_add, _MM_SHUFFLE(2, 3, 0, 1)));
const __m128 xx12 = _mm_add_ps(xx10, xx11);
_mm_storel_epi64((__m128i*)&a[j0 + 8], (__m128i)xx12);
_mm_storel_epi64((__m128i*)&a[j0 + 40],
_mm_shuffle_epi32((__m128i)xx12, _MM_SHUFFLE(3, 2, 3, 2)));
const __m128 xx20 = _mm_mul_ps(x1_x3_sub, wk3rv);
const __m128 xx21 = _mm_mul_ps(wk3iv,
(__m128)_mm_shuffle_epi32((__m128i)x1_x3_sub, _MM_SHUFFLE(2, 3, 0, 1)));
const __m128 xx22 = _mm_add_ps(xx20, xx21);
_mm_storel_epi64((__m128i*)&a[j0 + 24], (__m128i)xx22);
_mm_storel_epi64((__m128i*)&a[j0 + 56],
_mm_shuffle_epi32((__m128i)xx22, _MM_SHUFFLE(3, 2, 3, 2)));
}
}
static void rftfsub_128_SSE2(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] =
{0.5f, 0.5f, 0.5f, 0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[ j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(2, 0, 2 ,0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(3, 1, 3 ,1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(0, 2, 0 ,2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(1, 3, 1 ,3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr - wki * xi;
// yi = wkr * xi + wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_sub_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_add_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] -= yr;
// a[j2 + 1] -= yi;
// a[k2 + 0] += yr;
// a[k2 + 1] -= yi;
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(a_j2_p1, yi_); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(a_k2_p1, yi_); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(a_k2_0nt, a_k2_0nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(a_k2_4nt, a_k2_4nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr - wki * xi;
yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
static void rftbsub_128_SSE2(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] =
{0.5f, 0.5f, 0.5f, 0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
a[1] = -a[1];
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[ j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(2, 0, 2 ,0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(3, 1, 3 ,1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(0, 2, 0 ,2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(1, 3, 1 ,3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr + wki * xi;
// yi = wkr * xi - wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_add_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_sub_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] = a[j2 + 0] - yr;
// a[j2 + 1] = yi - a[j2 + 1];
// a[k2 + 0] = yr + a[k2 + 0];
// a[k2 + 1] = yi - a[k2 + 1];
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(yi_, a_j2_p1); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(yi_, a_k2_p1); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(a_k2_0nt, a_k2_0nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(a_k2_4nt, a_k2_4nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr + wki * xi;
yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
void aec_rdft_init_sse2(void) {
cft1st_128 = cft1st_128_SSE2;
cftmdl_128 = cftmdl_128_SSE2;
rftfsub_128 = rftfsub_128_SSE2;
rftbsub_128 = rftbsub_128_SSE2;
}
#endif // WEBRTC_USE_SS2

View File

@ -0,0 +1,824 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Contains the API functions for the AEC.
*/
#include <stdlib.h>
#include <string.h>
#include "echo_cancellation.h"
#include "aec_core.h"
#include "ring_buffer.h"
#include "resampler.h"
#ifdef AEC_DEBUG
#include <stdio.h>
#endif
#define BUF_SIZE_FRAMES 50 // buffer size (frames)
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const int bufSizeSamp = BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
static const int sampMsNb = 8; // samples per ms in nb
// Target suppression levels for nlp modes
// log{0.001, 0.00001, 0.00000001}
static const float targetSupp[3] = {-6.9f, -11.5f, -18.4f};
static const float minOverDrive[3] = {1.0f, 2.0f, 5.0f};
static const int initCheck = 42;
typedef struct {
int delayCtr;
int sampFreq;
int splitSampFreq;
int scSampFreq;
float sampFactor; // scSampRate / sampFreq
short nlpMode;
short autoOnOff;
short activity;
short skewMode;
short bufSizeStart;
//short bufResetCtr; // counts number of noncausal frames
int knownDelay;
// Stores the last frame added to the farend buffer
short farendOld[2][FRAME_LEN];
short initFlag; // indicates if AEC has been initialized
// Variables used for averaging far end buffer size
short counter;
short sum;
short firstVal;
short checkBufSizeCtr;
// Variables used for delay shifts
short msInSndCardBuf;
short filtDelay;
int timeForDelayChange;
int ECstartup;
int checkBuffSize;
int delayChange;
short lastDelayDiff;
#ifdef AEC_DEBUG
FILE *bufFile;
FILE *delayFile;
FILE *skewFile;
FILE *preCompFile;
FILE *postCompFile;
#endif // AEC_DEBUG
// Structures
void *farendBuf;
void *resampler;
int skewFrCtr;
int resample; // if the skew is small enough we don't resample
int highSkewCtr;
float skew;
int lastError;
aec_t *aec;
} aecpc_t;
// Estimates delay to set the position of the farend buffer read pointer
// (controlled by knownDelay)
static int EstBufDelay(aecpc_t *aecInst, short msInSndCardBuf);
// Stuffs the farend buffer if the estimated delay is too large
static int DelayComp(aecpc_t *aecInst);
WebRtc_Word32 WebRtcAec_Create(void **aecInst)
{
aecpc_t *aecpc;
if (aecInst == NULL) {
return -1;
}
aecpc = malloc(sizeof(aecpc_t));
*aecInst = aecpc;
if (aecpc == NULL) {
return -1;
}
if (WebRtcAec_CreateAec(&aecpc->aec) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
if (WebRtcApm_CreateBuffer(&aecpc->farendBuf, bufSizeSamp) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
if (WebRtcAec_CreateResampler(&aecpc->resampler) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
aecpc->initFlag = 0;
aecpc->lastError = 0;
#ifdef AEC_DEBUG
aecpc->aec->farFile = fopen("aecFar.pcm","wb");
aecpc->aec->nearFile = fopen("aecNear.pcm","wb");
aecpc->aec->outFile = fopen("aecOut.pcm","wb");
aecpc->aec->outLpFile = fopen("aecOutLp.pcm","wb");
aecpc->bufFile = fopen("aecBuf.dat", "wb");
aecpc->skewFile = fopen("aecSkew.dat", "wb");
aecpc->delayFile = fopen("aecDelay.dat", "wb");
aecpc->preCompFile = fopen("preComp.pcm", "wb");
aecpc->postCompFile = fopen("postComp.pcm", "wb");
#endif // AEC_DEBUG
return 0;
}
WebRtc_Word32 WebRtcAec_Free(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
#ifdef AEC_DEBUG
fclose(aecpc->aec->farFile);
fclose(aecpc->aec->nearFile);
fclose(aecpc->aec->outFile);
fclose(aecpc->aec->outLpFile);
fclose(aecpc->bufFile);
fclose(aecpc->skewFile);
fclose(aecpc->delayFile);
fclose(aecpc->preCompFile);
fclose(aecpc->postCompFile);
#endif // AEC_DEBUG
WebRtcAec_FreeAec(aecpc->aec);
WebRtcApm_FreeBuffer(aecpc->farendBuf);
WebRtcAec_FreeResampler(aecpc->resampler);
free(aecpc);
return 0;
}
WebRtc_Word32 WebRtcAec_Init(void *aecInst, WebRtc_Word32 sampFreq, WebRtc_Word32 scSampFreq)
{
aecpc_t *aecpc = aecInst;
AecConfig aecConfig;
if (aecpc == NULL) {
return -1;
}
if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->sampFreq = sampFreq;
if (scSampFreq < 1 || scSampFreq > 96000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->scSampFreq = scSampFreq;
// Initialize echo canceller core
if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
// Initialize farend buffer
if (WebRtcApm_InitBuffer(aecpc->farendBuf) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
aecpc->initFlag = initCheck; // indicates that initilisation has been done
if (aecpc->sampFreq == 32000) {
aecpc->splitSampFreq = 16000;
}
else {
aecpc->splitSampFreq = sampFreq;
}
aecpc->skewFrCtr = 0;
aecpc->activity = 0;
aecpc->delayChange = 1;
aecpc->delayCtr = 0;
aecpc->sum = 0;
aecpc->counter = 0;
aecpc->checkBuffSize = 1;
aecpc->firstVal = 0;
aecpc->ECstartup = 1;
aecpc->bufSizeStart = 0;
aecpc->checkBufSizeCtr = 0;
aecpc->filtDelay = 0;
aecpc->timeForDelayChange =0;
aecpc->knownDelay = 0;
aecpc->lastDelayDiff = 0;
aecpc->skew = 0;
aecpc->resample = kAecFalse;
aecpc->highSkewCtr = 0;
aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
memset(&aecpc->farendOld[0][0], 0, 160);
// Default settings.
aecConfig.nlpMode = kAecNlpModerate;
aecConfig.skewMode = kAecFalse;
aecConfig.metricsMode = kAecFalse;
if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
return 0;
}
// only buffer L band for farend
WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst, const WebRtc_Word16 *farend,
WebRtc_Word16 nrOfSamples)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
short newNrOfSamples;
short newFarend[MAX_RESAMP_LEN];
float skew;
if (aecpc == NULL) {
return -1;
}
if (farend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
skew = aecpc->skew;
// TODO: Is this really a good idea?
if (!aecpc->ECstartup) {
DelayComp(aecpc);
}
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
// Resample and get a new number of samples
newNrOfSamples = WebRtcAec_ResampleLinear(aecpc->resampler,
farend,
nrOfSamples,
skew,
newFarend);
WebRtcApm_WriteBuffer(aecpc->farendBuf, newFarend, newNrOfSamples);
#ifdef AEC_DEBUG
fwrite(farend, 2, nrOfSamples, aecpc->preCompFile);
fwrite(newFarend, 2, newNrOfSamples, aecpc->postCompFile);
#endif
}
else {
WebRtcApm_WriteBuffer(aecpc->farendBuf, farend, nrOfSamples);
}
return retVal;
}
WebRtc_Word32 WebRtcAec_Process(void *aecInst, const WebRtc_Word16 *nearend,
const WebRtc_Word16 *nearendH, WebRtc_Word16 *out, WebRtc_Word16 *outH,
WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf, WebRtc_Word32 skew)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
short i;
short farend[FRAME_LEN];
short nmbrOfFilledBuffers;
short nBlocks10ms;
short nFrames;
#ifdef AEC_DEBUG
short msInAECBuf;
#endif
// Limit resampling to doubling/halving of signal
const float minSkewEst = -0.5f;
const float maxSkewEst = 1.0f;
if (aecpc == NULL) {
return -1;
}
if (nearend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (out == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
// Check for valid pointers based on sampling rate
if (aecpc->sampFreq == 32000 && nearendH == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (msInSndCardBuf < 0) {
msInSndCardBuf = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
else if (msInSndCardBuf > 500) {
msInSndCardBuf = 500;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
msInSndCardBuf += 10;
aecpc->msInSndCardBuf = msInSndCardBuf;
if (aecpc->skewMode == kAecTrue) {
if (aecpc->skewFrCtr < 25) {
aecpc->skewFrCtr++;
}
else {
retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew);
if (retVal == -1) {
aecpc->skew = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
}
aecpc->skew /= aecpc->sampFactor*nrOfSamples;
if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) {
aecpc->resample = kAecFalse;
}
else {
aecpc->resample = kAecTrue;
}
if (aecpc->skew < minSkewEst) {
aecpc->skew = minSkewEst;
}
else if (aecpc->skew > maxSkewEst) {
aecpc->skew = maxSkewEst;
}
#ifdef AEC_DEBUG
fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile);
#endif
}
}
nFrames = nrOfSamples / FRAME_LEN;
nBlocks10ms = nFrames / aecpc->aec->mult;
if (aecpc->ECstartup) {
if (nearend != out) {
// Only needed if they don't already point to the same place.
memcpy(out, nearend, sizeof(short) * nrOfSamples);
}
nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecpc->farendBuf) / FRAME_LEN;
// The AEC is in the start up mode
// AEC is disabled until the soundcard buffer and farend buffers are OK
// Mechanism to ensure that the soundcard buffer is reasonably stable.
if (aecpc->checkBuffSize) {
aecpc->checkBufSizeCtr++;
// Before we fill up the far end buffer we require the amount of data on the
// sound card to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 4 consecutive frames. If it seems
// to be stable then we start to fill up the far end buffer.
if (aecpc->counter == 0) {
aecpc->firstVal = aecpc->msInSndCardBuf;
aecpc->sum = 0;
}
if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) <
WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) {
aecpc->sum += aecpc->msInSndCardBuf;
aecpc->counter++;
}
else {
aecpc->counter = 0;
}
if (aecpc->counter*nBlocks10ms >= 6) {
// The farend buffer size is determined in blocks of 80 samples
// Use 75% of the average value of the soundcard buffer
aecpc->bufSizeStart = WEBRTC_SPL_MIN((int) (0.75 * (aecpc->sum *
aecpc->aec->mult) / (aecpc->counter * 10)), BUF_SIZE_FRAMES);
// buffersize has now been determined
aecpc->checkBuffSize = 0;
}
if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) {
// for really bad sound cards, don't disable echocanceller for more than 0.5 sec
aecpc->bufSizeStart = WEBRTC_SPL_MIN((int) (0.75 * (aecpc->msInSndCardBuf *
aecpc->aec->mult) / 10), BUF_SIZE_FRAMES);
aecpc->checkBuffSize = 0;
}
}
// if checkBuffSize changed in the if-statement above
if (!aecpc->checkBuffSize) {
// soundcard buffer is now reasonably stable
// When the far end buffer is filled with approximately the same amount of
// data as the amount on the sound card we end the start up phase and start
// to cancel echoes.
if (nmbrOfFilledBuffers == aecpc->bufSizeStart) {
aecpc->ECstartup = 0; // Enable the AEC
}
else if (nmbrOfFilledBuffers > aecpc->bufSizeStart) {
WebRtcApm_FlushBuffer(aecpc->farendBuf, WebRtcApm_get_buffer_size(aecpc->farendBuf) -
aecpc->bufSizeStart * FRAME_LEN);
aecpc->ECstartup = 0;
}
}
}
else {
// AEC is enabled
// Note only 1 block supported for nb and 2 blocks for wb
for (i = 0; i < nFrames; i++) {
nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecpc->farendBuf) / FRAME_LEN;
// Check that there is data in the far end buffer
if (nmbrOfFilledBuffers > 0) {
// Get the next 80 samples from the farend buffer
WebRtcApm_ReadBuffer(aecpc->farendBuf, farend, FRAME_LEN);
// Always store the last frame for use when we run out of data
memcpy(&(aecpc->farendOld[i][0]), farend, FRAME_LEN * sizeof(short));
}
else {
// We have no data so we use the last played frame
memcpy(farend, &(aecpc->farendOld[i][0]), FRAME_LEN * sizeof(short));
}
// Call buffer delay estimator when all data is extracted,
// i.e. i = 0 for NB and i = 1 for WB or SWB
if ((i == 0 && aecpc->splitSampFreq == 8000) ||
(i == 1 && (aecpc->splitSampFreq == 16000))) {
EstBufDelay(aecpc, aecpc->msInSndCardBuf);
}
// Call the AEC
WebRtcAec_ProcessFrame(aecpc->aec, farend, &nearend[FRAME_LEN * i], &nearendH[FRAME_LEN * i],
&out[FRAME_LEN * i], &outH[FRAME_LEN * i], aecpc->knownDelay);
}
}
#ifdef AEC_DEBUG
msInAECBuf = WebRtcApm_get_buffer_size(aecpc->farendBuf) / (sampMsNb*aecpc->aec->mult);
fwrite(&msInAECBuf, 2, 1, aecpc->bufFile);
fwrite(&(aecpc->knownDelay), sizeof(aecpc->knownDelay), 1, aecpc->delayFile);
#endif
return retVal;
}
WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->skewMode = config.skewMode;
if (config.nlpMode != kAecNlpConservative && config.nlpMode !=
kAecNlpModerate && config.nlpMode != kAecNlpAggressive) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->nlpMode = config.nlpMode;
aecpc->aec->targetSupp = targetSupp[aecpc->nlpMode];
aecpc->aec->minOverDrive = minOverDrive[aecpc->nlpMode];
if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->aec->metricsMode = config.metricsMode;
if (aecpc->aec->metricsMode == kAecTrue) {
WebRtcAec_InitMetrics(aecpc->aec);
}
return 0;
}
WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (config == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
config->nlpMode = aecpc->nlpMode;
config->skewMode = aecpc->skewMode;
config->metricsMode = aecpc->aec->metricsMode;
return 0;
}
WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (status == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
*status = aecpc->aec->echoState;
return 0;
}
WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics)
{
const float upweight = 0.7f;
float dtmp;
short stmp;
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (metrics == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// ERL
metrics->erl.instant = (short) aecpc->aec->erl.instant;
if ((aecpc->aec->erl.himean > offsetLevel) && (aecpc->aec->erl.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->erl.himean + (1 - upweight) * aecpc->aec->erl.average;
metrics->erl.average = (short) dtmp;
}
else {
metrics->erl.average = offsetLevel;
}
metrics->erl.max = (short) aecpc->aec->erl.max;
if (aecpc->aec->erl.min < (offsetLevel * (-1))) {
metrics->erl.min = (short) aecpc->aec->erl.min;
}
else {
metrics->erl.min = offsetLevel;
}
// ERLE
metrics->erle.instant = (short) aecpc->aec->erle.instant;
if ((aecpc->aec->erle.himean > offsetLevel) && (aecpc->aec->erle.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->erle.himean + (1 - upweight) * aecpc->aec->erle.average;
metrics->erle.average = (short) dtmp;
}
else {
metrics->erle.average = offsetLevel;
}
metrics->erle.max = (short) aecpc->aec->erle.max;
if (aecpc->aec->erle.min < (offsetLevel * (-1))) {
metrics->erle.min = (short) aecpc->aec->erle.min;
} else {
metrics->erle.min = offsetLevel;
}
// RERL
if ((metrics->erl.average > offsetLevel) && (metrics->erle.average > offsetLevel)) {
stmp = metrics->erl.average + metrics->erle.average;
}
else {
stmp = offsetLevel;
}
metrics->rerl.average = stmp;
// No other statistics needed, but returned for completeness
metrics->rerl.instant = stmp;
metrics->rerl.max = stmp;
metrics->rerl.min = stmp;
// A_NLP
metrics->aNlp.instant = (short) aecpc->aec->aNlp.instant;
if ((aecpc->aec->aNlp.himean > offsetLevel) && (aecpc->aec->aNlp.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->aNlp.himean + (1 - upweight) * aecpc->aec->aNlp.average;
metrics->aNlp.average = (short) dtmp;
}
else {
metrics->aNlp.average = offsetLevel;
}
metrics->aNlp.max = (short) aecpc->aec->aNlp.max;
if (aecpc->aec->aNlp.min < (offsetLevel * (-1))) {
metrics->aNlp.min = (short) aecpc->aec->aNlp.min;
}
else {
metrics->aNlp.min = offsetLevel;
}
return 0;
}
WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len)
{
const char version[] = "AEC 2.5.0";
const short versionLen = (short)strlen(version) + 1; // +1 for null-termination
if (versionStr == NULL) {
return -1;
}
if (versionLen > len) {
return -1;
}
strncpy(versionStr, version, versionLen);
return 0;
}
WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
return aecpc->lastError;
}
static int EstBufDelay(aecpc_t *aecpc, short msInSndCardBuf)
{
short delayNew, nSampFar, nSampSndCard;
short diff;
nSampFar = WebRtcApm_get_buffer_size(aecpc->farendBuf);
nSampSndCard = msInSndCardBuf * sampMsNb * aecpc->aec->mult;
delayNew = nSampSndCard - nSampFar;
// Account for resampling frame delay
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
delayNew -= kResamplingDelay;
}
if (delayNew < FRAME_LEN) {
WebRtcApm_FlushBuffer(aecpc->farendBuf, FRAME_LEN);
delayNew += FRAME_LEN;
}
aecpc->filtDelay = WEBRTC_SPL_MAX(0, (short)(0.8*aecpc->filtDelay + 0.2*delayNew));
diff = aecpc->filtDelay - aecpc->knownDelay;
if (diff > 224) {
if (aecpc->lastDelayDiff < 96) {
aecpc->timeForDelayChange = 0;
}
else {
aecpc->timeForDelayChange++;
}
}
else if (diff < 96 && aecpc->knownDelay > 0) {
if (aecpc->lastDelayDiff > 224) {
aecpc->timeForDelayChange = 0;
}
else {
aecpc->timeForDelayChange++;
}
}
else {
aecpc->timeForDelayChange = 0;
}
aecpc->lastDelayDiff = diff;
if (aecpc->timeForDelayChange > 25) {
aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0);
}
return 0;
}
static int DelayComp(aecpc_t *aecpc)
{
int nSampFar, nSampSndCard, delayNew, nSampAdd;
const int maxStuffSamp = 10 * FRAME_LEN;
nSampFar = WebRtcApm_get_buffer_size(aecpc->farendBuf);
nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->aec->mult;
delayNew = nSampSndCard - nSampFar;
// Account for resampling frame delay
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
delayNew -= kResamplingDelay;
}
if (delayNew > FAR_BUF_LEN - FRAME_LEN*aecpc->aec->mult) {
// The difference of the buffersizes is larger than the maximum
// allowed known delay. Compensate by stuffing the buffer.
nSampAdd = (int)(WEBRTC_SPL_MAX((int)(0.5 * nSampSndCard - nSampFar),
FRAME_LEN));
nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
WebRtcApm_StuffBuffer(aecpc->farendBuf, nSampAdd);
aecpc->delayChange = 1; // the delay needs to be updated
}
return 0;
}

