Update audio_processing module

Corresponds to upstream commit 524e9b043e7e86fd72353b987c9d5f6a1ebf83e1

Update notes:

 * Pull in third party license file

 * Replace .gypi files with BUILD.gn to keep track of what changes
   upstream

 * Bunch of new filse pulled in as dependencies

 * Won't build yet due to changes needed on top of these
This commit is contained in:
Arun Raghavan
2015-10-13 17:25:22 +05:30
parent 5ae7a5d6cd
commit 753eada3aa
324 changed files with 52533 additions and 16117 deletions

View File

@ -1,9 +0,0 @@
noinst_LTLIBRARIES = libaecm.la
libaecm_la_SOURCES = interface/echo_control_mobile.h \
echo_control_mobile.c \
aecm_core.c \
aecm_core.h
libaecm_la_CFLAGS = $(AM_CFLAGS) $(COMMON_CFLAGS) \
-I$(top_srcdir)/src/common_audio/signal_processing_library/main/interface \
-I$(top_srcdir)/src/modules/audio_processing/utility

View File

@ -1,34 +0,0 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'aecm',
'type': '<(library)',
'dependencies': [
'<(webrtc_root)/common_audio/common_audio.gyp:spl',
'apm_util'
],
'include_dirs': [
'interface',
],
'direct_dependent_settings': {
'include_dirs': [
'interface',
],
},
'sources': [
'interface/echo_control_mobile.h',
'echo_control_mobile.c',
'aecm_core.c',
'aecm_core.h',
],
},
],
}

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@ -8,217 +8,144 @@
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs echo control (suppression) with fft routines in fixed-point
// Performs echo control (suppression) with fft routines in fixed-point.
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_SOURCE_AECM_CORE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_SOURCE_AECM_CORE_H_
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
#define AECM_DYNAMIC_Q // turn on/off dynamic Q-domain
//#define AECM_WITH_ABS_APPROX
//#define AECM_SHORT // for 32 sample partition length (otherwise 64)
#include "typedefs.h"
#include "signal_processing_library.h"
// Algorithm parameters
#define FRAME_LEN 80 // Total frame length, 10 ms
#ifdef AECM_SHORT
#define PART_LEN 32 // Length of partition
#define PART_LEN_SHIFT 6 // Length of (PART_LEN * 2) in base 2
#else
#define PART_LEN 64 // Length of partition
#define PART_LEN_SHIFT 7 // Length of (PART_LEN * 2) in base 2
#include "webrtc/common_audio/ring_buffer.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aecm/aecm_defines.h"
#include "webrtc/typedefs.h"
#ifdef _MSC_VER // visual c++
#define ALIGN8_BEG __declspec(align(8))
#define ALIGN8_END
#else // gcc or icc
#define ALIGN8_BEG
#define ALIGN8_END __attribute__((aligned(8)))
#endif
#define PART_LEN1 (PART_LEN + 1) // Unique fft coefficients
#define PART_LEN2 (PART_LEN << 1) // Length of partition * 2
#define PART_LEN4 (PART_LEN << 2) // Length of partition * 4
#define FAR_BUF_LEN PART_LEN4 // Length of buffers
#define MAX_DELAY 100
// Counter parameters
#ifdef AECM_SHORT
#define CONV_LEN 1024 // Convergence length used at startup
#else
#define CONV_LEN 512 // Convergence length used at startup
#endif
#define CONV_LEN2 (CONV_LEN << 1) // Convergence length * 2 used at startup
// Energy parameters
#define MAX_BUF_LEN 64 // History length of energy signals
#define FAR_ENERGY_MIN 1025 // Lowest Far energy level: At least 2 in energy
#define FAR_ENERGY_DIFF 929 // Allowed difference between max and min
#define ENERGY_DEV_OFFSET 0 // The energy error offset in Q8
#define ENERGY_DEV_TOL 400 // The energy estimation tolerance in Q8
#define FAR_ENERGY_VAD_REGION 230 // Far VAD tolerance region
// Stepsize parameters
#define MU_MIN 10 // Min stepsize 2^-MU_MIN (far end energy dependent)
#define MU_MAX 1 // Max stepsize 2^-MU_MAX (far end energy dependent)
#define MU_DIFF 9 // MU_MIN - MU_MAX
// Channel parameters
#define MIN_MSE_COUNT 20 // Min number of consecutive blocks with enough far end
// energy to compare channel estimates
#define MIN_MSE_DIFF 29 // The ratio between adapted and stored channel to
// accept a new storage (0.8 in Q-MSE_RESOLUTION)
#define MSE_RESOLUTION 5 // MSE parameter resolution
#define RESOLUTION_CHANNEL16 12 // W16 Channel in Q-RESOLUTION_CHANNEL16
#define RESOLUTION_CHANNEL32 28 // W32 Channel in Q-RESOLUTION_CHANNEL
#define CHANNEL_VAD 16 // Minimum energy in frequency band to update channel
// Suppression gain parameters: SUPGAIN_ parameters in Q-(RESOLUTION_SUPGAIN)
#define RESOLUTION_SUPGAIN 8 // Channel in Q-(RESOLUTION_SUPGAIN)
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) // Default suppression gain
#define SUPGAIN_ERROR_PARAM_A 3072 // Estimation error parameter (Maximum gain) (8 in Q8)
#define SUPGAIN_ERROR_PARAM_B 1536 // Estimation error parameter (Gain before going down)
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT // Estimation error parameter
// (Should be the same as Default) (1 in Q8)
#define SUPGAIN_EPC_DT 200 // = SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL
// Defines for "check delay estimation"
#define CORR_WIDTH 31 // Number of samples to correlate over.
#define CORR_MAX 16 // Maximum correlation offset
#define CORR_MAX_BUF 63
#define CORR_DEV 4
#define CORR_MAX_LEVEL 20
#define CORR_MAX_LOW 4
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
// Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN
#define ONE_Q14 (1 << 14)
// NLP defines
#define NLP_COMP_LOW 3277 // 0.2 in Q14
#define NLP_COMP_HIGH ONE_Q14 // 1 in Q14
extern const WebRtc_Word16 WebRtcAecm_kSqrtHanning[];
typedef struct {
WebRtc_Word16 real;
WebRtc_Word16 imag;
} complex16_t;
int16_t real;
int16_t imag;
} ComplexInt16;
typedef struct
{
typedef struct {
int farBufWritePos;
int farBufReadPos;
int knownDelay;
int lastKnownDelay;
int firstVAD; // Parameter to control poorly initialized channels
int firstVAD; // Parameter to control poorly initialized channels
void *farFrameBuf;
void *nearNoisyFrameBuf;
void *nearCleanFrameBuf;
void *outFrameBuf;
RingBuffer* farFrameBuf;
RingBuffer* nearNoisyFrameBuf;
RingBuffer* nearCleanFrameBuf;
RingBuffer* outFrameBuf;
WebRtc_Word16 farBuf[FAR_BUF_LEN];
int16_t farBuf[FAR_BUF_LEN];
WebRtc_Word16 mult;
WebRtc_UWord32 seed;
int16_t mult;
uint32_t seed;
// Delay estimation variables
void* delay_estimator_farend;
void* delay_estimator;
WebRtc_UWord16 currentDelay;
uint16_t currentDelay;
// Far end history variables
// TODO(bjornv): Replace |far_history| with ring_buffer.
uint16_t far_history[PART_LEN1 * MAX_DELAY];
int far_history_pos;
int far_q_domains[MAX_DELAY];
WebRtc_Word16 nlpFlag;
WebRtc_Word16 fixedDelay;
int16_t nlpFlag;
int16_t fixedDelay;
WebRtc_UWord32 totCount;
uint32_t totCount;
WebRtc_Word16 dfaCleanQDomain;
WebRtc_Word16 dfaCleanQDomainOld;
WebRtc_Word16 dfaNoisyQDomain;
WebRtc_Word16 dfaNoisyQDomainOld;
int16_t dfaCleanQDomain;
int16_t dfaCleanQDomainOld;
int16_t dfaNoisyQDomain;
int16_t dfaNoisyQDomainOld;
WebRtc_Word16 nearLogEnergy[MAX_BUF_LEN];
WebRtc_Word16 farLogEnergy;
WebRtc_Word16 echoAdaptLogEnergy[MAX_BUF_LEN];
WebRtc_Word16 echoStoredLogEnergy[MAX_BUF_LEN];
int16_t nearLogEnergy[MAX_BUF_LEN];
int16_t farLogEnergy;
int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
int16_t echoStoredLogEnergy[MAX_BUF_LEN];
// The extra 16 or 32 bytes in the following buffers are for alignment based Neon code.