View File

@ -0,0 +1,233 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* Resamples a signal to an arbitrary rate. Used by the AEC to compensate for clock
* skew by resampling the farend signal.
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "resampler.h"
#include "aec_core.h"
enum { kFrameBufferSize = FRAME_LEN * 4 };
enum { kEstimateLengthFrames = 400 };
typedef struct {
short buffer[kFrameBufferSize];
float position;
int deviceSampleRateHz;
int skewData[kEstimateLengthFrames];
int skewDataIndex;
float skewEstimate;
} resampler_t;
static int EstimateSkew(const int* rawSkew,
int size,
int absLimit,
float *skewEst);
int WebRtcAec_CreateResampler(void **resampInst)
{
resampler_t *obj = malloc(sizeof(resampler_t));
*resampInst = obj;
if (obj == NULL) {
return -1;
}
return 0;
}
int WebRtcAec_InitResampler(void *resampInst, int deviceSampleRateHz)
{
resampler_t *obj = (resampler_t*) resampInst;
memset(obj->buffer, 0, sizeof(obj->buffer));
obj->position = 0.0;
obj->deviceSampleRateHz = deviceSampleRateHz;
memset(obj->skewData, 0, sizeof(obj->skewData));
obj->skewDataIndex = 0;
obj->skewEstimate = 0.0;
return 0;
}
int WebRtcAec_FreeResampler(void *resampInst)
{
resampler_t *obj = (resampler_t*) resampInst;
free(obj);
return 0;
}
int WebRtcAec_ResampleLinear(void *resampInst,
const short *inspeech,
int size,
float skew,
short *outspeech)
{
resampler_t *obj = (resampler_t*) resampInst;
short *y;
float be, tnew, interp;
int tn, outsize, mm;
if (size < 0 || size > 2 * FRAME_LEN) {
return -1;
}
// Add new frame data in lookahead
memcpy(&obj->buffer[FRAME_LEN + kResamplingDelay],
inspeech,
size * sizeof(short));
// Sample rate ratio
be = 1 + skew;
// Loop over input frame
mm = 0;
y = &obj->buffer[FRAME_LEN]; // Point at current frame
tnew = be * mm + obj->position;
tn = (int) tnew;
while (tn < size) {
// Interpolation
interp = y[tn] + (tnew - tn) * (y[tn+1] - y[tn]);
if (interp > 32767) {
interp = 32767;
}
else if (interp < -32768) {
interp = -32768;
}
outspeech[mm] = (short) interp;
mm++;
tnew = be * mm + obj->position;
tn = (int) tnew;
}
outsize = mm;
obj->position += outsize * be - size;
// Shift buffer
memmove(obj->buffer,
&obj->buffer[size],
(kFrameBufferSize - size) * sizeof(short));
return outsize;
}
int WebRtcAec_GetSkew(void *resampInst, int rawSkew, float *skewEst)
{
resampler_t *obj = (resampler_t*)resampInst;
int err = 0;
if (obj->skewDataIndex < kEstimateLengthFrames) {
obj->skewData[obj->skewDataIndex] = rawSkew;
obj->skewDataIndex++;
}
else if (obj->skewDataIndex == kEstimateLengthFrames) {
err = EstimateSkew(obj->skewData,
kEstimateLengthFrames,
obj->deviceSampleRateHz,
skewEst);
obj->skewEstimate = *skewEst;
obj->skewDataIndex++;
}
else {
*skewEst = obj->skewEstimate;
}
return err;
}
int EstimateSkew(const int* rawSkew,
int size,
int deviceSampleRateHz,
float *skewEst)
{
const int absLimitOuter = (int)(0.04f * deviceSampleRateHz);
const int absLimitInner = (int)(0.0025f * deviceSampleRateHz);
int i = 0;
int n = 0;
float rawAvg = 0;
float err = 0;
float rawAbsDev = 0;
int upperLimit = 0;
int lowerLimit = 0;
float cumSum = 0;
float x = 0;
float x2 = 0;
float y = 0;
float xy = 0;
float xAvg = 0;
float denom = 0;
float skew = 0;
*skewEst = 0; // Set in case of error below.
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) {
n++;
rawAvg += rawSkew[i];
}
}
if (n == 0) {
return -1;
}
assert(n > 0);
rawAvg /= n;
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) {
err = rawSkew[i] - rawAvg;
rawAbsDev += err >= 0 ? err : -err;
}
}
assert(n > 0);
rawAbsDev /= n;
upperLimit = (int)(rawAvg + 5 * rawAbsDev + 1); // +1 for ceiling.
lowerLimit = (int)(rawAvg - 5 * rawAbsDev - 1); // -1 for floor.
n = 0;
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitInner && rawSkew[i] > -absLimitInner) ||
(rawSkew[i] < upperLimit && rawSkew[i] > lowerLimit)) {
n++;
cumSum += rawSkew[i];
x += n;
x2 += n*n;
y += cumSum;
xy += n * cumSum;
}
}
if (n == 0) {
return -1;
}
assert(n > 0);
xAvg = x / n;
denom = x2 - xAvg*x;
if (denom != 0) {
skew = (xy - xAvg*y) / denom;
}
*skewEst = skew;
return 0;
}

View File

@ -0,0 +1,32 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_RESAMPLER_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_RESAMPLER_H_
enum { kResamplingDelay = 1 };
// Unless otherwise specified, functions return 0 on success and -1 on error
int WebRtcAec_CreateResampler(void **resampInst);
int WebRtcAec_InitResampler(void *resampInst, int deviceSampleRateHz);
int WebRtcAec_FreeResampler(void *resampInst);
// Estimates skew from raw measurement.
int WebRtcAec_GetSkew(void *resampInst, int rawSkew, float *skewEst);
// Resamples input using linear interpolation.
// Returns size of resampled array.
int WebRtcAec_ResampleLinear(void *resampInst,
const short *inspeech,
int size,
float skew,
short *outspeech);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_RESAMPLER_H_

View File

@ -0,0 +1,250 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_INTERFACE_ECHO_CONTROL_MOBILE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_INTERFACE_ECHO_CONTROL_MOBILE_H_
#include "typedefs.h"
enum {
AecmFalse = 0,
AecmTrue
};
// Errors
#define AECM_UNSPECIFIED_ERROR 12000
#define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
#define AECM_UNINITIALIZED_ERROR 12002
#define AECM_NULL_POINTER_ERROR 12003
#define AECM_BAD_PARAMETER_ERROR 12004
// Warnings
#define AECM_BAD_PARAMETER_WARNING 12100
typedef struct {
WebRtc_Word16 cngMode; // AECM_FALSE, AECM_TRUE (default)
WebRtc_Word16 echoMode; // 0, 1, 2, 3 (default), 4
} AecmConfig;
#ifdef __cplusplus
extern "C" {
#endif
/*
* Allocates the memory needed by the AECM. The memory needs to be
* initialized separately using the WebRtcAecm_Init() function.
*
* Inputs Description
* -------------------------------------------------------------------
* void **aecmInst Pointer to the AECM instance to be
* created and initialized
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_Create(void **aecmInst);
/*
* This function releases the memory allocated by WebRtcAecm_Create()
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_Free(void *aecmInst);
/*
* Initializes an AECM instance.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* WebRtc_Word32 sampFreq Sampling frequency of data
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_Init(void* aecmInst,
WebRtc_Word32 sampFreq);
/*
* Inserts an 80 or 160 sample block of data into the farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* WebRtc_Word16 *farend In buffer containing one frame of
* farend signal
* WebRtc_Word16 nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_BufferFarend(void* aecmInst,
const WebRtc_Word16* farend,
WebRtc_Word16 nrOfSamples);
/*
* Runs the AECM on an 80 or 160 sample blocks of data.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* WebRtc_Word16 *nearendNoisy In buffer containing one frame of
* reference nearend+echo signal. If
* noise reduction is active, provide
* the noisy signal here.
* WebRtc_Word16 *nearendClean In buffer containing one frame of
* nearend+echo signal. If noise
* reduction is active, provide the
* clean signal here. Otherwise pass a
* NULL pointer.
* WebRtc_Word16 nrOfSamples Number of samples in nearend buffer
* WebRtc_Word16 msInSndCardBuf Delay estimate for sound card and
* system buffers
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word16 *out Out buffer, one frame of processed nearend
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_Process(void* aecmInst,
const WebRtc_Word16* nearendNoisy,
const WebRtc_Word16* nearendClean,
WebRtc_Word16* out,
WebRtc_Word16 nrOfSamples,
WebRtc_Word16 msInSndCardBuf);
/*
* This function enables the user to set certain parameters on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* AecmConfig config Config instance that contains all
* properties to be set
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_set_config(void* aecmInst,
AecmConfig config);
/*
* This function enables the user to set certain parameters on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecmConfig *config Pointer to the config instance that
* all properties will be written to
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_get_config(void *aecmInst,
AecmConfig *config);
/*
* This function enables the user to set the echo path on-the-fly.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* void* echo_path Pointer to the echo path to be set
* size_t size_bytes Size in bytes of the echo path
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes);
/*
* This function enables the user to get the currently used echo path
* on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* void* echo_path Pointer to echo path
* size_t size_bytes Size in bytes of the echo path
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes);
/*
* This function enables the user to get the echo path size in bytes
*
* Outputs Description
* -------------------------------------------------------------------
* size_t return : size in bytes
*/
size_t WebRtcAecm_echo_path_size_bytes();
/*
* Gets the last error code.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 11000-11100: error code
*/
WebRtc_Word32 WebRtcAecm_get_error_code(void *aecmInst);
/*
* Gets a version string
*
* Inputs Description
* -------------------------------------------------------------------
* char *versionStr Pointer to a string array
* WebRtc_Word16 len The maximum length of the string
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word8 *versionStr Pointer to a string array
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_get_version(WebRtc_Word8 *versionStr,
WebRtc_Word16 len);
#ifdef __cplusplus
}
#endif
#endif /* WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_INTERFACE_ECHO_CONTROL_MOBILE_H_ */