// It's designed this way since the current GCC compiler can't align a buffer in 16 or 32
// byte boundaries properly.
WebRtc_Word16 channelStored_buf[PART_LEN1 + 8];
WebRtc_Word16 channelAdapt16_buf[PART_LEN1 + 8];
WebRtc_Word32 channelAdapt32_buf[PART_LEN1 + 8];
WebRtc_Word16 xBuf_buf[PART_LEN2 + 16]; // farend
WebRtc_Word16 dBufClean_buf[PART_LEN2 + 16]; // nearend
WebRtc_Word16 dBufNoisy_buf[PART_LEN2 + 16]; // nearend
WebRtc_Word16 outBuf_buf[PART_LEN + 8];
// The extra 16 or 32 bytes in the following buffers are for alignment based
// Neon code.
// It's designed this way since the current GCC compiler can't align a
// buffer in 16 or 32 byte boundaries properly.
int16_t channelStored_buf[PART_LEN1 + 8];
int16_t channelAdapt16_buf[PART_LEN1 + 8];
int32_t channelAdapt32_buf[PART_LEN1 + 8];
int16_t xBuf_buf[PART_LEN2 + 16]; // farend
int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
int16_t outBuf_buf[PART_LEN + 8];
// Pointers to the above buffers
WebRtc_Word16 *channelStored;
WebRtc_Word16 *channelAdapt16;
WebRtc_Word32 *channelAdapt32;
WebRtc_Word16 *xBuf;
WebRtc_Word16 *dBufClean;
WebRtc_Word16 *dBufNoisy;
WebRtc_Word16 *outBuf;
int16_t *channelStored;
int16_t *channelAdapt16;
int32_t *channelAdapt32;
int16_t *xBuf;
int16_t *dBufClean;
int16_t *dBufNoisy;
int16_t *outBuf;
WebRtc_Word32 echoFilt[PART_LEN1];
WebRtc_Word16 nearFilt[PART_LEN1];
WebRtc_Word32 noiseEst[PART_LEN1];
int32_t echoFilt[PART_LEN1];
int16_t nearFilt[PART_LEN1];
int32_t noiseEst[PART_LEN1];
int noiseEstTooLowCtr[PART_LEN1];
int noiseEstTooHighCtr[PART_LEN1];
WebRtc_Word16 noiseEstCtr;
WebRtc_Word16 cngMode;
int16_t noiseEstCtr;
int16_t cngMode;
WebRtc_Word32 mseAdaptOld;
WebRtc_Word32 mseStoredOld;
WebRtc_Word32 mseThreshold;
int32_t mseAdaptOld;
int32_t mseStoredOld;
int32_t mseThreshold;
WebRtc_Word16 farEnergyMin;
WebRtc_Word16 farEnergyMax;
WebRtc_Word16 farEnergyMaxMin;
WebRtc_Word16 farEnergyVAD;
WebRtc_Word16 farEnergyMSE;
int16_t farEnergyMin;
int16_t farEnergyMax;
int16_t farEnergyMaxMin;
int16_t farEnergyVAD;
int16_t farEnergyMSE;
int currentVADValue;
WebRtc_Word16 vadUpdateCount;
int16_t vadUpdateCount;
WebRtc_Word16 startupState;
WebRtc_Word16 mseChannelCount;
WebRtc_Word16 supGain;
WebRtc_Word16 supGainOld;
int16_t startupState;
int16_t mseChannelCount;
int16_t supGain;
int16_t supGainOld;
WebRtc_Word16 supGainErrParamA;
WebRtc_Word16 supGainErrParamD;
WebRtc_Word16 supGainErrParamDiffAB;
WebRtc_Word16 supGainErrParamDiffBD;
int16_t supGainErrParamA;
int16_t supGainErrParamD;
int16_t supGainErrParamDiffAB;
int16_t supGainErrParamDiffBD;
struct RealFFT* real_fft;
#ifdef AEC_DEBUG
FILE *farFile;
FILE *nearFile;
FILE *outFile;
#endif
} AecmCore_t;
} AecmCore;
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CreateCore(...)
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CreateCore()
//
// Allocates the memory needed by the AECM. The memory needs to be
// initialized separately using the WebRtcAecm_InitCore() function.
//
// Input:
// - aecm : Instance that should be created
//
// Output:
// - aecm : Created instance
//
// Return value : 0 - Ok
// -1 - Error
//
int WebRtcAecm_CreateCore(AecmCore_t **aecm);
// Returns a pointer to the instance and a nullptr at failure.
AecmCore* WebRtcAecm_CreateCore();
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_InitCore(...)
//
// This function initializes the AECM instant created with WebRtcAecm_CreateCore(...)
// This function initializes the AECM instant created with
// WebRtcAecm_CreateCore()
// Input:
// - aecm : Pointer to the AECM instance
// - samplingFreq : Sampling Frequency
@ -229,57 +156,58 @@ int WebRtcAecm_CreateCore(AecmCore_t **aecm);
// Return value : 0 - Ok
// -1 - Error
//
int WebRtcAecm_InitCore(AecmCore_t * const aecm, int samplingFreq);
int WebRtcAecm_InitCore(AecmCore* const aecm, int samplingFreq);
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_FreeCore(...)
//
// This function releases the memory allocated by WebRtcAecm_CreateCore()
// Input:
// - aecm : Pointer to the AECM instance
//
// Return value : 0 - Ok
// -1 - Error
// 11001-11016: Error
//
int WebRtcAecm_FreeCore(AecmCore_t *aecm);
void WebRtcAecm_FreeCore(AecmCore* aecm);
int WebRtcAecm_Control(AecmCore_t *aecm, int delay, int nlpFlag);
int WebRtcAecm_Control(AecmCore* aecm, int delay, int nlpFlag);
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_InitEchoPathCore(...)
//
// This function resets the echo channel adaptation with the specified channel.
// Input:
// - aecm : Pointer to the AECM instance
// - echo_path : Pointer to the data that should initialize the echo path
// - echo_path : Pointer to the data that should initialize the echo
// path
//
// Output:
// - aecm : Initialized instance
//
void WebRtcAecm_InitEchoPathCore(AecmCore_t* aecm, const WebRtc_Word16* echo_path);
void WebRtcAecm_InitEchoPathCore(AecmCore* aecm, const int16_t* echo_path);
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_ProcessFrame(...)
//
// This function processes frames and sends blocks to WebRtcAecm_ProcessBlock(...)
// This function processes frames and sends blocks to
// WebRtcAecm_ProcessBlock(...)
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one frame of echo signal
// - nearendNoisy : In buffer containing one frame of nearend+echo signal without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal with NS
// - nearendNoisy : In buffer containing one frame of nearend+echo signal
// without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal
// with NS
//
// Output:
// - out : Out buffer, one frame of nearend signal :
//
//
int WebRtcAecm_ProcessFrame(AecmCore_t * aecm, const WebRtc_Word16 * farend,
const WebRtc_Word16 * nearendNoisy,
const WebRtc_Word16 * nearendClean,
WebRtc_Word16 * out);
int WebRtcAecm_ProcessFrame(AecmCore* aecm,
const int16_t* farend,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* out);
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_ProcessBlock(...)