View File

@ -0,0 +1,447 @@
function [emicrophone,aaa]=compsup(microphone,TheFarEnd,avtime,samplingfreq);
% microphone = microphone signal
% aaa = nonlinearity input variable
% TheFarEnd = far end signal
% avtime = interval to compute suppression from (seconds)
% samplingfreq = sampling frequency
%if(nargin==6)
% fprintf(1,'suppress has received a delay sequence\n');
%end
Ap500=[ 1.00, -4.95, 9.801, -9.70299, 4.80298005, -0.9509900499];
Bp500=[ 0.662743088639636, -2.5841655608125, 3.77668102146288, -2.45182477425154, 0.596566274575251, 0.0];
Ap200=[ 1.00, -4.875, 9.50625, -9.26859375, 4.518439453125, -0.881095693359375];
Bp200=[ 0.862545460994275, -3.2832804496114, 4.67892032308828, -2.95798023879133, 0.699796870041299, 0.0];
maxDelay=0.4; %[s]
histLen=1; %[s]
% CONSTANTS THAT YOU CAN EXPERIMENT WITH
A_GAIN=10.0; % for the suppress case
oversampling = 2; % must be power of 2; minimum is 2; 4 works
% fine for support=64, but for support=128,
% 8 gives better results.
support=64; %512 % fft support (frequency resolution; at low
% settings you can hear more distortion
% (e.g. pitch that is left-over from far-end))
% 128 works well, 64 is ok)
lowlevel = mean(abs(microphone))*0.0001;
G_ol = 0; % Use overlapping sets of estimates
% ECHO SUPPRESSION SPECIFIC PARAMETERS
suppress_overdrive=1.0; % overdrive factor for suppression 1.4 is good
gamma_echo=1.0; % same as suppress_overdrive but at different place
de_echo_bound=0.0;
mLim=10; % rank of matrix G
%limBW = 1; % use bandwidth-limited response for G
if mLim > (support/2+1)
error('mLim in suppress.m too large\n');
end
dynrange=1.0000e-004;
% other, constants
hsupport = support/2;
hsupport1 = hsupport+1;
factor = 2 / oversampling;
updatel = support/oversampling;
win=sqrt(designwindow(0,support));
estLen = round(avtime * samplingfreq/updatel)
runningfmean =0.0;
mLim = floor(hsupport1/2);
V = sqrt(2/hsupport1)*cos(pi/hsupport1*(repmat((0:hsupport1-1) + 0.5, mLim, 1).* ...
repmat((0:mLim-1)' + 0.5, 1, hsupport1)));
fprintf(1,'updatel is %5.3f s\n', updatel/samplingfreq);
bandfirst=8; bandlast=25;
dosmooth=0; % to get rid of wavy bin counts (can be worse or better)
% compute some constants
blockLen = support/oversampling;
maxDelayb = floor(samplingfreq*maxDelay/updatel); % in blocks
histLenb = floor(samplingfreq*histLen/updatel); % in blocks
x0=TheFarEnd;
y0=microphone;
%input
tlength=min([length(microphone),length(TheFarEnd)]);
updateno=floor(tlength/updatel);
tlength=updatel*updateno;
updateno = updateno - oversampling + 1;
TheFarEnd =TheFarEnd(1:tlength);
microphone =microphone(1:tlength);
TheFarEnd =[zeros(hsupport,1);TheFarEnd(1:tlength)];
microphone =[zeros(hsupport,1);microphone(1:tlength)];
% signal length
n = min([floor(length(x0)/support)*support,floor(length(y0)/support)*support]);
nb = n/blockLen - oversampling + 1; % in blocks
% initialize space
win = sqrt([0 ; hanning(support-1)]);
sxAll2 = zeros(hsupport1,nb);
syAll2 = zeros(hsupport1,nb);
z500=zeros(5,maxDelayb+1);
z200=zeros(5,hsupport1);
bxspectrum=uint32(zeros(nb,1));
bxhist=uint32(zeros(maxDelayb+1,1));
byspectrum=uint32(zeros(nb,1));
bcount=zeros(1+maxDelayb,nb);
fcount=zeros(1+maxDelayb,nb);
fout=zeros(1+maxDelayb,nb);
delay=zeros(nb,1);
tdelay=zeros(nb,1);
nlgains=zeros(nb,1);
% create space (mainly for debugging)
emicrophone=zeros(tlength,1);
femicrophone=complex(zeros(hsupport1,updateno));
thefilter=zeros(hsupport1,updateno);
thelimiter=ones(hsupport1,updateno);
fTheFarEnd=complex(zeros(hsupport1,updateno));
afTheFarEnd=zeros(hsupport1,updateno);
fmicrophone=complex(zeros(hsupport1,updateno));
afmicrophone=zeros(hsupport1,updateno);
G = zeros(hsupport1, hsupport1);
zerovec = zeros(hsupport1,1);
zeromat = zeros(hsupport1);
% Reset sums
mmxs_a = zerovec;
mmys_a = zerovec;
s2xs_a = zerovec;
s2ys_a = zerovec;
Rxxs_a = zeromat;
Ryxs_a = zeromat;
count_a = 1;
mmxs_b = zerovec;
mmys_b = zerovec;
s2xs_b = zerovec;
s2ys_b = zerovec;
Rxxs_b = zeromat;
Ryxs_b = zeromat;
count_b = 1;
nog=0;
aaa=zeros(size(TheFarEnd));
% loop over signal blocks
fprintf(1,'.. Suppression; averaging G over %5.1f seconds; file length %5.1f seconds ..\n',avtime, length(microphone)/samplingfreq);
fprintf(1,'.. SUPPRESSING ONLY AFTER %5.1f SECONDS! ..\n',avtime);
fprintf(1,'.. 20 seconds is good ..\n');
hh = waitbar_j(0,'Please wait...');
for i=1:updateno
sb = (i-1)*updatel + 1;
se=sb+support-1;
% analysis FFTs
temp=fft(win .* TheFarEnd(sb:se));
fTheFarEnd(:,i)=temp(1:hsupport1);
xf=fTheFarEnd(:,i);
afTheFarEnd(:,i)= abs(fTheFarEnd(:,i));
temp=win .* microphone(sb:se);
temp=fft(win .* microphone(sb:se));
fmicrophone(:,i)=temp(1:hsupport1);
yf=fmicrophone(:,i);
afmicrophone(:,i)= abs(fmicrophone(:,i));
ener_orig = afmicrophone(:,i)'*afmicrophone(:,i);
if( ener_orig == 0)
afmicrophone(:,i)=lowlevel*ones(size(afmicrophone(:,i)));
end
% use log domain (showed improved performance)
xxf= sqrt(real(xf.*conj(xf))+1e-20);
yyf= sqrt(real(yf.*conj(yf))+1e-20);
sxAll2(:,i) = 20*log10(xxf);
syAll2(:,i) = 20*log10(yyf);
mD=min(i-1,maxDelayb);
xthreshold = sum(sxAll2(:,i-mD:i),2)/(maxDelayb+1);
[yout, z200] = filter(Bp200,Ap200,syAll2(:,i),z200,2);
yout=yout/(maxDelayb+1);
ythreshold = mean(syAll2(:,i-mD:i),2);
bxspectrum(i)=getBspectrum(sxAll2(:,i),xthreshold,bandfirst,bandlast);
byspectrum(i)=getBspectrum(syAll2(:,i),yout,bandfirst,bandlast);
bxhist(end-mD:end)=bxspectrum(i-mD:i);
bcount(:,i)=hisser2( ...
byspectrum(i),flipud(bxhist),bandfirst,bandlast);
[fout(:,i), z500] = filter(Bp500,Ap500,bcount(:,i),z500,2);
fcount(:,i)=sum(bcount(:,max(1,i-histLenb+1):i),2); % using the history range
fout(:,i)=round(fout(:,i));
[value,delay(i)]=min(fout(:,i),[],1);
tdelay(i)=(delay(i)-1)*support/(samplingfreq*oversampling);
% compensate
idel = max(i - delay(i) + 1,1);
% echo suppression
noisyspec = afmicrophone(:,i);
% Estimate G using covariance matrices
% Cumulative estimates
xx = afTheFarEnd(:,idel);
yy = afmicrophone(:,i);
% Means
mmxs_a = mmxs_a + xx;
mmys_a = mmys_a + yy;
if (G_ol)
mmxs_b = mmxs_b + xx;
mmys_b = mmys_b + yy;
mmy = mean([mmys_a/count_a mmys_b/count_b],2);
mmx = mean([mmxs_a/count_a mmxs_b/count_b],2);
else
mmx = mmxs_a/count_a;
mmy = mmys_a/count_a;
end
count_a = count_a + 1;
count_b = count_b + 1;
% Mean removal
xxm = xx - mmx;
yym = yy - mmy;
% Variances
s2xs_a = s2xs_a + xxm .* xxm;
s2ys_a = s2ys_a + yym .* yym;
s2xs_b = s2xs_b + xxm .* xxm;
s2ys_b = s2ys_b + yym .* yym;
% Correlation matrices
Rxxs_a = Rxxs_a + xxm * xxm';
Ryxs_a = Ryxs_a + yym * xxm';
Rxxs_b = Rxxs_b + xxm * xxm';
Ryxs_b = Ryxs_b + yym * xxm';
% Gain matrix A
if mod(i, estLen) == 0
% Cumulative based estimates
Rxxf = Rxxs_a / (estLen - 1);
Ryxf = Ryxs_a / (estLen - 1);
% Variance normalization
s2x2 = s2xs_a / (estLen - 1);
s2x2 = sqrt(s2x2);
% Sx = diag(max(s2x2,dynrange*max(s2x2)));
Sx = diag(s2x2);
if (sum(s2x2) > 0)
iSx = inv(Sx);
else
iSx= Sx + 0.01;
end
s2y2 = s2ys_a / (estLen - 1);
s2y2 = sqrt(s2y2);
% Sy = diag(max(s2y2,dynrange*max(s2y2)));
Sy = diag(s2y2);
iSy = inv(Sy);
rx = iSx * Rxxf * iSx;
ryx = iSy * Ryxf * iSx;
dbd= 7; % Us less than the full matrix
% k x m
% Bandlimited structure on G
LSEon = 0; % Default is using MMSE
if (LSEon)
ryx = ryx*rx;
rx = rx*rx;
end
p = dbd-1;
gaj = min(min(hsupport1,2*p+1),min([p+(1:hsupport1); hsupport1+p+1-(1:hsupport1)]));
cgaj = [0 cumsum(gaj)];
G3 = zeros(hsupport1);
for kk=1:hsupport1
ki = max(0,kk-p-1);
if (sum(sum(rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk))))>0)
G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk))/rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk));
else
G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk));
end
end
% End Bandlimited structure
G = G3;
G(abs(G)<0.01)=0;
G = suppress_overdrive * Sy * G * iSx;
if 1
figure(32); mi=2;
surf(max(min(G,mi),-mi)); view(2)
title('Unscaled Masked Limited-bandwidth G');
end
pause(0.05);
% Reset sums
mmxs_a = zerovec;
mmys_a = zerovec;
s2xs_a = zerovec;
s2ys_a = zerovec;
Rxxs_a = zeromat;
Ryxs_a = zeromat;
count_a = 1;
end
if (G_ol)
% Gain matrix B
if ((mod((i-estLen/2), estLen) == 0) & i>estLen)
% Cumulative based estimates
Rxxf = Rxxs_b / (estLen - 1);
Ryxf = Ryxs_b / (estLen - 1);
% Variance normalization
s2x2 = s2xs_b / (estLen - 1);
s2x2 = sqrt(s2x2);
Sx = diag(max(s2x2,dynrange*max(s2x2)));
iSx = inv(Sx);
s2y2 = s2ys_b / (estLen - 1);
s2y2 = sqrt(s2y2);
Sy = diag(max(s2y2,dynrange*max(s2y2)));
iSy = inv(Sy);
rx = iSx * Rxxf * iSx;
ryx = iSy * Ryxf * iSx;
% Bandlimited structure on G
LSEon = 0; % Default is using MMSE
if (LSEon)
ryx = ryx*rx;
rx = rx*rx;
end
p = dbd-1;
gaj = min(min(hsupport1,2*p+1),min([p+(1:hsupport1); hsupport1+p+1-(1:hsupport1)]));
cgaj = [0 cumsum(gaj)];
G3 = zeros(hsupport1);
for kk=1:hsupport1
ki = max(0,kk-p-1);
G3(kk,ki+1:ki+gaj(kk)) = ryx(kk,ki+1:ki+gaj(kk))/rx(ki+1:ki+gaj(kk),ki+1:ki+gaj(kk));
end
% End Bandlimited structure
G = G3;
G(abs(G)<0.01)=0;
G = suppress_overdrive * Sy * G * iSx;
if 1
figure(32); mi=2;
surf(max(min(G,mi),-mi)); view(2)
title('Unscaled Masked Limited-bandwidth G');
end
pause(0.05);
% Reset sums
mmxs_b = zerovec;
mmys_b = zerovec;
s2xs_b = zerovec;
s2ys_b = zerovec;
Rxxs_b = zeromat;
Ryxs_b = zeromat;
count_b = 1;
end
end
FECestimate2 = G*afTheFarEnd(:,idel);
% compute Wiener filter and suppressor function
thefilter(:,i) = (noisyspec - gamma_echo*FECestimate2) ./ noisyspec;
ix0 = find(thefilter(:,i)<de_echo_bound); % bounding trick 1
thefilter(ix0,i) = de_echo_bound; % bounding trick 2
ix0 = find(thefilter(:,i)>1); % bounding in reasonable range
thefilter(ix0,i) = 1;
% NONLINEARITY
nl_alpha=0.8; % memory; seems not very critical
nlSeverity=0.3; % nonlinearity severity: 0 does nothing; 1 suppresses all
thefmean=mean(thefilter(8:16,i));
if (thefmean<1)
disp('');
end
runningfmean = nl_alpha*runningfmean + (1-nl_alpha)*thefmean;
aaa(sb+20+1:sb+20+updatel)=10000*runningfmean* ones(updatel,1); % debug
slope0=1.0/(1.0-nlSeverity); %
thegain = max(0.0,min(1.0,slope0*(runningfmean-nlSeverity)));
% END NONLINEARITY
thefilter(:,i) = thegain*thefilter(:,i);
% Wiener filtering
femicrophone(:,i) = fmicrophone(:,i) .* thefilter(:,i);
thelimiter(:,i) = (noisyspec - A_GAIN*FECestimate2) ./ noisyspec;
index = find(thelimiter(:,i)>1.0);
thelimiter(index,i) = 1.0;
index = find(thelimiter(:,i)<0.0);
thelimiter(index,i) = 0.0;
if (rem(i,floor(updateno/20))==0)
fprintf(1,'.');
end
if mod(i,50)==0
waitbar_j(i/updateno,hh);
end
% reconstruction; first make spectrum odd
temp=[femicrophone(:,i);flipud(conj(femicrophone(2:hsupport,i)))];
emicrophone(sb:se) = emicrophone(sb:se) + factor * win .* real(ifft(temp));
end
fprintf(1,'\n');
close(hh);

View File

@ -0,0 +1,22 @@
function bspectrum=getBspectrum(ps,threshold,bandfirst,bandlast)
% function bspectrum=getBspectrum(ps,threshold,bandfirst,bandlast)
% compute binary spectrum using threshold spectrum as pivot
% bspectrum = binary spectrum (binary)
% ps=current power spectrum (float)
% threshold=threshold spectrum (float)
% bandfirst = first band considered
% bandlast = last band considered
% initialization stuff
if( length(ps)<bandlast | bandlast>32 | length(ps)~=length(threshold))
error('BinDelayEst:spectrum:invalid','Dimensionality error');
end
% get current binary spectrum
diff = ps - threshold;
bspectrum=uint32(0);
for(i=bandfirst:bandlast)
if( diff(i)>0 )
bspectrum = bitset(bspectrum,i);
end
end

View File

@ -0,0 +1,21 @@
function bcount=hisser2(bs,bsr,bandfirst,bandlast)
% function bcount=hisser(bspectrum,bandfirst,bandlast)
% histogram for the binary spectra
% bcount= array of bit counts
% bs=binary spectrum (one int32 number each)
% bsr=reference binary spectra (one int32 number each)
% blockSize = histogram over blocksize blocks
% bandfirst = first band considered
% bandlast = last band considered
% weight all delays equally
maxDelay = length(bsr);
% compute counts (two methods; the first works better and is operational)
bcount=zeros(maxDelay,1);
for(i=1:maxDelay)
% the delay should have low count for low-near&high-far and high-near&low-far
bcount(i)= sum(bitget(bitxor(bs,bsr(i)),bandfirst:bandlast));
% the delay should have low count for low-near&high-far (works less well)
% bcount(i)= sum(bitget(bitand(bsr(i),bitxor(bs,bsr(i))),bandfirst:bandlast));
end

View File

@ -0,0 +1,19 @@
fid=fopen('aecfar.pcm'); far=fread(fid,'short'); fclose(fid);
fid=fopen('aecnear.pcm'); mic=fread(fid,'short'); fclose(fid);
%fid=fopen('QA1far.pcm'); far=fread(fid,'short'); fclose(fid);
%fid=fopen('QA1near.pcm'); mic=fread(fid,'short'); fclose(fid);
start=0 * 8000+1;
stop= 30 * 8000;
microphone=mic(start:stop);
TheFarEnd=far(start:stop);
avtime=1;
% 16000 to make it compatible with the C-version
[emicrophone,tdel]=compsup(microphone,TheFarEnd,avtime,16000);
spclab(8000,TheFarEnd,microphone,emicrophone);