//
// This function is called for every block within one frame
@ -288,19 +216,22 @@ int WebRtcAecm_ProcessFrame(AecmCore_t * aecm, const WebRtc_Word16 * farend,
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one block of echo signal
// - nearendNoisy : In buffer containing one frame of nearend+echo signal without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal with NS
// - nearendNoisy : In buffer containing one frame of nearend+echo signal
// without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal
// with NS
//
// Output:
// - out : Out buffer, one block of nearend signal :
//
//
int WebRtcAecm_ProcessBlock(AecmCore_t * aecm, const WebRtc_Word16 * farend,
const WebRtc_Word16 * nearendNoisy,
const WebRtc_Word16 * noisyClean,
WebRtc_Word16 * out);
int WebRtcAecm_ProcessBlock(AecmCore* aecm,
const int16_t* farend,
const int16_t* nearendNoisy,
const int16_t* noisyClean,
int16_t* out);
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_BufferFarFrame()
//
// Inserts a frame of data into farend buffer.
@ -310,10 +241,11 @@ int WebRtcAecm_ProcessBlock(AecmCore_t * aecm, const WebRtc_Word16 * farend,
// - farend : In buffer containing one frame of farend signal
// - farLen : Length of frame
//
void WebRtcAecm_BufferFarFrame(AecmCore_t * const aecm, const WebRtc_Word16 * const farend,
void WebRtcAecm_BufferFarFrame(AecmCore* const aecm,
const int16_t* const farend,
const int farLen);
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_FetchFarFrame()
//
// Read the farend buffer to account for known delay
@ -324,35 +256,179 @@ void WebRtcAecm_BufferFarFrame(AecmCore_t * const aecm, const WebRtc_Word16 * co
// - farLen : Length of frame
// - knownDelay : known delay
//
void WebRtcAecm_FetchFarFrame(AecmCore_t * const aecm, WebRtc_Word16 * const farend,
const int farLen, const int knownDelay);
void WebRtcAecm_FetchFarFrame(AecmCore* const aecm,
int16_t* const farend,
const int farLen,
const int knownDelay);
///////////////////////////////////////////////////////////////////////////////////////////////
// Some internal functions shared by ARM NEON and generic C code:
// All the functions below are intended to be private
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_UpdateFarHistory()
//
// Moves the pointer to the next entry and inserts |far_spectrum| and
// corresponding Q-domain in its buffer.
//
// Inputs:
// - self : Pointer to the delay estimation instance
// - far_spectrum : Pointer to the far end spectrum
// - far_q : Q-domain of far end spectrum
//
void WebRtcAecm_UpdateFarHistory(AecmCore* self,
uint16_t* far_spectrum,
int far_q);
void WebRtcAecm_CalcLinearEnergies(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echoEst,
WebRtc_UWord32* far_energy,
WebRtc_UWord32* echo_energy_adapt,
WebRtc_UWord32* echo_energy_stored);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_AlignedFarend()
//
// Returns a pointer to the far end spectrum aligned to current near end
// spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
// called before AlignedFarend(...). Otherwise, you get the pointer to the
// previous frame. The memory is only valid until the next call of
// WebRtc_DelayEstimatorProcessFix(...).
//
// Inputs:
// - self : Pointer to the AECM instance.
// - delay : Current delay estimate.
//
// Output:
// - far_q : The Q-domain of the aligned far end spectrum
//
// Return value:
// - far_spectrum : Pointer to the aligned far end spectrum
// NULL - Error
//
const uint16_t* WebRtcAecm_AlignedFarend(AecmCore* self, int* far_q, int delay);
void WebRtcAecm_StoreAdaptiveChannel(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcSuppressionGain()
//
// This function calculates the suppression gain that is used in the
// Wiener filter.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
//
// Return value:
// - supGain : Suppression gain with which to scale the noise
// level (Q14).
//
int16_t WebRtcAecm_CalcSuppressionGain(AecmCore* const aecm);
void WebRtcAecm_ResetAdaptiveChannel(AecmCore_t *aecm);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcEnergies()
//
// This function calculates the log of energies for nearend, farend and
// estimated echoes. There is also an update of energy decision levels,
// i.e. internal VAD.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
// - far_spectrum : Pointer to farend spectrum.
// - far_q : Q-domain of farend spectrum.
// - nearEner : Near end energy for current block in
// Q(aecm->dfaQDomain).