View File

@ -0,0 +1,269 @@
function [femicrophone, aecmStructNew, enerNear, enerFar] = AECMobile(fmicrophone, afTheFarEnd, setupStruct, aecmStruct)
global NEARENDFFT;
global F;
aecmStructNew = aecmStruct;
% Magnitude spectrum of near end signal
afmicrophone = abs(fmicrophone);
%afmicrophone = NEARENDFFT(setupStruct.currentBlock,:)'/2^F(setupStruct.currentBlock,end);
% Near end energy level
ener_orig = afmicrophone'*afmicrophone;
if( ener_orig == 0)
lowlevel = 0.01;
afmicrophone = lowlevel*ones(size(afmicrophone));
end
%adiff = max(abs(afmicrophone - afTheFarEnd));
%if (adiff > 0)
% disp([setupStruct.currentBlock adiff])
%end
% Store the near end energy
%aecmStructNew.enerNear(setupStruct.currentBlock) = log(afmicrophone'*afmicrophone);
aecmStructNew.enerNear(setupStruct.currentBlock) = log(sum(afmicrophone));
% Store the far end energy
%aecmStructNew.enerFar(setupStruct.currentBlock) = log(afTheFarEnd'*afTheFarEnd);
aecmStructNew.enerFar(setupStruct.currentBlock) = log(sum(afTheFarEnd));
% Update subbands (We currently use all frequency bins, hence .useSubBand is turned off)
if aecmStructNew.useSubBand
internalIndex = 1;
for kk=1:setupStruct.subBandLength+1
ySubBand(kk) = mean(afmicrophone(internalIndex:internalIndex+setupStruct.numInBand(kk)-1).^aecmStructNew.bandFactor);
xSubBand(kk) = mean(afTheFarEnd(internalIndex:internalIndex+setupStruct.numInBand(kk)-1).^aecmStructNew.bandFactor);
internalIndex = internalIndex + setupStruct.numInBand(kk);
end
else
ySubBand = afmicrophone.^aecmStructNew.bandFactor;
xSubBand = afTheFarEnd.^aecmStructNew.bandFactor;
end
% Estimated echo energy
if (aecmStructNew.bandFactor == 1)
%aecmStructNew.enerEcho(setupStruct.currentBlock) = log((aecmStructNew.H.*xSubBand)'*(aecmStructNew.H.*xSubBand));
%aecmStructNew.enerEchoStored(setupStruct.currentBlock) = log((aecmStructNew.HStored.*xSubBand)'*(aecmStructNew.HStored.*xSubBand));
aecmStructNew.enerEcho(setupStruct.currentBlock) = log(sum(aecmStructNew.H.*xSubBand));
aecmStructNew.enerEchoStored(setupStruct.currentBlock) = log(sum(aecmStructNew.HStored.*xSubBand));
elseif (aecmStructNew.bandFactor == 2)
aecmStructNew.enerEcho(setupStruct.currentBlock) = log(aecmStructNew.H'*xSubBand);
aecmStructNew.enerEchoStored(setupStruct.currentBlock) = log(aecmStructNew.HStored'*xSubBand);
end
% Last 100 blocks of data, used for plotting
n100 = max(1,setupStruct.currentBlock-99):setupStruct.currentBlock;
enerError = aecmStructNew.enerNear(n100)-aecmStructNew.enerEcho(n100);
enerErrorStored = aecmStructNew.enerNear(n100)-aecmStructNew.enerEchoStored(n100);
% Store the far end sub band. This is needed if we use LSE instead of NLMS
aecmStructNew.X = [xSubBand aecmStructNew.X(:,1:end-1)];
% Update energy levels, which control the VAD
if ((aecmStructNew.enerFar(setupStruct.currentBlock) < aecmStructNew.energyMin) & (aecmStructNew.enerFar(setupStruct.currentBlock) >= aecmStruct.FAR_ENERGY_MIN))
aecmStructNew.energyMin = aecmStructNew.enerFar(setupStruct.currentBlock);
%aecmStructNew.energyMin = max(aecmStructNew.energyMin,12);
aecmStructNew.energyMin = max(aecmStructNew.energyMin,aecmStruct.FAR_ENERGY_MIN);
aecmStructNew.energyLevel = (aecmStructNew.energyMax-aecmStructNew.energyMin)*aecmStructNew.energyThres+aecmStructNew.energyMin;
aecmStructNew.energyLevelMSE = (aecmStructNew.energyMax-aecmStructNew.energyMin)*aecmStructNew.energyThresMSE+aecmStructNew.energyMin;
end
if (aecmStructNew.enerFar(setupStruct.currentBlock) > aecmStructNew.energyMax)
aecmStructNew.energyMax = aecmStructNew.enerFar(setupStruct.currentBlock);
aecmStructNew.energyLevel = (aecmStructNew.energyMax-aecmStructNew.energyMin)*aecmStructNew.energyThres+aecmStructNew.energyMin;
aecmStructNew.energyLevelMSE = (aecmStructNew.energyMax-aecmStructNew.energyMin)*aecmStructNew.energyThresMSE+aecmStructNew.energyMin;
end
% Calculate current energy error in near end (estimated echo vs. near end)
dE = aecmStructNew.enerNear(setupStruct.currentBlock)-aecmStructNew.enerEcho(setupStruct.currentBlock);
%%%%%%%%
% Calculate step size used in LMS algorithm, based on current far end energy and near end energy error (dE)
%%%%%%%%
if setupStruct.stepSize_flag
[mu, aecmStructNew] = calcStepSize(aecmStructNew.enerFar(setupStruct.currentBlock), dE, aecmStructNew, setupStruct.currentBlock, 1);
else
mu = 0.25;
end
aecmStructNew.muLog(setupStruct.currentBlock) = mu; % Store the step size
% Estimate Echo Spectral Shape
[U, aecmStructNew.H] = fallerEstimator(ySubBand,aecmStructNew.X,aecmStructNew.H,mu);
%%%%%
% Determine if we should store or restore the channel
%%%%%
if ((setupStruct.currentBlock <= aecmStructNew.convLength) | (~setupStruct.channelUpdate_flag))
aecmStructNew.HStored = aecmStructNew.H; % Store what you have after startup
elseif ((setupStruct.currentBlock > aecmStructNew.convLength) & (setupStruct.channelUpdate_flag))
if ((aecmStructNew.enerFar(setupStruct.currentBlock) < aecmStructNew.energyLevelMSE) & (aecmStructNew.enerFar(setupStruct.currentBlock-1) >= aecmStructNew.energyLevelMSE))
xxx = aecmStructNew.countMseH;
if (xxx > 20)
mseStored = mean(abs(aecmStructNew.enerEchoStored(setupStruct.currentBlock-xxx:setupStruct.currentBlock-1)-aecmStructNew.enerNear(setupStruct.currentBlock-xxx:setupStruct.currentBlock-1)));
mseLatest = mean(abs(aecmStructNew.enerEcho(setupStruct.currentBlock-xxx:setupStruct.currentBlock-1)-aecmStructNew.enerNear(setupStruct.currentBlock-xxx:setupStruct.currentBlock-1)));
%fprintf('Stored: %4f Latest: %4f\n', mseStored, mseLatest) % Uncomment if you want to display the MSE values
if ((mseStored < 0.8*mseLatest) & (aecmStructNew.mseHStoredOld < 0.8*aecmStructNew.mseHLatestOld))
aecmStructNew.H = aecmStructNew.HStored;
fprintf('Restored H at block %d\n',setupStruct.currentBlock)
elseif (((0.8*mseStored > mseLatest) & (mseLatest < aecmStructNew.mseHThreshold) & (aecmStructNew.mseHLatestOld < aecmStructNew.mseHThreshold)) | (mseStored == Inf))
aecmStructNew.HStored = aecmStructNew.H;
fprintf('Stored new H at block %d\n',setupStruct.currentBlock)
end
aecmStructNew.mseHStoredOld = mseStored;
aecmStructNew.mseHLatestOld = mseLatest;
end
elseif ((aecmStructNew.enerFar(setupStruct.currentBlock) >= aecmStructNew.energyLevelMSE) & (aecmStructNew.enerFar(setupStruct.currentBlock-1) < aecmStructNew.energyLevelMSE))
aecmStructNew.countMseH = 1;
elseif (aecmStructNew.enerFar(setupStruct.currentBlock) >= aecmStructNew.energyLevelMSE)
aecmStructNew.countMseH = aecmStructNew.countMseH + 1;
end
end
%%%%%
% Check delay (calculate the delay offset (if we can))
% The algorithm is not tuned and should be used with care. It runs separately from Bastiaan's algorithm.
%%%%%
yyy = 31; % Correlation buffer length (currently unfortunately hard coded)
dxxx = 25; % Maximum offset (currently unfortunately hard coded)
if (setupStruct.currentBlock > aecmStructNew.convLength)
if (aecmStructNew.enerFar(setupStruct.currentBlock-(yyy+2*dxxx-1):setupStruct.currentBlock) > aecmStructNew.energyLevelMSE)
for xxx = -dxxx:dxxx
aecmStructNew.delayLatestS(xxx+dxxx+1) = sum(sign(aecmStructNew.enerEcho(setupStruct.currentBlock-(yyy+dxxx-xxx)+1:setupStruct.currentBlock+xxx-dxxx)-mean(aecmStructNew.enerEcho(setupStruct.currentBlock-(yyy++dxxx-xxx)+1:setupStruct.currentBlock+xxx-dxxx))).*sign(aecmStructNew.enerNear(setupStruct.currentBlock-yyy-dxxx+1:setupStruct.currentBlock-dxxx)-mean(aecmStructNew.enerNear(setupStruct.currentBlock-yyy-dxxx+1:setupStruct.currentBlock-dxxx))));
end
aecmStructNew.newDelayCurve = 1;
end
end
if ((setupStruct.currentBlock > 2*aecmStructNew.convLength) & ~rem(setupStruct.currentBlock,yyy*2) & aecmStructNew.newDelayCurve)
[maxV,maxP] = max(aecmStructNew.delayLatestS);
if ((maxP > 2) & (maxP < 2*dxxx))
maxVLeft = aecmStructNew.delayLatestS(max(1,maxP-4));
maxVRight = aecmStructNew.delayLatestS(min(2*dxxx+1,maxP+4));
%fprintf('Max %d, Left %d, Right %d\n',maxV,maxVLeft,maxVRight) % Uncomment if you want to see max value
if ((maxV > 24) & (maxVLeft < maxV - 10) & (maxVRight < maxV - 10))
aecmStructNew.feedbackDelay = maxP-dxxx-1;
aecmStructNew.newDelayCurve = 0;
aecmStructNew.feedbackDelayUpdate = 1;
fprintf('Feedback Update at block %d\n',setupStruct.currentBlock)
end
end
end
% End of "Check delay"
%%%%%%%%
%%%%%
% Calculate suppression gain, based on far end energy and near end energy error (dE)
if (setupStruct.supGain_flag)
[gamma_echo, aecmStructNew.cntIn, aecmStructNew.cntOut] = calcFilterGain(aecmStructNew.enerFar(setupStruct.currentBlock), dE, aecmStructNew, setupStruct.currentBlock, aecmStructNew.convLength, aecmStructNew.cntIn, aecmStructNew.cntOut);
else
gamma_echo = 1;
end
aecmStructNew.gammaLog(setupStruct.currentBlock) = gamma_echo; % Store the gain
gamma_use = gamma_echo;
% Use the stored channel
U = aecmStructNew.HStored.*xSubBand;
% compute Wiener filter and suppressor function
Iy = find(ySubBand);
subBandFilter = zeros(size(ySubBand));
if (aecmStructNew.bandFactor == 2)
subBandFilter(Iy) = (1 - gamma_use*sqrt(U(Iy)./ySubBand(Iy))); % For Faller
else
subBandFilter(Iy) = (1 - gamma_use*(U(Iy)./ySubBand(Iy))); % For COV
end
ix0 = find(subBandFilter < 0); % bounding trick 1
subBandFilter(ix0) = 0;
ix0 = find(subBandFilter > 1); % bounding trick 1
subBandFilter(ix0) = 1;
% Interpolate back to normal frequency bins if we use sub bands
if aecmStructNew.useSubBand
thefilter = interp1(setupStruct.centerFreq,subBandFilter,linspace(0,setupStruct.samplingfreq/2,setupStruct.hsupport1)','nearest');
testfilter = interp1(setupStruct.centerFreq,subBandFilter,linspace(0,setupStruct.samplingfreq/2,1000),'nearest');
thefilter(end) = subBandFilter(end);
internalIndex = 1;
for kk=1:setupStruct.subBandLength+1
internalIndex:internalIndex+setupStruct.numInBand(kk)-1;
thefilter(internalIndex:internalIndex+setupStruct.numInBand(kk)-1) = subBandFilter(kk);
internalIndex = internalIndex + setupStruct.numInBand(kk);
end
else
thefilter = subBandFilter;
testfilter = subBandFilter;
end
% Bound the filter
ix0 = find(thefilter < setupStruct.de_echo_bound); % bounding trick 1
thefilter(ix0) = setupStruct.de_echo_bound; % bounding trick 2
ix0 = find(thefilter > 1); % bounding in reasonable range
thefilter(ix0) = 1;
%%%%
% NLP
%%%%
thefmean = mean(thefilter(8:16));
if (thefmean < 1)
disp('');
end
aecmStructNew.runningfmean = setupStruct.nl_alpha*aecmStructNew.runningfmean + (1-setupStruct.nl_alpha)*thefmean;
slope0 = 1.0/(1.0 - setupStruct.nlSeverity); %
thegain = max(0.0, min(1.0, slope0*(aecmStructNew.runningfmean - setupStruct.nlSeverity)));
if ~setupStruct.nlp_flag
thegain = 1;
end
% END NONLINEARITY
thefilter = thegain*thefilter;
%%%%
% The suppression
%%%%
femicrophone = fmicrophone .* thefilter;
% Store the output energy (used for plotting)
%aecmStructNew.enerOut(setupStruct.currentBlock) = log(abs(femicrophone)'*abs(femicrophone));
aecmStructNew.enerOut(setupStruct.currentBlock) = log(sum(abs(femicrophone)));
if aecmStructNew.plotIt
figure(13)
subplot(311)
%plot(n100,enerFar(n100),'b-',n100,enerNear(n100),'k--',n100,enerEcho(n100),'r-',[n100(1) n100(end)],[1 1]*vadThNew,'b:',[n100(1) n100(end)],[1 1]*((energyMax-energyMin)/4+energyMin),'r-.',[n100(1) n100(end)],[1 1]*vadNearThNew,'g:',[n100(1) n100(end)],[1 1]*energyMax,'r-.',[n100(1) n100(end)],[1 1]*energyMin,'r-.','LineWidth',2)
plot(n100,aecmStructNew.enerFar(n100),'b-',n100,aecmStructNew.enerNear(n100),'k--',n100,aecmStructNew.enerOut(n100),'r-.',n100,aecmStructNew.enerEcho(n100),'r-',n100,aecmStructNew.enerEchoStored(n100),'c-',[n100(1) n100(end)],[1 1]*((aecmStructNew.energyMax-aecmStructNew.energyMin)/4+aecmStructNew.energyMin),'g-.',[n100(1) n100(end)],[1 1]*aecmStructNew.energyMax,'g-.',[n100(1) n100(end)],[1 1]*aecmStructNew.energyMin,'g-.','LineWidth',2)
%title(['Frame ',int2str(i),' av ',int2str(setupStruct.updateno),' State = ',int2str(speechState),' \mu = ',num2str(mu)])
title(['\gamma = ',num2str(gamma_echo),' \mu = ',num2str(mu)])
subplot(312)
%plot(n100,enerError,'b-',[n100(1) n100(end)],[1 1]*vadNearTh,'r:',[n100(1) n100(end)],[-1.5 -1.5]*vadNearTh,'r:','LineWidth',2)
%plot(n100,enerError,'b-',[n100(1) n100(end)],[1 1],'r:',[n100(1) n100(end)],[-2 -2],'r:','LineWidth',2)
plot(n100,enerError,'b-',n100,enerErrorStored,'c-',[n100(1) n100(end)],[1 1]*aecmStructNew.varMean,'k--',[n100(1) n100(end)],[1 1],'r:',[n100(1) n100(end)],[-2 -2],'r:','LineWidth',2)
% Plot mu
%plot(n100,log2(aecmStructNew.muLog(n100)),'b-','LineWidth',2)
%plot(n100,log2(aecmStructNew.HGain(n100)),'b-',[n100(1) n100(end)],[1 1]*log2(sum(aecmStructNew.HStored)),'r:','LineWidth',2)
title(['Block ',int2str(setupStruct.currentBlock),' av ',int2str(setupStruct.updateno)])
subplot(313)
%plot(n100,enerVar(n100),'b-',[n100(1) n100(end)],[1 1],'r:',[n100(1) n100(end)],[-2 -2],'r:','LineWidth',2)
%plot(n100,enerVar(n100),'b-','LineWidth',2)
% Plot correlation curve
%plot(-25:25,aecmStructNew.delayStored/max(aecmStructNew.delayStored),'c-',-25:25,aecmStructNew.delayLatest/max(aecmStructNew.delayLatest),'r-',-25:25,(max(aecmStructNew.delayStoredS)-aecmStructNew.delayStoredS)/(max(aecmStructNew.delayStoredS)-min(aecmStructNew.delayStoredS)),'c:',-25:25,(max(aecmStructNew.delayLatestS)-aecmStructNew.delayLatestS)/(max(aecmStructNew.delayLatestS)-min(aecmStructNew.delayLatestS)),'r:','LineWidth',2)
%plot(-25:25,aecmStructNew.delayStored,'c-',-25:25,aecmStructNew.delayLatest,'r-',-25:25,(max(aecmStructNew.delayStoredS)-aecmStructNew.delayStoredS)/(max(aecmStructNew.delayStoredS)-min(aecmStructNew.delayStoredS)),'c:',-25:25,(max(aecmStructNew.delayLatestS)-aecmStructNew.delayLatestS)/(max(aecmStructNew.delayLatestS)-min(aecmStructNew.delayLatestS)),'r:','LineWidth',2)
%plot(-25:25,aecmStructNew.delayLatest,'r-',-25:25,(50-aecmStructNew.delayLatestS)/100,'r:','LineWidth',2)
plot(-25:25,aecmStructNew.delayLatestS,'r:','LineWidth',2)
%plot(-25:25,aecmStructNew.delayStored,'c-',-25:25,aecmStructNew.delayLatest,'r-','LineWidth',2)
plot(0:32,aecmStruct.HStored,'bo-','LineWidth',2)
%title(['\gamma | In = ',int2str(aecmStructNew.muStruct.countInInterval),' | Out High = ',int2str(aecmStructNew.muStruct.countOutHighInterval),' | Out Low = ',int2str(aecmStructNew.muStruct.countOutLowInterval)])
pause(1)
%if ((setupStruct.currentBlock == 860) | (setupStruct.currentBlock == 420) | (setupStruct.currentBlock == 960))
if 0%(setupStruct.currentBlock == 960)
figure(60)
plot(n100,aecmStructNew.enerNear(n100),'k--',n100,aecmStructNew.enerEcho(n100),'k:','LineWidth',2)
legend('Near End','Estimated Echo')
title('Signal Energy witH offset compensation')
figure(61)
subplot(211)
stem(sign(aecmStructNew.enerNear(n100)-mean(aecmStructNew.enerNear(n100))))
title('Near End Energy Pattern (around mean value)')
subplot(212)
stem(sign(aecmStructNew.enerEcho(n100)-mean(aecmStructNew.enerEcho(n100))))
title('Estimated Echo Energy Pattern (around mean value)')
pause
end
drawnow%,pause
elseif ~rem(setupStruct.currentBlock,100)
fprintf('Block %d of %d\n',setupStruct.currentBlock,setupStruct.updateno)
end

View File

@ -0,0 +1,98 @@
function [delayStructNew] = align(xf, yf, delayStruct, i, trueDelay);
%%%%%%%
% Bastiaan's algorithm copied
%%%%%%%
Ap500 = [1.00, -4.95, 9.801, -9.70299, 4.80298005, -0.9509900499];
Bp500 = [0.662743088639636, -2.5841655608125, 3.77668102146288, -2.45182477425154, 0.596566274575251, 0.0];
Ap200 = [1.00, -4.875, 9.50625, -9.26859375, 4.518439453125, -0.881095693359375];
Bp200 = [0.862545460994275, -3.2832804496114, 4.67892032308828, -2.95798023879133, 0.699796870041299, 0.0];
oldMethod = 1; % Turn on or off the old method. The new one is Bastiaan's August 2008 updates
THReSHoLD = 2.0; % ADJUSTABLE threshold factor; 4.0 seems good
%%%%%%%%%%%%%%%%%%%
% use log domain (showed improved performance)
xxf = sqrt(real(xf.*conj(xf))+1e-20);
yyf = sqrt(real(yf.*conj(yf))+1e-20);
delayStruct.sxAll2(:,i) = 20*log10(xxf);
delayStruct.syAll2(:,i) = 20*log10(yyf);
mD = min(i-1,delayStruct.maxDelayb);
if oldMethod
factor = 1.0;
histLenb = 250;
xthreshold = factor*median(delayStruct.sxAll2(:,i-mD:i),2);
ythreshold = factor*median(delayStruct.syAll2(:,i-mD:i),2);
else
xthreshold = sum(delayStruct.sxAll2(:,i-mD:i),2)/(delayStruct.maxDelayb+1);
[yout, delayStruct.z200] = filter(Bp200, Ap200, delayStruct.syAll2(:,i), delayStruct.z200, 2);
yout = yout/(delayStruct.maxDelayb+1);
ythreshold = mean(delayStruct.syAll2(:,i-mD:i),2);
ythreshold = yout;
end
delayStruct.bxspectrum(i) = getBspectrum(delayStruct.sxAll2(:,i), xthreshold, delayStruct.bandfirst, delayStruct.bandlast);
delayStruct.byspectrum(i) = getBspectrum(delayStruct.syAll2(:,i), ythreshold, delayStruct.bandfirst, delayStruct.bandlast);
delayStruct.bxhist(end-mD:end) = delayStruct.bxspectrum(i-mD:i);
delayStruct.bcount(:,i) = hisser2(delayStruct.byspectrum(i), flipud(delayStruct.bxhist), delayStruct.bandfirst, delayStruct.bandlast);
[delayStruct.fout(:,i), delayStruct.z500] = filter(Bp500, Ap500, delayStruct.bcount(:,i), delayStruct.z500, 2);
if oldMethod
%delayStruct.new(:,i) = sum(delayStruct.bcount(:,max(1,i-histLenb+1):i),2); % using the history range
tmpVec = [delayStruct.fout(1,i)*ones(2,1); delayStruct.fout(:,i); delayStruct.fout(end,i)*ones(2,1)]; % using the history range
tmpVec = filter(ones(1,5), 1, tmpVec);
delayStruct.new(:,i) = tmpVec(5:end);
%delayStruct.new(:,i) = delayStruct.fout(:,i); % using the history range
else
[delayStruct.fout(:,i), delayStruct.z500] = filter(Bp500, Ap500, delayStruct.bcount(:,i), delayStruct.z500, 2);
% NEW CODE
delayStruct.new(:,i) = filter([-1,-2,1,4,1,-2,-1], 1, delayStruct.fout(:,i)); %remv smth component
delayStruct.new(1:end-3,i) = delayStruct.new(1+3:end,i);
delayStruct.new(1:6,i) = 0.0;
delayStruct.new(end-6:end,i) = 0.0; % ends are no good
end
[valuen, tempdelay] = min(delayStruct.new(:,i)); % find minimum
if oldMethod
threshold = valuen + (max(delayStruct.new(:,i)) - valuen)/4;
thIndex = find(delayStruct.new(:,i) <= threshold);
if (i > 1)
delayDiff = abs(delayStruct.delay(i-1)-tempdelay+1);
if (delayStruct.oneGoodEstimate & (max(diff(thIndex)) > 1) & (delayDiff < 10))
% We consider this minimum to be significant, hence update the delay
delayStruct.delay(i) = tempdelay;
elseif (~delayStruct.oneGoodEstimate & (max(diff(thIndex)) > 1))
delayStruct.delay(i) = tempdelay;
if (i > histLenb)
delayStruct.oneGoodEstimate = 1;
end
else
delayStruct.delay(i) = delayStruct.delay(i-1);
end
else
delayStruct.delay(i) = tempdelay;
end
else
threshold = THReSHoLD*std(delayStruct.new(:,i)); % set updata threshold
if ((-valuen > threshold) | (i < delayStruct.smlength)) % see if you want to update delay
delayStruct.delay(i) = tempdelay;
else
delayStruct.delay(i) = delayStruct.delay(i-1);
end
% END NEW CODE
end
delayStructNew = delayStruct;
% administrative and plotting stuff
if( 0)
figure(10);
plot([1:length(delayStructNew.new(:,i))],delayStructNew.new(:,i),trueDelay*[1 1],[min(delayStructNew.new(:,i)),max(delayStructNew.new(:,i))],'r',[1 length(delayStructNew.new(:,i))],threshold*[1 1],'r:', 'LineWidth',2);
%plot([1:length(delayStructNew.bcount(:,i))],delayStructNew.bcount(:,i),trueDelay*[1 1],[min(delayStructNew.bcount(:,i)),max(delayStructNew.bcount(:,i))],'r','LineWidth',2);
%plot([thedelay,thedelay],[min(fcount(:,i)),max(fcount(:,i))],'r');
%title(sprintf('bin count and known delay at time %5.1f s\n',(i-1)*(support/(fs*oversampling))));
title(delayStructNew.oneGoodEstimate)
xlabel('delay in frames');
%hold off;
drawnow
end

View File

@ -0,0 +1,88 @@
function [gam, cntIn2, cntOut2] = calcFilterGain(energy, dE, aecmStruct, t, T, cntIn, cntOut)
defaultLevel = 1.2;
cntIn2 = cntIn;
cntOut2 = cntOut;
if (t < T)
gam = 1;
else
dE1 = -5;
dE2 = 1;
gamMid = 0.2;
gam = max(0,min((energy - aecmStruct.energyMin)/(aecmStruct.energyLevel - aecmStruct.energyMin), 1-(1-gamMid)*(aecmStruct.energyMax-energy)/(aecmStruct.energyMax-aecmStruct.energyLevel)));
dEOffset = -0.5;
dEWidth = 1.5;
%gam2 = max(1,2-((dE-dEOffset)/(dE2-dEOffset)).^2);
gam2 = 1+(abs(dE-dEOffset)<(dE2-dEOffset));
gam = gam*gam2;
if (energy < aecmStruct.energyLevel)
gam = 0;
else
gam = defaultLevel;
end
dEVec = aecmStruct.enerNear(t-63:t)-aecmStruct.enerEcho(t-63:t);
%dEVec = aecmStruct.enerNear(t-20:t)-aecmStruct.enerEcho(t-20:t);
numCross = 0;
currentState = 0;
for ii=1:64
if (currentState == 0)
currentState = (dEVec(ii) > dE2) - (dEVec(ii) < -2);
elseif ((currentState == 1) & (dEVec(ii) < -2))
numCross = numCross + 1;
currentState = -1;
elseif ((currentState == -1) & (dEVec(ii) > dE2))
numCross = numCross + 1;
currentState = 1;
end
end
gam = max(0, gam - numCross/25);
gam = 1;
ener_A = 1;
ener_B = 0.8;
ener_C = aecmStruct.energyLevel + (aecmStruct.energyMax-aecmStruct.energyLevel)/5;
dE_A = 4;%2;
dE_B = 3.6;%1.8;
dE_C = 0.9*dEWidth;
dE_D = 1;
timeFactorLength = 10;
ddE = abs(dE-dEOffset);
if (energy < aecmStruct.energyLevel)
gam = 0;
else
gam = 1;
gam2 = max(0, min(ener_B*(energy-aecmStruct.energyLevel)/(ener_C-aecmStruct.energyLevel), ener_B+(ener_A-ener_B)*(energy-ener_C)/(aecmStruct.energyMax-ener_C)));
if (ddE < dEWidth)
% Update counters
cntIn2 = cntIn2 + 1;
if (cntIn2 > 2)
cntOut2 = 0;
end
gam3 = max(dE_D, min(dE_A-(dE_A-dE_B)*(ddE/dE_C), dE_D+(dE_B-dE_D)*(dEWidth-ddE)/(dEWidth-dE_C)));
gam3 = dE_A;
else
% Update counters
cntOut2 = cntOut2 + 1;
if (cntOut2 > 2)
cntIn2 = 0;
end
%gam2 = 1;
gam3 = dE_D;
end
timeFactor = min(1, cntIn2/timeFactorLength);
gam = gam*(1-timeFactor) + timeFactor*gam2*gam3;
end
%gam = gam/floor(numCross/2+1);
end
if isempty(gam)
numCross
timeFactor
cntIn2
cntOut2
gam2
gam3
end

View File

@ -0,0 +1,105 @@
function [mu, aecmStructNew] = calcStepSize(energy, dE, aecmStruct, t, logscale)
if (nargin < 4)
t = 1;
logscale = 1;
elseif (nargin == 4)
logscale = 1;
end
T = aecmStruct.convLength;
if logscale
currentMuMax = aecmStruct.MU_MIN + (aecmStruct.MU_MAX-aecmStruct.MU_MIN)*min(t,T)/T;
if (aecmStruct.energyMin >= aecmStruct.energyMax)
mu = aecmStruct.MU_MIN;
else
mu = (energy - aecmStruct.energyMin)/(aecmStruct.energyMax - aecmStruct.energyMin)*(currentMuMax-aecmStruct.MU_MIN) + aecmStruct.MU_MIN;
end
mu = 2^mu;
if (energy < aecmStruct.energyLevel)
mu = 0;
end
else
muMin = 0;
muMax = 0.5;
currentMuMax = muMin + (muMax-muMin)*min(t,T)/T;
if (aecmStruct.energyMin >= aecmStruct.energyMax)
mu = muMin;
else
mu = (energy - aecmStruct.energyMin)/(aecmStruct.energyMax - aecmStruct.energyMin)*(currentMuMax-muMin) + muMin;
end
end
dE2 = 1;
dEOffset = -0.5;
offBoost = 5;
if (mu > 0)
if (abs(dE-aecmStruct.ENERGY_DEV_OFFSET) > aecmStruct.ENERGY_DEV_TOL)
aecmStruct.muStruct.countInInterval = 0;
else
aecmStruct.muStruct.countInInterval = aecmStruct.muStruct.countInInterval + 1;
end
if (dE < aecmStruct.ENERGY_DEV_OFFSET - aecmStruct.ENERGY_DEV_TOL)
aecmStruct.muStruct.countOutLowInterval = aecmStruct.muStruct.countOutLowInterval + 1;
else
aecmStruct.muStruct.countOutLowInterval = 0;
end
if (dE > aecmStruct.ENERGY_DEV_OFFSET + aecmStruct.ENERGY_DEV_TOL)
aecmStruct.muStruct.countOutHighInterval = aecmStruct.muStruct.countOutHighInterval + 1;
else
aecmStruct.muStruct.countOutHighInterval = 0;
end
end
muVar = 2^min(-3,5/50*aecmStruct.muStruct.countInInterval-3);
muOff = 2^max(offBoost,min(0,offBoost*(aecmStruct.muStruct.countOutLowInterval-aecmStruct.muStruct.minOutLowInterval)/(aecmStruct.muStruct.maxOutLowInterval-aecmStruct.muStruct.minOutLowInterval)));
muLow = 1/64;
muVar = 1;
if (t < 2*T)
muDT = 1;
muVar = 1;
mdEVec = 0;
numCross = 0;
else
muDT = min(1,max(muLow,1-(1-muLow)*(dE-aecmStruct.ENERGY_DEV_OFFSET)/aecmStruct.ENERGY_DEV_TOL));
dEVec = aecmStruct.enerNear(t-63:t)-aecmStruct.enerEcho(t-63:t);
%dEVec = aecmStruct.enerNear(t-20:t)-aecmStruct.enerEcho(t-20:t);
numCross = 0;
currentState = 0;
for ii=1:64
if (currentState == 0)
currentState = (dEVec(ii) > dE2) - (dEVec(ii) < -2);
elseif ((currentState == 1) & (dEVec(ii) < -2))
numCross = numCross + 1;
currentState = -1;
elseif ((currentState == -1) & (dEVec(ii) > dE2))
numCross = numCross + 1;
currentState = 1;
end
end
%logicDEVec = (dEVec > dE2) - (dEVec < -2);
%numCross = sum(abs(diff(logicDEVec)));
%mdEVec = mean(abs(dEVec-dEOffset));
%mdEVec = mean(abs(dEVec-mean(dEVec)));
%mdEVec = max(dEVec)-min(dEVec);
%if (mdEVec > 4)%1.5)
% muVar = 0;
%end
muVar = 2^(-floor(numCross/2));
muVar = 2^(-numCross);
end
%muVar = 1;
% if (eStd > (dE2-dEOffset))
% muVar = 1/8;
% else
% muVar = 1;
% end
%mu = mu*muDT*muVar*muOff;
mu = mu*muDT*muVar;
mu = min(mu,0.25);
aecmStructNew = aecmStruct;
%aecmStructNew.varMean = mdEVec;
aecmStructNew.varMean = numCross;

View File

@ -0,0 +1,42 @@
function [U, Hnew] = fallerEstimator(Y, X, H, mu)
% Near end signal is stacked frame by frame columnwise in matrix Y and far end in X
%
% Possible estimation procedures are
% 1) LSE
% 2) NLMS
% 3) Separated numerator and denomerator filters
regParam = 1;
[numFreqs, numFrames] = size(Y);
[numFreqs, Q] = size(X);
U = zeros(numFreqs, 1);
if ((nargin == 3) | (nargin == 5))
dtd = 0;
end
if (nargin == 4)
dtd = H;
end
Emax = 7;
dEH = Emax-sum(sum(H));
nu = 2*mu;
% if (nargin < 5)
% H = zeros(numFreqs, Q);
% for kk = 1:numFreqs
% Xmatrix = hankel(X(kk,1:Q),X(kk,Q:end));
% y = Y(kk,1:end-Q+1)';
% H(kk,:) = (y'*Xmatrix')*inv(Xmatrix*Xmatrix'+regParam);
% U(kk,1) = H(kk,:)*Xmatrix(:,1);
% end
% else
for kk = 1:numFreqs
x = X(kk,1:Q)';
y = Y(kk,1);
Htmp = mu*(y-H(kk,:)*x)/(x'*x+regParam)*x;
%Htmp = (mu*(y-H(kk,:)*x)/(x'*x+regParam) - nu/dEH)*x;
H(kk,:) = H(kk,:) + Htmp';
U(kk,1) = H(kk,:)*x;
end
% end
Hnew = H;

View File

@ -0,0 +1,22 @@
function bspectrum=getBspectrum(ps,threshold,bandfirst,bandlast)
% function bspectrum=getBspectrum(ps,threshold,bandfirst,bandlast)
% compute binary spectrum using threshold spectrum as pivot
% bspectrum = binary spectrum (binary)
% ps=current power spectrum (float)
% threshold=threshold spectrum (float)
% bandfirst = first band considered
% bandlast = last band considered
% initialization stuff
if( length(ps)<bandlast | bandlast>32 | length(ps)~=length(threshold))
error('BinDelayEst:spectrum:invalid','Dimensionality error');
end
% get current binary spectrum
diff = ps - threshold;
bspectrum=uint32(0);
for(i=bandfirst:bandlast)
if( diff(i)>0 )
bspectrum = bitset(bspectrum,i);
end
end

View File

@ -0,0 +1,21 @@
function bcount=hisser2(bs,bsr,bandfirst,bandlast)
% function bcount=hisser(bspectrum,bandfirst,bandlast)
% histogram for the binary spectra
% bcount= array of bit counts
% bs=binary spectrum (one int32 number each)
% bsr=reference binary spectra (one int32 number each)
% blockSize = histogram over blocksize blocks
% bandfirst = first band considered
% bandlast = last band considered
% weight all delays equally
maxDelay = length(bsr);
% compute counts (two methods; the first works better and is operational)
bcount=zeros(maxDelay,1);
for(i=1:maxDelay)
% the delay should have low count for low-near&high-far and high-near&low-far
bcount(i)= sum(bitget(bitxor(bs,bsr(i)),bandfirst:bandlast));
% the delay should have low count for low-near&high-far (works less well)
% bcount(i)= sum(bitget(bitand(bsr(i),bitxor(bs,bsr(i))),bandfirst:bandlast));
end

View File

@ -0,0 +1,283 @@
useHTC = 1; % Set this if you want to run a single file and set file names below. Otherwise use simEnvironment to run from several scenarios in a row
delayCompensation_flag = 0; % Set this flag to one if you want to turn on the delay compensation/enhancement
global FARENDFFT;
global NEARENDFFT;
global F;
if useHTC
% fid=fopen('./htcTouchHd/nb/aecFar.pcm'); xFar=fread(fid,'short'); fclose(fid);
% fid=fopen('./htcTouchHd/nb/aecNear.pcm'); yNear=fread(fid,'short'); fclose(fid);
% fid=fopen('./samsungBlackjack/nb/aecFar.pcm'); xFar=fread(fid,'short'); fclose(fid);
% fid=fopen('./samsungBlackjack/nb/aecNear.pcm'); yNear=fread(fid,'short'); fclose(fid);
% fid=fopen('aecFarPoor.pcm'); xFar=fread(fid,'short'); fclose(fid);
% fid=fopen('aecNearPoor.pcm'); yNear=fread(fid,'short'); fclose(fid);
% fid=fopen('out_aes.pcm'); outAES=fread(fid,'short'); fclose(fid);
fid=fopen('aecFar4.pcm'); xFar=fread(fid,'short'); fclose(fid);
fid=fopen('aecNear4.pcm'); yNear=fread(fid,'short'); fclose(fid);
yNearSpeech = zeros(size(xFar));
fs = 8000;
frameSize = 64;
% frameSize = 128;
fs = 16000;
% frameSize = 256;
%F = load('fftValues.txt');
%FARENDFFT = F(:,1:33);
%NEARENDFFT = F(:,34:66);
else
loadFileFar = [speakerType, '_s_',scenario,'_far_b.wav'];
[xFar,fs,nbits] = wavread(loadFileFar);
xFar = xFar*2^(nbits-1);
loadFileNear = [speakerType, '_s_',scenario,'_near_b.wav'];
[yNear,fs,nbits] = wavread(loadFileNear);
yNear = yNear*2^(nbits-1);
loadFileNearSpeech = [speakerType, '_s_',scenario,'_nearSpeech_b.wav'];
[yNearSpeech,fs,nbits] = wavread(loadFileNearSpeech);
yNearSpeech = yNearSpeech*2^(nbits-1);
frameSize = 256;
end
dtRegions = [];
% General settings for the AECM
setupStruct = struct(...
'stepSize_flag', 1,... % This flag turns on the step size calculation. If turned off, mu = 0.25.
'supGain_flag', 0,... % This flag turns on the suppression gain calculation. If turned off, gam = 1.
'channelUpdate_flag', 0,... % This flag turns on the channel update. If turned off, H is updated for convLength and then kept constant.
'nlp_flag', 0,... % Turn on/off NLP
'withVAD_flag', 0,... % Turn on/off NLP
'useSubBand', 0,... % Set to 1 if to use subBands
'useDelayEstimation', 1,... % Set to 1 if to use delay estimation
'support', frameSize,... % # of samples per frame
'samplingfreq',fs,... % Sampling frequency
'oversampling', 2,... % Overlap between blocks/frames
'updatel', 0,... % # of samples between blocks
'hsupport1', 0,... % # of bins in frequency domain
'factor', 0,... % synthesis window amplification
'tlength', 0,... % # of samples of entire file
'updateno', 0,... % # of updates
'nb', 1,... % # of blocks
'currentBlock', 0,... %
'win', zeros(frameSize,1),...% Window to apply for fft and synthesis
'avtime', 1,... % Time (in sec.) to perform averaging
'estLen', 0,... % Averaging in # of blocks
'A_GAIN', 10.0,... %
'suppress_overdrive', 1.0,... % overdrive factor for suppression 1.4 is good
'gamma_echo', 1.0,... % same as suppress_overdrive but at different place
'de_echo_bound', 0.0,... %
'nl_alpha', 0.4,... % memory; seems not very critical
'nlSeverity', 0.2,... % nonlinearity severity: 0 does nothing; 1 suppresses all
'numInBand', [],... % # of frequency bins in resp. subBand
'centerFreq', [],... % Center frequency of resp. subBand
'dtRegions', dtRegions,... % Regions where we have DT
'subBandLength', frameSize/2);%All bins
%'subBandLength', 11); %Something's wrong when subBandLength even
%'nl_alpha', 0.8,... % memory; seems not very critical
delayStruct = struct(...
'bandfirst', 8,...
'bandlast', 25,...
'smlength', 600,...
'maxDelay', 0.4,...
'oneGoodEstimate', 0,...
'delayAdjust', 0,...
'maxDelayb', 0);
% More parameters in delayStruct are constructed in "updateSettings" below
% Make struct settings
[setupStruct, delayStruct] = updateSettings(yNear, xFar, setupStruct, delayStruct);
setupStruct.numInBand = ones(setupStruct.hsupport1,1);
Q = 1; % Time diversity in channel
% General settings for the step size calculation
muStruct = struct(...
'countInInterval', 0,...
'countOutHighInterval', 0,...
'countOutLowInterval', 0,...
'minInInterval', 50,...
'minOutHighInterval', 10,...
'minOutLowInterval', 10,...
'maxOutLowInterval', 50);
% General settings for the AECM
aecmStruct = struct(...
'plotIt', 0,... % Set to 0 to turn off plotting
'useSubBand', 0,...
'bandFactor', 1,...
'H', zeros(setupStruct.subBandLength+1,Q),...
'HStored', zeros(setupStruct.subBandLength+1,Q),...
'X', zeros(setupStruct.subBandLength+1,Q),...
'energyThres', 0.28,...
'energyThresMSE', 0.4,...
'energyMin', inf,...
'energyMax', -inf,...
'energyLevel', 0,...
'energyLevelMSE', 0,...
'convLength', 100,...
'gammaLog', ones(setupStruct.updateno,1),...
'muLog', ones(setupStruct.updateno,1),...
'enerFar', zeros(setupStruct.updateno,1),...
'enerNear', zeros(setupStruct.updateno,1),...
'enerEcho', zeros(setupStruct.updateno,1),...
'enerEchoStored', zeros(setupStruct.updateno,1),...
'enerOut', zeros(setupStruct.updateno,1),...
'runningfmean', 0,...
'muStruct', muStruct,...
'varMean', 0,...
'countMseH', 0,...
'mseHThreshold', 1.1,...
'mseHStoredOld', inf,...
'mseHLatestOld', inf,...
'delayLatestS', zeros(1,51),...
'feedbackDelay', 0,...
'feedbackDelayUpdate', 0,...
'cntIn', 0,...
'cntOut', 0,...
'FAR_ENERGY_MIN', 1,...
'ENERGY_DEV_OFFSET', 0.5,...
'ENERGY_DEV_TOL', 1.5,...
'MU_MIN', -16,...
'MU_MAX', -2,...
'newDelayCurve', 0);
% Adjust speech signals
xFar = [zeros(setupStruct.hsupport1-1,1);xFar(1:setupStruct.tlength)];
yNear = [zeros(setupStruct.hsupport1-1,1);yNear(1:setupStruct.tlength)];
yNearSpeech = [zeros(setupStruct.hsupport1-1,1);yNearSpeech(1:setupStruct.tlength)];
xFar = xFar(1:setupStruct.tlength);
yNear = yNear(1:setupStruct.tlength);
% Set figure settings
if aecmStruct.plotIt
figure(13)
set(gcf,'doublebuffer','on')
end
%%%%%%%%%%
% Here starts the algorithm
% Dividing into frames and then estimating the near end speech
%%%%%%%%%%
fTheFarEnd = complex(zeros(setupStruct.hsupport1,1));
afTheFarEnd = zeros(setupStruct.hsupport1,setupStruct.updateno+1);
fFar = zeros(setupStruct.hsupport1,setupStruct.updateno+1);
fmicrophone = complex(zeros(setupStruct.hsupport1,1));
afmicrophone = zeros(setupStruct.hsupport1,setupStruct.updateno+1);
fNear = zeros(setupStruct.hsupport1,setupStruct.updateno+1);
femicrophone = complex(zeros(setupStruct.hsupport1,1));
emicrophone = zeros(setupStruct.tlength,1);
if (setupStruct.useDelayEstimation == 2)
delSamples = [1641 1895 2032 1895 2311 2000 2350 2222 NaN 2332 2330 2290 2401 2415 NaN 2393 2305 2381 2398];
delBlocks = round(delSamples/setupStruct.updatel);
delStarts = floor([25138 46844 105991 169901 195739 218536 241803 333905 347703 362660 373753 745135 765887 788078 806257 823835 842443 860139 881869]/setupStruct.updatel);
else
delStarts = [];
end
for i=1:setupStruct.updateno
setupStruct.currentBlock = i;
sb = (i-1)*setupStruct.updatel + 1;
se = sb + setupStruct.support - 1;
%%%%%%%
% Analysis FFTs
%%%%%%%
% Far end signal
temp = fft(setupStruct.win .* xFar(sb:se))/frameSize;
fTheFarEnd = temp(1:setupStruct.hsupport1);
afTheFarEnd(:,i) = abs(fTheFarEnd);
fFar(:,i) = fTheFarEnd;
% Near end signal
temp = fft(setupStruct.win .* yNear(sb:se))/frameSize;%,pause
fmicrophone = temp(1:setupStruct.hsupport1);
afmicrophone(:,i) = abs(fmicrophone);
fNear(:,i) = fmicrophone;
%abs(fmicrophone),pause
% The true near end speaker (if we have such info)
temp = fft(setupStruct.win .* yNearSpeech(sb:se));
aftrueSpeech = abs(temp(1:setupStruct.hsupport1));
if(i == 1000)
%break;
end
% Perform delay estimation
if (setupStruct.useDelayEstimation == 1)
% Delay Estimation
delayStruct = align(fTheFarEnd, fmicrophone, delayStruct, i);
%delayStruct.delay(i) = 39;%19;
idel = max(i - delayStruct.delay(i) + 1,1);
if delayCompensation_flag
% If we have a new delay estimate from Bastiaan's alg. update the offset
if (delayStruct.delay(i) ~= delayStruct.delay(max(1,i-1)))
delayStruct.delayAdjust = delayStruct.delayAdjust + delayStruct.delay(i) - delayStruct.delay(i-1);
end
% Store the compensated delay
delayStruct.delayNew(i) = delayStruct.delay(i) - delayStruct.delayAdjust;
if (delayStruct.delayNew(i) < 1)
% Something's wrong
pause,break
end
% Compensate with the offset estimate
idel = idel + delayStruct.delayAdjust;
end
if 0%aecmStruct.plotIt
figure(1)
plot(1:i,delayStruct.delay(1:i),'k:',1:i,delayStruct.delayNew(1:i),'k--','LineWidth',2),drawnow
end
elseif (setupStruct.useDelayEstimation == 2)
% Use "manual delay"
delIndex = find(delStarts<i);
if isempty(delIndex)
idel = i;
else
idel = i - delBlocks(max(delIndex));
if isnan(idel)
idel = i - delBlocks(max(delIndex)-1);
end
end
else
% No delay estimation
%idel = max(i - 18, 1);
idel = max(i - 50, 1);
end
%%%%%%%%
% This is the AECM algorithm
%
% Output is the new frequency domain signal (hopefully) echo compensated
%%%%%%%%
[femicrophone, aecmStruct] = AECMobile(fmicrophone, afTheFarEnd(:,idel), setupStruct, aecmStruct);
%[femicrophone, aecmStruct] = AECMobile(fmicrophone, FARENDFFT(idel,:)'/2^F(idel,end-1), setupStruct, aecmStruct);
if aecmStruct.feedbackDelayUpdate
% If the feedback tells us there is a new offset out there update the enhancement
delayStruct.delayAdjust = delayStruct.delayAdjust + aecmStruct.feedbackDelay;
aecmStruct.feedbackDelayUpdate = 0;
end
% reconstruction; first make spectrum odd
temp = [femicrophone; flipud(conj(femicrophone(2:(setupStruct.hsupport1-1))))];
emicrophone(sb:se) = emicrophone(sb:se) + setupStruct.factor * setupStruct.win .* real(ifft(temp))*frameSize;
if max(isnan(emicrophone(sb:se)))
% Something's wrong with the output at block i
i
break
end
end
if useHTC
fid=fopen('aecOutMatlabC.pcm','w');fwrite(fid,int16(emicrophone),'short');fclose(fid);
%fid=fopen('farendFFT.txt','w');fwrite(fid,int16(afTheFarEnd(:)),'short');fclose(fid);
%fid=fopen('farendFFTreal.txt','w');fwrite(fid,int16(imag(fFar(:))),'short');fclose(fid);
%fid=fopen('farendFFTimag.txt','w');fwrite(fid,int16(real(fFar(:))),'short');fclose(fid);
%fid=fopen('nearendFFT.txt','w');fwrite(fid,int16(afmicrophone(:)),'short');fclose(fid);
%fid=fopen('nearendFFTreal.txt','w');fwrite(fid,int16(real(fNear(:))),'short');fclose(fid);
%fid=fopen('nearendFFTimag.txt','w');fwrite(fid,int16(imag(fNear(:))),'short');fclose(fid);
end
if useHTC
%spclab(setupStruct.samplingfreq,xFar,yNear,emicrophone)
else
spclab(setupStruct.samplingfreq,xFar,yNear,emicrophone,yNearSpeech)
end

View File

@ -0,0 +1,15 @@
speakerType = 'fm';
%for k=2:5
%for k=[2 4 5]
for k=3
scenario = int2str(k);
fprintf('Current scenario: %d\n',k)
mainProgram
%saveFile = [speakerType, '_s_',scenario,'_delayEst_v2_vad_man.wav'];
%wavwrite(emic,fs,nbits,saveFile);
%saveFile = ['P:\Engineering_share\BjornV\AECM\',speakerType, '_s_',scenario,'_delayEst_v2_vad_man.pcm'];
%saveFile = [speakerType, '_s_',scenario,'_adaptMu_adaptGamma_withVar_gammFilt_HSt.pcm'];
saveFile = ['scenario_',scenario,'_090417_backupH_nlp.pcm'];
fid=fopen(saveFile,'w');fwrite(fid,int16(emicrophone),'short');fclose(fid);
%pause
end

View File

@ -0,0 +1,94 @@
function [setupStructNew, delayStructNew] = updateSettings(microphone, TheFarEnd, setupStruct, delayStruct);
% other, constants
setupStruct.hsupport1 = setupStruct.support/2 + 1;
setupStruct.factor = 2 / setupStruct.oversampling;
setupStruct.updatel = setupStruct.support/setupStruct.oversampling;
setupStruct.estLen = round(setupStruct.avtime * setupStruct.samplingfreq/setupStruct.updatel);
% compute some constants
blockLen = setupStruct.support/setupStruct.oversampling;
delayStruct.maxDelayb = floor(setupStruct.samplingfreq*delayStruct.maxDelay/setupStruct.updatel); % in blocks
%input
tlength = min([length(microphone),length(TheFarEnd)]);
updateno = floor(tlength/setupStruct.updatel);
setupStruct.tlength = setupStruct.updatel*updateno;
setupStruct.updateno = updateno - setupStruct.oversampling + 1;
% signal length
n = floor(min([length(TheFarEnd), length(microphone)])/setupStruct.support)*setupStruct.support;
setupStruct.nb = n/blockLen - setupStruct.oversampling + 1; % in blocks
setupStruct.win = sqrt([0 ; hanning(setupStruct.support-1)]);
% Construct filterbank in Bark-scale
K = setupStruct.subBandLength; %Something's wrong when K even
erbs = 21.4*log10(0.00437*setupStruct.samplingfreq/2+1);
fe = (10.^((0:K)'*erbs/K/21.4)-1)/0.00437;
setupStruct.centerFreq = fe;
H = diag(ones(1,K-1))+diag(ones(1,K-2),-1);
Hinv = inv(H);
aty = 2*Hinv(end,:)*fe(2:end-1);
boundary = aty - (setupStruct.samplingfreq/2 + fe(end-1))/2;
if rem(K,2)
x1 = min([fe(2)/2, -boundary]);
else
x1 = max([0, boundary]);
end
%x1
g = fe(2:end-1);
g(1) = g(1) - x1/2;
x = 2*Hinv*g;
x = [x1;x];
%figure(42), clf
xy = zeros((K+1)*4,1);
yy = zeros((K+1)*4,1);
xy(1:4) = [fe(1) fe(1) x(1) x(1)]';
yy(1:4) = [0 1 1 0]'/x(1);
for kk=2:K
xy((kk-1)*4+(1:4)) = [x(kk-1) x(kk-1) x(kk) x(kk)]';
yy((kk-1)*4+(1:4)) = [0 1 1 0]'/(x(kk)-x(kk-1));
end
xy(end-3:end) = [x(K) x(K) fe(end) fe(end)]';
yy(end-3:end) = [0 1 1 0]'/(fe(end)*2-2*x(K));
%plot(xy,yy,'LineWidth',2)
%fill(xy,yy,'y')
x = [0;x];
xk = x*setupStruct.hsupport1/setupStruct.samplingfreq*2;
%setupStruct.erbBoundaries = xk;
numInBand = zeros(length(xk),1);
xh = (0:setupStruct.hsupport1-1);
for kk=1:length(xk)
if (kk==length(xk))
numInBand(kk) = length(find(xh>=xk(kk)));
else
numInBand(kk) = length(intersect(find(xh>=xk(kk)),find(xh<xk(kk+1))));
end
end
setupStruct.numInBand = numInBand;
setupStructNew = setupStruct;
delayStructNew = struct(...
'sxAll2',zeros(setupStructNew.hsupport1,setupStructNew.nb),...
'syAll2',zeros(setupStructNew.hsupport1,setupStructNew.nb),...
'z200',zeros(5,setupStructNew.hsupport1),...
'z500',zeros(5,delayStruct.maxDelayb+1),...
'bxspectrum',uint32(zeros(setupStructNew.nb,1)),...
'byspectrum',uint32(zeros(setupStructNew.nb,1)),...
'bandfirst',delayStruct.bandfirst,'bandlast',delayStruct.bandlast,...
'bxhist',uint32(zeros(delayStruct.maxDelayb+1,1)),...
'bcount',zeros(1+delayStruct.maxDelayb,setupStructNew.nb),...
'fout',zeros(1+delayStruct.maxDelayb,setupStructNew.nb),...
'new',zeros(1+delayStruct.maxDelayb,setupStructNew.nb),...
'smlength',delayStruct.smlength,...
'maxDelay', delayStruct.maxDelay,...
'maxDelayb', delayStruct.maxDelayb,...
'oneGoodEstimate', 0,...
'delayAdjust', 0,...
'delayNew',zeros(setupStructNew.nb,1),...
'delay',zeros(setupStructNew.nb,1));

View File

@ -0,0 +1,234 @@
function fout = waitbar_j(x,whichbar, varargin)
%WAITBAR Display wait bar.
% H = WAITBAR(X,'title', property, value, property, value, ...)
% creates and displays a waitbar of fractional length X. The
% handle to the waitbar figure is returned in H.
% X should be between 0 and 1. Optional arguments property and
% value allow to set corresponding waitbar figure properties.
% Property can also be an action keyword 'CreateCancelBtn', in
% which case a cancel button will be added to the figure, and
% the passed value string will be executed upon clicking on the
% cancel button or the close figure button.
%
% WAITBAR(X) will set the length of the bar in the most recently
% created waitbar window to the fractional length X.
%
% WAITBAR(X,H) will set the length of the bar in waitbar H
% to the fractional length X.
%
% WAITBAR(X,H,'updated title') will update the title text in
% the waitbar figure, in addition to setting the fractional
% length to X.
%
% WAITBAR is typically used inside a FOR loop that performs a
% lengthy computation. A sample usage is shown below:
%
% h = waitbar(0,'Please wait...');
% for i=1:100,
% % computation here %
% waitbar(i/100,h)
% end
% close(h)
% Clay M. Thompson 11-9-92
% Vlad Kolesnikov 06-7-99
% Copyright 1984-2001 The MathWorks, Inc.
% $Revision: 1.22 $ $Date: 2001/04/15 12:03:29 $
if nargin>=2
if ischar(whichbar)
type=2; %we are initializing
name=whichbar;
elseif isnumeric(whichbar)
type=1; %we are updating, given a handle
f=whichbar;
else
error(['Input arguments of type ' class(whichbar) ' not valid.'])
end
elseif nargin==1
f = findobj(allchild(0),'flat','Tag','TMWWaitbar');
if isempty(f)
type=2;
name='Waitbar';
else
type=1;
f=f(1);
end
else
error('Input arguments not valid.');
end
x = max(0,min(100*x,100));
switch type
case 1, % waitbar(x) update
p = findobj(f,'Type','patch');
l = findobj(f,'Type','line');
if isempty(f) | isempty(p) | isempty(l),
error('Couldn''t find waitbar handles.');
end
xpatch = get(p,'XData');
xpatch = [0 x x 0];
set(p,'XData',xpatch)
xline = get(l,'XData');
set(l,'XData',xline);
if nargin>2,
% Update waitbar title:
hAxes = findobj(f,'type','axes');
hTitle = get(hAxes,'title');
set(hTitle,'string',varargin{1});
end
case 2, % waitbar(x,name) initialize
vertMargin = 0;
if nargin > 2,
% we have optional arguments: property-value pairs
if rem (nargin, 2 ) ~= 0
error( 'Optional initialization arguments must be passed in pairs' );
end
end
oldRootUnits = get(0,'Units');
set(0, 'Units', 'points');
screenSize = get(0,'ScreenSize');
axFontSize=get(0,'FactoryAxesFontSize');
pointsPerPixel = 72/get(0,'ScreenPixelsPerInch');
width = 360 * pointsPerPixel;
height = 75 * pointsPerPixel;
pos = [screenSize(3)/2-width/2 screenSize(4)/2-height/2 width height];
%pos= [501.75 589.5 393.75 52.5];
f = figure(...
'Units', 'points', ...
'BusyAction', 'queue', ...
'Position', pos, ...
'Resize','on', ...
'CreateFcn','', ...
'NumberTitle','off', ...
'IntegerHandle','off', ...
'MenuBar', 'none', ...
'Tag','TMWWaitbar',...
'Interruptible', 'off', ...
'Visible','on');
%%%%%%%%%%%%%%%%%%%%%
% set figure properties as passed to the fcn
% pay special attention to the 'cancel' request
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin > 2,
propList = varargin(1:2:end);
valueList = varargin(2:2:end);
cancelBtnCreated = 0;
for ii = 1:length( propList )
try
if strcmp(lower(propList{ii}), 'createcancelbtn' ) & ~cancelBtnCreated
cancelBtnHeight = 23 * pointsPerPixel;
cancelBtnWidth = 60 * pointsPerPixel;
newPos = pos;
vertMargin = vertMargin + cancelBtnHeight;
newPos(4) = newPos(4)+vertMargin;
callbackFcn = [valueList{ii}];
set( f, 'Position', newPos, 'CloseRequestFcn', callbackFcn );
cancelButt = uicontrol('Parent',f, ...
'Units','points', ...
'Callback',callbackFcn, ...
'ButtonDownFcn', callbackFcn, ...
'Enable','on', ...
'Interruptible','off', ...
'Position', [pos(3)-cancelBtnWidth*1.4, 7, ...
cancelBtnWidth, cancelBtnHeight], ...
'String','Cancel', ...
'Tag','TMWWaitbarCancelButton');
cancelBtnCreated = 1;
else
% simply set the prop/value pair of the figure
set( f, propList{ii}, valueList{ii});
end
catch
disp ( ['Warning: could not set property ''' propList{ii} ''' with value ''' num2str(valueList{ii}) '''' ] );
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
colormap([]);
axNorm=[.05 .3 .9 .2];
% axNorm=[1 1 1 1];
axPos=axNorm.*[pos(3:4),pos(3:4)] + [0 vertMargin 0 0];
h = axes('XLim',[0 100],...
'YLim',[0 1],...
'Box','on', ...
'Units','Points',...
'FontSize', axFontSize,...
'Position',axPos,...
'XTickMode','manual',...
'YTickMode','manual',...
'XTick',[],...
'YTick',[],...
'XTickLabelMode','manual',...
'XTickLabel',[],...
'YTickLabelMode','manual',...
'YTickLabel',[]);
tHandle=title(name);
tHandle=get(h,'title');
oldTitleUnits=get(tHandle,'Units');
set(tHandle,...
'Units', 'points',...
'String', name);
tExtent=get(tHandle,'Extent');
set(tHandle,'Units',oldTitleUnits);
titleHeight=tExtent(4)+axPos(2)+axPos(4)+5;
if titleHeight>pos(4)
pos(4)=titleHeight;
pos(2)=screenSize(4)/2-pos(4)/2;
figPosDirty=logical(1);
else
figPosDirty=logical(0);
end
if tExtent(3)>pos(3)*1.10;
pos(3)=min(tExtent(3)*1.10,screenSize(3));
pos(1)=screenSize(3)/2-pos(3)/2;
axPos([1,3])=axNorm([1,3])*pos(3);
set(h,'Position',axPos);
figPosDirty=logical(1);
end
if figPosDirty
set(f,'Position',pos);
end
xpatch = [0 x x 0];
ypatch = [0 0 1 1];
xline = [100 0 0 100 100];
yline = [0 0 1 1 0];
p = patch(xpatch,ypatch,'r','EdgeColor','r','EraseMode','none');
l = line(xline,yline,'EraseMode','none');
set(l,'Color',get(gca,'XColor'));
set(f,'HandleVisibility','callback','visible','on', 'resize','off');
set(0, 'Units', oldRootUnits);
end % case
drawnow;
if nargout==1,
fout = f;
end

View File

@ -0,0 +1,42 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'aecm',
'type': '<(library)',
'dependencies': [
'<(webrtc_root)/common_audio/common_audio.gyp:spl',
'apm_util'
],
'include_dirs': [
'../interface',
],
'direct_dependent_settings': {
'include_dirs': [
'../interface',
],
},
'sources': [
'../interface/echo_control_mobile.h',
'echo_control_mobile.c',
'aecm_core.c',
'aecm_core.h',
'aecm_delay_estimator.c',
'aecm_delay_estimator.h',
],
},
],
}
# Local Variables:
# tab-width:2
# indent-tabs-mode:nil
# End:
# vim: set expandtab tabstop=2 shiftwidth=2:

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,358 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs echo control (suppression) with fft routines in fixed-point
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_SOURCE_AECM_CORE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_SOURCE_AECM_CORE_H_
#define AECM_DYNAMIC_Q // turn on/off dynamic Q-domain
//#define AECM_WITH_ABS_APPROX
//#define AECM_SHORT // for 32 sample partition length (otherwise 64)
#include "typedefs.h"
#include "signal_processing_library.h"
// Algorithm parameters
#define FRAME_LEN 80 // Total frame length, 10 ms
#ifdef AECM_SHORT
#define PART_LEN 32 // Length of partition
#define PART_LEN_SHIFT 6 // Length of (PART_LEN * 2) in base 2
#else
#define PART_LEN 64 // Length of partition
#define PART_LEN_SHIFT 7 // Length of (PART_LEN * 2) in base 2
#endif
#define PART_LEN1 (PART_LEN + 1) // Unique fft coefficients
#define PART_LEN2 (PART_LEN << 1) // Length of partition * 2
#define PART_LEN4 (PART_LEN << 2) // Length of partition * 4
#define FAR_BUF_LEN PART_LEN4 // Length of buffers
#define MAX_DELAY 100
// Counter parameters
#ifdef AECM_SHORT
#define CONV_LEN 1024 // Convergence length used at startup
#else
#define CONV_LEN 512 // Convergence length used at startup
#endif
#define CONV_LEN2 (CONV_LEN << 1) // Convergence length * 2 used at startup
// Energy parameters
#define MAX_BUF_LEN 64 // History length of energy signals
#define FAR_ENERGY_MIN 1025 // Lowest Far energy level: At least 2 in energy
#define FAR_ENERGY_DIFF 929 // Allowed difference between max and min
#define ENERGY_DEV_OFFSET 0 // The energy error offset in Q8
#define ENERGY_DEV_TOL 400 // The energy estimation tolerance in Q8
#define FAR_ENERGY_VAD_REGION 230 // Far VAD tolerance region
// Stepsize parameters
#define MU_MIN 10 // Min stepsize 2^-MU_MIN (far end energy dependent)
#define MU_MAX 1 // Max stepsize 2^-MU_MAX (far end energy dependent)
#define MU_DIFF 9 // MU_MIN - MU_MAX
// Channel parameters
#define MIN_MSE_COUNT 20 // Min number of consecutive blocks with enough far end
// energy to compare channel estimates
#define MIN_MSE_DIFF 29 // The ratio between adapted and stored channel to
// accept a new storage (0.8 in Q-MSE_RESOLUTION)
#define MSE_RESOLUTION 5 // MSE parameter resolution
#define RESOLUTION_CHANNEL16 12 // W16 Channel in Q-RESOLUTION_CHANNEL16
#define RESOLUTION_CHANNEL32 28 // W32 Channel in Q-RESOLUTION_CHANNEL
#define CHANNEL_VAD 16 // Minimum energy in frequency band to update channel
// Suppression gain parameters: SUPGAIN_ parameters in Q-(RESOLUTION_SUPGAIN)
#define RESOLUTION_SUPGAIN 8 // Channel in Q-(RESOLUTION_SUPGAIN)
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) // Default suppression gain
#define SUPGAIN_ERROR_PARAM_A 3072 // Estimation error parameter (Maximum gain) (8 in Q8)
#define SUPGAIN_ERROR_PARAM_B 1536 // Estimation error parameter (Gain before going down)
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT // Estimation error parameter
// (Should be the same as Default) (1 in Q8)
#define SUPGAIN_EPC_DT 200 // = SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL
// Defines for "check delay estimation"
#define CORR_WIDTH 31 // Number of samples to correlate over.
#define CORR_MAX 16 // Maximum correlation offset
#define CORR_MAX_BUF 63
#define CORR_DEV 4
#define CORR_MAX_LEVEL 20
#define CORR_MAX_LOW 4
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
// Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN
#define ONE_Q14 (1 << 14)
// NLP defines
#define NLP_COMP_LOW 3277 // 0.2 in Q14
#define NLP_COMP_HIGH ONE_Q14 // 1 in Q14
extern const WebRtc_Word16 WebRtcAecm_kSqrtHanning[];
typedef struct {
WebRtc_Word16 real;
WebRtc_Word16 imag;
} complex16_t;
typedef struct
{
int farBufWritePos;
int farBufReadPos;
int knownDelay;
int lastKnownDelay;
int firstVAD; // Parameter to control poorly initialized channels
void *farFrameBuf;
void *nearNoisyFrameBuf;
void *nearCleanFrameBuf;
void *outFrameBuf;
WebRtc_Word16 farBuf[FAR_BUF_LEN];
WebRtc_Word16 mult;
WebRtc_UWord32 seed;
// Delay estimation variables
void* delay_estimator;
WebRtc_UWord16 currentDelay;
WebRtc_Word16 nlpFlag;
WebRtc_Word16 fixedDelay;
WebRtc_UWord32 totCount;
WebRtc_Word16 dfaCleanQDomain;
WebRtc_Word16 dfaCleanQDomainOld;
WebRtc_Word16 dfaNoisyQDomain;
WebRtc_Word16 dfaNoisyQDomainOld;
WebRtc_Word16 nearLogEnergy[MAX_BUF_LEN];
WebRtc_Word16 farLogEnergy;
WebRtc_Word16 echoAdaptLogEnergy[MAX_BUF_LEN];
WebRtc_Word16 echoStoredLogEnergy[MAX_BUF_LEN];
// The extra 16 or 32 bytes in the following buffers are for alignment based Neon code.
// It's designed this way since the current GCC compiler can't align a buffer in 16 or 32
// byte boundaries properly.
WebRtc_Word16 channelStored_buf[PART_LEN1 + 8];
WebRtc_Word16 channelAdapt16_buf[PART_LEN1 + 8];
WebRtc_Word32 channelAdapt32_buf[PART_LEN1 + 8];
WebRtc_Word16 xBuf_buf[PART_LEN2 + 16]; // farend
WebRtc_Word16 dBufClean_buf[PART_LEN2 + 16]; // nearend
WebRtc_Word16 dBufNoisy_buf[PART_LEN2 + 16]; // nearend
WebRtc_Word16 outBuf_buf[PART_LEN + 8];
// Pointers to the above buffers
WebRtc_Word16 *channelStored;
WebRtc_Word16 *channelAdapt16;
WebRtc_Word32 *channelAdapt32;
WebRtc_Word16 *xBuf;
WebRtc_Word16 *dBufClean;
WebRtc_Word16 *dBufNoisy;
WebRtc_Word16 *outBuf;
WebRtc_Word32 echoFilt[PART_LEN1];
WebRtc_Word16 nearFilt[PART_LEN1];
WebRtc_Word32 noiseEst[PART_LEN1];
int noiseEstTooLowCtr[PART_LEN1];
int noiseEstTooHighCtr[PART_LEN1];
WebRtc_Word16 noiseEstCtr;
WebRtc_Word16 cngMode;
WebRtc_Word32 mseAdaptOld;
WebRtc_Word32 mseStoredOld;
WebRtc_Word32 mseThreshold;
WebRtc_Word16 farEnergyMin;
WebRtc_Word16 farEnergyMax;
WebRtc_Word16 farEnergyMaxMin;
WebRtc_Word16 farEnergyVAD;
WebRtc_Word16 farEnergyMSE;
WebRtc_Word16 currentVADValue;
WebRtc_Word16 vadUpdateCount;
WebRtc_Word16 startupState;
WebRtc_Word16 mseChannelCount;
WebRtc_Word16 supGain;
WebRtc_Word16 supGainOld;
WebRtc_Word16 supGainErrParamA;
WebRtc_Word16 supGainErrParamD;
WebRtc_Word16 supGainErrParamDiffAB;
WebRtc_Word16 supGainErrParamDiffBD;
#ifdef AEC_DEBUG
FILE *farFile;
FILE *nearFile;
FILE *outFile;
#endif
} AecmCore_t;
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CreateCore(...)
//
// Allocates the memory needed by the AECM. The memory needs to be
// initialized separately using the WebRtcAecm_InitCore() function.
//
// Input:
// - aecm : Instance that should be created
//
// Output:
// - aecm : Created instance
//
// Return value : 0 - Ok
// -1 - Error
//
int WebRtcAecm_CreateCore(AecmCore_t **aecm);
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_InitCore(...)
//
// This function initializes the AECM instant created with WebRtcAecm_CreateCore(...)
// Input:
// - aecm : Pointer to the AECM instance
// - samplingFreq : Sampling Frequency
//
// Output:
// - aecm : Initialized instance
//
// Return value : 0 - Ok
// -1 - Error
//
int WebRtcAecm_InitCore(AecmCore_t * const aecm, int samplingFreq);
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_FreeCore(...)
//
// This function releases the memory allocated by WebRtcAecm_CreateCore()
// Input:
// - aecm : Pointer to the AECM instance
//
// Return value : 0 - Ok
// -1 - Error
// 11001-11016: Error
//
int WebRtcAecm_FreeCore(AecmCore_t *aecm);
int WebRtcAecm_Control(AecmCore_t *aecm, int delay, int nlpFlag);
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_InitEchoPathCore(...)
//
// This function resets the echo channel adaptation with the specified channel.
// Input:
// - aecm : Pointer to the AECM instance
// - echo_path : Pointer to the data that should initialize the echo path
//
// Output:
// - aecm : Initialized instance
//
void WebRtcAecm_InitEchoPathCore(AecmCore_t* aecm, const WebRtc_Word16* echo_path);
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_ProcessFrame(...)
//
// This function processes frames and sends blocks to WebRtcAecm_ProcessBlock(...)
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one frame of echo signal
// - nearendNoisy : In buffer containing one frame of nearend+echo signal without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal with NS
//
// Output:
// - out : Out buffer, one frame of nearend signal :
//
//
int WebRtcAecm_ProcessFrame(AecmCore_t * aecm, const WebRtc_Word16 * farend,
const WebRtc_Word16 * nearendNoisy,
const WebRtc_Word16 * nearendClean,
WebRtc_Word16 * out);
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_ProcessBlock(...)
//
// This function is called for every block within one frame
// This function is called by WebRtcAecm_ProcessFrame(...)
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one block of echo signal
// - nearendNoisy : In buffer containing one frame of nearend+echo signal without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal with NS
//
// Output:
// - out : Out buffer, one block of nearend signal :
//
//
int WebRtcAecm_ProcessBlock(AecmCore_t * aecm, const WebRtc_Word16 * farend,
const WebRtc_Word16 * nearendNoisy,
const WebRtc_Word16 * noisyClean,
WebRtc_Word16 * out);
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_BufferFarFrame()
//
// Inserts a frame of data into farend buffer.
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one frame of farend signal
// - farLen : Length of frame
//
void WebRtcAecm_BufferFarFrame(AecmCore_t * const aecm, const WebRtc_Word16 * const farend,
const int farLen);
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_FetchFarFrame()
//
// Read the farend buffer to account for known delay
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one frame of farend signal
// - farLen : Length of frame
// - knownDelay : known delay
//
void WebRtcAecm_FetchFarFrame(AecmCore_t * const aecm, WebRtc_Word16 * const farend,
const int farLen, const int knownDelay);
///////////////////////////////////////////////////////////////////////////////////////////////
// Some internal functions shared by ARM NEON and generic C code:
//
void WebRtcAecm_CalcLinearEnergies(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echoEst,
WebRtc_UWord32* far_energy,
WebRtc_UWord32* echo_energy_adapt,
WebRtc_UWord32* echo_energy_stored);
void WebRtcAecm_StoreAdaptiveChannel(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est);
void WebRtcAecm_ResetAdaptiveChannel(AecmCore_t *aecm);
void WebRtcAecm_WindowAndFFT(WebRtc_Word16* fft,
const WebRtc_Word16* time_signal,
complex16_t* freq_signal,
int time_signal_scaling);
void WebRtcAecm_InverseFFTAndWindow(AecmCore_t* aecm,
WebRtc_Word16* fft,
complex16_t* efw,
WebRtc_Word16* output,
const WebRtc_Word16* nearendClean);
#endif

View File

@ -0,0 +1,314 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(WEBRTC_ANDROID) && defined(WEBRTC_ARCH_ARM_NEON)
#include "aecm_core.h"
#include <arm_neon.h>
#include <assert.h>
// Square root of Hanning window in Q14.
static const WebRtc_Word16 kSqrtHanningReversed[] __attribute__ ((aligned (8))) = {
16384, 16373, 16354, 16325,
16286, 16237, 16179, 16111,
16034, 15947, 15851, 15746,
15631, 15506, 15373, 15231,
15079, 14918, 14749, 14571,
14384, 14189, 13985, 13773,
13553, 13325, 13089, 12845,
12594, 12335, 12068, 11795,
11514, 11227, 10933, 10633,
10326, 10013, 9695, 9370,
9040, 8705, 8364, 8019,
7668, 7313, 6954, 6591,
6224, 5853, 5478, 5101,
4720, 4337, 3951, 3562,
3172, 2780, 2386, 1990,
1594, 1196, 798, 399
};
void WebRtcAecm_WindowAndFFT(WebRtc_Word16* fft,
const WebRtc_Word16* time_signal,
complex16_t* freq_signal,
int time_signal_scaling)
{
int i, j;
int16x4_t tmp16x4_scaling = vdup_n_s16(time_signal_scaling);
__asm__("vmov.i16 d21, #0" ::: "d21");
for(i = 0, j = 0; i < PART_LEN; i += 4, j += 8)
{
int16x4_t tmp16x4_0;
int16x4_t tmp16x4_1;
int32x4_t tmp32x4_0;
/* Window near end */
// fft[j] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT((time_signal[i]
// << time_signal_scaling), WebRtcAecm_kSqrtHanning[i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&time_signal[i]));
tmp16x4_0 = vshl_s16(tmp16x4_0, tmp16x4_scaling);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&WebRtcAecm_kSqrtHanning[i]));
tmp32x4_0 = vmull_s16(tmp16x4_0, tmp16x4_1);
__asm__("vshrn.i32 d20, %q0, #14" : : "w"(tmp32x4_0) : "d20");
__asm__("vst2.16 {d20, d21}, [%0, :128]" : : "r"(&fft[j]) : "q10");
// fft[PART_LEN2 + j] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(
// (time_signal[PART_LEN + i] << time_signal_scaling),
// WebRtcAecm_kSqrtHanning[PART_LEN - i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&time_signal[i + PART_LEN]));
tmp16x4_0 = vshl_s16(tmp16x4_0, tmp16x4_scaling);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&kSqrtHanningReversed[i]));
tmp32x4_0 = vmull_s16(tmp16x4_0, tmp16x4_1);
__asm__("vshrn.i32 d20, %q0, #14" : : "w"(tmp32x4_0) : "d20");
__asm__("vst2.16 {d20, d21}, [%0, :128]" : : "r"(&fft[PART_LEN2 + j]) : "q10");
}
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
// Take only the first PART_LEN2 samples, and switch the sign of the imaginary part.
for(i = 0, j = 0; j < PART_LEN2; i += 8, j += 16)
{
__asm__("vld2.16 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&fft[j]) : "q10", "q11");
__asm__("vneg.s16 d22, d22" : : : "q10");
__asm__("vneg.s16 d23, d23" : : : "q11");
__asm__("vst2.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&freq_signal[i].real): "q10", "q11");
}
}
void WebRtcAecm_InverseFFTAndWindow(AecmCore_t* aecm,
WebRtc_Word16* fft,
complex16_t* efw,
WebRtc_Word16* output,
const WebRtc_Word16* nearendClean)
{
int i, j, outCFFT;
WebRtc_Word32 tmp32no1;
// Synthesis
for(i = 0, j = 0; i < PART_LEN; i += 4, j += 8)
{
// We overwrite two more elements in fft[], but it's ok.
__asm__("vld2.16 {d20, d21}, [%0, :128]" : : "r"(&(efw[i].real)) : "q10");
__asm__("vmov q11, q10" : : : "q10", "q11");
__asm__("vneg.s16 d23, d23" : : : "q11");
__asm__("vst2.16 {d22, d23}, [%0, :128]" : : "r"(&fft[j]): "q11");
__asm__("vrev64.16 q10, q10" : : : "q10");
__asm__("vst2.16 {d20, d21}, [%0]" : : "r"(&fft[PART_LEN4 - j - 6]): "q10");
}
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
// Inverse FFT, result should be scaled with outCFFT.
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1);
// Take only the real values and scale with outCFFT.
for (i = 0, j = 0; i < PART_LEN2; i += 8, j+= 16)
{
__asm__("vld2.16 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&fft[j]) : "q10", "q11");
__asm__("vst1.16 {d20, d21}, [%0, :128]" : : "r"(&fft[i]): "q10");
}
int32x4_t tmp32x4_2;
__asm__("vdup.32 %q0, %1" : "=w"(tmp32x4_2) : "r"((WebRtc_Word32)
(outCFFT - aecm->dfaCleanQDomain)));
for (i = 0; i < PART_LEN; i += 4)
{
int16x4_t tmp16x4_0;
int16x4_t tmp16x4_1;
int32x4_t tmp32x4_0;
int32x4_t tmp32x4_1;
// fft[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
// fft[i], WebRtcAecm_kSqrtHanning[i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&fft[i]));
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&WebRtcAecm_kSqrtHanning[i]));
__asm__("vmull.s16 %q0, %P1, %P2" : "=w"(tmp32x4_0) : "w"(tmp16x4_0), "w"(tmp16x4_1));
__asm__("vrshr.s32 %q0, %q1, #14" : "=w"(tmp32x4_0) : "0"(tmp32x4_0));
// tmp32no1 = WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)fft[i],
// outCFFT - aecm->dfaCleanQDomain);
__asm__("vshl.s32 %q0, %q1, %q2" : "=w"(tmp32x4_0) : "0"(tmp32x4_0), "w"(tmp32x4_2));
// fft[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
// tmp32no1 + outBuf[i], WEBRTC_SPL_WORD16_MIN);
// output[i] = fft[i];
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&aecm->outBuf[i]));
__asm__("vmovl.s16 %q0, %P1" : "=w"(tmp32x4_1) : "w"(tmp16x4_0));
__asm__("vadd.i32 %q0, %q1" : : "w"(tmp32x4_0), "w"(tmp32x4_1));
__asm__("vqshrn.s32 %P0, %q1, #0" : "=w"(tmp16x4_0) : "w"(tmp32x4_0));
__asm__("vst1.16 %P0, [%1, :64]" : : "w"(tmp16x4_0), "r"(&fft[i]));
__asm__("vst1.16 %P0, [%1, :64]" : : "w"(tmp16x4_0), "r"(&output[i]));
// tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(
// fft[PART_LEN + i], WebRtcAecm_kSqrtHanning[PART_LEN - i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&fft[PART_LEN + i]));
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&kSqrtHanningReversed[i]));
__asm__("vmull.s16 %q0, %P1, %P2" : "=w"(tmp32x4_0) : "w"(tmp16x4_0), "w"(tmp16x4_1));
__asm__("vshr.s32 %q0, %q1, #14" : "=w"(tmp32x4_0) : "0"(tmp32x4_0));
// tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, outCFFT - aecm->dfaCleanQDomain);
__asm__("vshl.s32 %q0, %q1, %q2" : "=w"(tmp32x4_0) : "0"(tmp32x4_0), "w"(tmp32x4_2));
// outBuf[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(
// WEBRTC_SPL_WORD16_MAX, tmp32no1, WEBRTC_SPL_WORD16_MIN);
__asm__("vqshrn.s32 %P0, %q1, #0" : "=w"(tmp16x4_0) : "w"(tmp32x4_0));
__asm__("vst1.16 %P0, [%1, :64]" : : "w"(tmp16x4_0), "r"(&aecm->outBuf[i]));
}
// Copy the current block to the old position (outBuf is shifted elsewhere).
for (i = 0; i < PART_LEN; i += 16)
{
__asm__("vld1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->xBuf[i + PART_LEN]) : "q10");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&aecm->xBuf[i]): "q10");
}
for (i = 0; i < PART_LEN; i += 16)
{
__asm__("vld1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufNoisy[i + PART_LEN]) : "q10");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufNoisy[i]): "q10");
}
if (nearendClean != NULL) {
for (i = 0; i < PART_LEN; i += 16)
{
__asm__("vld1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufClean[i + PART_LEN]) : "q10");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufClean[i]): "q10");
}
}
}
void WebRtcAecm_CalcLinearEnergies(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est,
WebRtc_UWord32* far_energy,
WebRtc_UWord32* echo_energy_adapt,
WebRtc_UWord32* echo_energy_stored)
{
int i;
register WebRtc_UWord32 far_energy_r;
register WebRtc_UWord32 echo_energy_stored_r;
register WebRtc_UWord32 echo_energy_adapt_r;
uint32x4_t tmp32x4_0;
__asm__("vmov.i32 q14, #0" : : : "q14"); // far_energy
__asm__("vmov.i32 q8, #0" : : : "q8"); // echo_energy_stored
__asm__("vmov.i32 q9, #0" : : : "q9"); // echo_energy_adapt
for(i = 0; i < PART_LEN -7; i += 8)
{
// far_energy += (WebRtc_UWord32)(far_spectrum[i]);
__asm__("vld1.16 {d26, d27}, [%0]" : : "r"(&far_spectrum[i]) : "q13");
__asm__("vaddw.u16 q14, q14, d26" : : : "q14", "q13");
__asm__("vaddw.u16 q14, q14, d27" : : : "q14", "q13");
// Get estimated echo energies for adaptive channel and stored channel.
// echoEst[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
__asm__("vld1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelStored[i]) : "q12");
__asm__("vmull.u16 q10, d26, d24" : : : "q12", "q13", "q10");
__asm__("vmull.u16 q11, d27, d25" : : : "q12", "q13", "q11");
__asm__("vst1.32 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&echo_est[i]):
"q10", "q11");
// echo_energy_stored += (WebRtc_UWord32)echoEst[i];
__asm__("vadd.u32 q8, q10" : : : "q10", "q8");
__asm__("vadd.u32 q8, q11" : : : "q11", "q8");
// echo_energy_adapt += WEBRTC_SPL_UMUL_16_16(
// aecm->channelAdapt16[i], far_spectrum[i]);
__asm__("vld1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelAdapt16[i]) : "q12");
__asm__("vmull.u16 q10, d26, d24" : : : "q12", "q13", "q10");
__asm__("vmull.u16 q11, d27, d25" : : : "q12", "q13", "q11");
__asm__("vadd.u32 q9, q10" : : : "q9", "q15");
__asm__("vadd.u32 q9, q11" : : : "q9", "q11");
}
__asm__("vadd.u32 d28, d29" : : : "q14");
__asm__("vpadd.u32 d28, d28" : : : "q14");
__asm__("vmov.32 %0, d28[0]" : "=r"(far_energy_r): : "q14");
__asm__("vadd.u32 d18, d19" : : : "q9");
__asm__("vpadd.u32 d18, d18" : : : "q9");
__asm__("vmov.32 %0, d18[0]" : "=r"(echo_energy_adapt_r): : "q9");
__asm__("vadd.u32 d16, d17" : : : "q8");
__asm__("vpadd.u32 d16, d16" : : : "q8");
__asm__("vmov.32 %0, d16[0]" : "=r"(echo_energy_stored_r): : "q8");
// Get estimated echo energies for adaptive channel and stored channel.
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
*echo_energy_stored = echo_energy_stored_r + (WebRtc_UWord32)echo_est[i];
*far_energy = far_energy_r + (WebRtc_UWord32)(far_spectrum[i]);
*echo_energy_adapt = echo_energy_adapt_r + WEBRTC_SPL_UMUL_16_16(
aecm->channelAdapt16[i], far_spectrum[i]);
}
void WebRtcAecm_StoreAdaptiveChannel(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est)
{
int i;
// During startup we store the channel every block.
// Recalculate echo estimate.
for(i = 0; i < PART_LEN -7; i += 8)
{
// aecm->channelStored[i] = acem->channelAdapt16[i];
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
__asm__("vld1.16 {d26, d27}, [%0]" : : "r"(&far_spectrum[i]) : "q13");
__asm__("vld1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelAdapt16[i]) : "q12");
__asm__("vst1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelStored[i]) : "q12");
__asm__("vmull.u16 q10, d26, d24" : : : "q12", "q13", "q10");
__asm__("vmull.u16 q11, d27, d25" : : : "q12", "q13", "q11");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&echo_est[i]) : "q10", "q11");
}
aecm->channelStored[i] = aecm->channelAdapt16[i];
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
}
void WebRtcAecm_ResetAdaptiveChannel(AecmCore_t* aecm)
{
int i;
for(i = 0; i < PART_LEN -7; i += 8)
{
// aecm->channelAdapt16[i] = aecm->channelStored[i];
// aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)
// aecm->channelStored[i], 16);
__asm__("vld1.16 {d24, d25}, [%0, :128]" : :
"r"(&aecm->channelStored[i]) : "q12");
__asm__("vst1.16 {d24, d25}, [%0, :128]" : :
"r"(&aecm->channelAdapt16[i]) : "q12");
__asm__("vshll.s16 q10, d24, #16" : : : "q12", "q13", "q10");
__asm__("vshll.s16 q11, d25, #16" : : : "q12", "q13", "q11");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->channelAdapt32[i]): "q10", "q11");
}
aecm->channelAdapt16[i] = aecm->channelStored[i];
aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
(WebRtc_Word32)aecm->channelStored[i], 16);
}
#endif // #if defined(WEBRTC_ANDROID) && defined(WEBRTC_ARCH_ARM_NEON)

Some files were not shown because too many files have changed in this diff Show More