//
// Output:
// - echoEst : Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_CalcEnergies(AecmCore* aecm,
const uint16_t* far_spectrum,
const int16_t far_q,
const uint32_t nearEner,
int32_t* echoEst);
void WebRtcAecm_WindowAndFFT(WebRtc_Word16* fft,
const WebRtc_Word16* time_signal,
complex16_t* freq_signal,
int time_signal_scaling);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcStepSize()
//
// This function calculates the step size used in channel estimation
//
// Inputs:
// - aecm : Pointer to the AECM instance.
//
// Return value:
// - mu : Stepsize in log2(), i.e. number of shifts.
//
int16_t WebRtcAecm_CalcStepSize(AecmCore* const aecm);
void WebRtcAecm_InverseFFTAndWindow(AecmCore_t* aecm,
WebRtc_Word16* fft,
complex16_t* efw,
WebRtc_Word16* output,
const WebRtc_Word16* nearendClean);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_UpdateChannel(...)
//
// This function performs channel estimation.
// NLMS and decision on channel storage.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
// - far_spectrum : Absolute value of the farend signal in Q(far_q)
// - far_q : Q-domain of the farend signal
// - dfa : Absolute value of the nearend signal
// (Q[aecm->dfaQDomain])
// - mu : NLMS step size.
// Input/Output:
// - echoEst : Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_UpdateChannel(AecmCore* aecm,
const uint16_t* far_spectrum,
const int16_t far_q,
const uint16_t* const dfa,
const int16_t mu,
int32_t* echoEst);
extern const int16_t WebRtcAecm_kCosTable[];
extern const int16_t WebRtcAecm_kSinTable[];
///////////////////////////////////////////////////////////////////////////////
// Some function pointers, for internal functions shared by ARM NEON and
// generic C code.
//
typedef void (*CalcLinearEnergies)(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echoEst,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored);
extern CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
typedef void (*StoreAdaptiveChannel)(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est);
extern StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
typedef void (*ResetAdaptiveChannel)(AecmCore* aecm);
extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
// For the above function pointers, functions for generic platforms are declared
// and defined as static in file aecm_core.c, while those for ARM Neon platforms
// are declared below and defined in file aecm_core_neon.c.
#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored);
void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est);
void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm);
#endif
#if defined(MIPS32_LE)
void WebRtcAecm_CalcLinearEnergies_mips(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored);
#if defined(MIPS_DSP_R1_LE)
void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est);
void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm);
#endif
#endif
#endif

View File

@ -0,0 +1,771 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include "webrtc/common_audio/ring_buffer.h"
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
#include "webrtc/system_wrappers/interface/compile_assert_c.h"
#include "webrtc/system_wrappers/interface/cpu_features_wrapper.h"
#include "webrtc/typedefs.h"
// Square root of Hanning window in Q14.
#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
// Table is defined in an ARM assembly file.
extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END;
#else
static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
};
#endif
#ifdef AECM_WITH_ABS_APPROX
//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
static const uint16_t kAlpha1 = 32584;
//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
static const uint16_t kBeta1 = 4249;
//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
static const uint16_t kAlpha2 = 30879;
//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
static const uint16_t kBeta2 = 11072;
//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
static const uint16_t kAlpha3 = 26951;
//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
static const uint16_t kBeta3 = 18927;
#endif
static const int16_t kNoiseEstQDomain = 15;
static const int16_t kNoiseEstIncCount = 5;
static void ComfortNoise(AecmCore* aecm,
const uint16_t* dfa,
ComplexInt16* out,
const int16_t* lambda);
static void WindowAndFFT(AecmCore* aecm,
int16_t* fft,
const int16_t* time_signal,
ComplexInt16* freq_signal,
int time_signal_scaling) {
int i = 0;
// FFT of signal
for (i = 0; i < PART_LEN; i++) {
// Window time domain signal and insert into real part of
// transformation array |fft|
int16_t scaled_time_signal = time_signal[i] << time_signal_scaling;
fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling;
fft[PART_LEN + i] = (int16_t)((
scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
}
// Do forward FFT, then take only the first PART_LEN complex samples,
// and change signs of the imaginary parts.
WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
for (i = 0; i < PART_LEN; i++) {
freq_signal[i].imag = -freq_signal[i].imag;
}
}
static void InverseFFTAndWindow(AecmCore* aecm,
int16_t* fft,
ComplexInt16* efw,
int16_t* output,
const int16_t* nearendClean) {
int i, j, outCFFT;
int32_t tmp32no1;
// Reuse |efw| for the inverse FFT output after transferring
// the contents to |fft|.
int16_t* ifft_out = (int16_t*)efw;
// Synthesis
for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
fft[j] = efw[i].real;
fft[j + 1] = -efw[i].imag;
}
fft[0] = efw[0].real;
fft[1] = -efw[0].imag;
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
// Inverse FFT. Keep outCFFT to scale the samples in the next block.
outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
for (i = 0; i < PART_LEN; i++) {
ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
outCFFT - aecm->dfaCleanQDomain);
output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i],
WEBRTC_SPL_WORD16_MIN);
tmp32no1 = (ifft_out[PART_LEN + i] *
WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1,
WEBRTC_SPL_WORD16_MIN);
}
// Copy the current block to the old position
// (aecm->outBuf is shifted elsewhere)
memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy,
aecm->dBufNoisy + PART_LEN,
sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean,
aecm->dBufClean + PART_LEN,
sizeof(int16_t) * PART_LEN);
}
}
// Transforms a time domain signal into the frequency domain, outputting the
// complex valued signal, absolute value and sum of absolute values.
//
// time_signal [in] Pointer to time domain signal
// freq_signal_real [out] Pointer to real part of frequency domain array
// freq_signal_imag [out] Pointer to imaginary part of frequency domain
// array
// freq_signal_abs [out] Pointer to absolute value of frequency domain
// array
// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
// the frequency domain array
// return value The Q-domain of current frequency values
//
static int TimeToFrequencyDomain(AecmCore* aecm,
const int16_t* time_signal,
ComplexInt16* freq_signal,
uint16_t* freq_signal_abs,
uint32_t* freq_signal_sum_abs) {
int i = 0;
int time_signal_scaling = 0;
int32_t tmp32no1 = 0;
int32_t tmp32no2 = 0;
// In fft_buf, +16 for 32-byte alignment.
int16_t fft_buf[PART_LEN4 + 16];
int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
int16_t tmp16no1;
#ifndef WEBRTC_ARCH_ARM_V7
int16_t tmp16no2;
#endif
#ifdef AECM_WITH_ABS_APPROX
int16_t max_value = 0;
int16_t min_value = 0;
uint16_t alpha = 0;
uint16_t beta = 0;
#endif
#ifdef AECM_DYNAMIC_Q
tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
#endif
WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
// Extract imaginary and real part, calculate the magnitude for
// all frequency bins
freq_signal[0].imag = 0;
freq_signal[PART_LEN].imag = 0;
freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
freq_signal[PART_LEN].real);
(*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
(uint32_t)(freq_signal_abs[PART_LEN]);
for (i = 1; i < PART_LEN; i++)
{
if (freq_signal[i].real == 0)
{
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
}
else if (freq_signal[i].imag == 0)
{
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
}
else
{
// Approximation for magnitude of complex fft output
// magn = sqrt(real^2 + imag^2)
// magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
//
// The parameters alpha and beta are stored in Q15
#ifdef AECM_WITH_ABS_APPROX
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
if(tmp16no1 > tmp16no2)
{
max_value = tmp16no1;
min_value = tmp16no2;
} else
{
max_value = tmp16no2;
min_value = tmp16no1;
}
// Magnitude in Q(-6)
if ((max_value >> 2) > min_value)
{
alpha = kAlpha1;
beta = kBeta1;
} else if ((max_value >> 1) > min_value)
{
alpha = kAlpha2;
beta = kBeta2;
} else
{
alpha = kAlpha3;
beta = kBeta3;
}
tmp16no1 = (int16_t)((max_value * alpha) >> 15);
tmp16no2 = (int16_t)((min_value * beta) >> 15);
freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2;
#else
#ifdef WEBRTC_ARCH_ARM_V7
__asm __volatile(
"smulbb %[tmp32no1], %[real], %[real]\n\t"
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
:[tmp32no1]"+&r"(tmp32no1),
[tmp32no2]"=r"(tmp32no2)
:[real]"r"(freq_signal[i].real),
[imag]"r"(freq_signal[i].imag)
);
#else
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
tmp32no1 = tmp16no1 * tmp16no1;
tmp32no2 = tmp16no2 * tmp16no2;
tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
#endif // WEBRTC_ARCH_ARM_V7
tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
freq_signal_abs[i] = (uint16_t)tmp32no1;
#endif // AECM_WITH_ABS_APPROX
}
(*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
}
return time_signal_scaling;
}
int WebRtcAecm_ProcessBlock(AecmCore* aecm,
const int16_t* farend,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* output) {
int i;
uint32_t xfaSum;
uint32_t dfaNoisySum;
uint32_t dfaCleanSum;
uint32_t echoEst32Gained;
uint32_t tmpU32;
int32_t tmp32no1;
uint16_t xfa[PART_LEN1];
uint16_t dfaNoisy[PART_LEN1];
uint16_t dfaClean[PART_LEN1];
uint16_t* ptrDfaClean = dfaClean;
const uint16_t* far_spectrum_ptr = NULL;
// 32 byte aligned buffers (with +8 or +16).
// TODO(kma): define fft with ComplexInt16.
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
int32_t echoEst32_buf[PART_LEN1 + 8];
int32_t dfw_buf[PART_LEN2 + 8];
int32_t efw_buf[PART_LEN2 + 8];
int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31);
ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31);
int16_t hnl[PART_LEN1];
int16_t numPosCoef = 0;
int16_t nlpGain = ONE_Q14;
int delay;
int16_t tmp16no1;
int16_t tmp16no2;
int16_t mu;
int16_t supGain;
int16_t zeros32, zeros16;
int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
int far_q;
int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
const int kMinPrefBand = 4;
const int kMaxPrefBand = 24;
int32_t avgHnl32 = 0;
// Determine startup state. There are three states:
// (0) the first CONV_LEN blocks
// (1) another CONV_LEN blocks
// (2) the rest
if (aecm->startupState < 2)
{
aecm->startupState = (aecm->totCount >= CONV_LEN) +
(aecm->totCount >= CONV_LEN2);
}
// END: Determine startup state
// Buffer near and far end signals
memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean + PART_LEN,
nearendClean,
sizeof(int16_t) * PART_LEN);
}
// Transform far end signal from time domain to frequency domain.
far_q = TimeToFrequencyDomain(aecm,
aecm->xBuf,
dfw,
xfa,
&xfaSum);
// Transform noisy near end signal from time domain to frequency domain.
zerosDBufNoisy = TimeToFrequencyDomain(aecm,
aecm->dBufNoisy,
dfw,
dfaNoisy,
&dfaNoisySum);
aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
if (nearendClean == NULL)
{
ptrDfaClean = dfaNoisy;
aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
dfaCleanSum = dfaNoisySum;
} else
{
// Transform clean near end signal from time domain to frequency domain.
zerosDBufClean = TimeToFrequencyDomain(aecm,
aecm->dBufClean,
dfw,
dfaClean,
&dfaCleanSum);
aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
}
// Get the delay
// Save far-end history and estimate delay
WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend,
xfa,
PART_LEN1,
far_q) == -1) {
return -1;
}
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
dfaNoisy,
PART_LEN1,
zerosDBufNoisy);
if (delay == -1)
{
return -1;
}
else if (delay == -2)
{
// If the delay is unknown, we assume zero.
// NOTE: this will have to be adjusted if we ever add lookahead.
delay = 0;
}
if (aecm->fixedDelay >= 0)
{
// Use fixed delay
delay = aecm->fixedDelay;
}
// Get aligned far end spectrum
far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
zerosXBuf = (int16_t) far_q;
if (far_spectrum_ptr == NULL)
{
return -1;
}
// Calculate log(energy) and update energy threshold levels
WebRtcAecm_CalcEnergies(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisySum,
echoEst32);
// Calculate stepsize
mu = WebRtcAecm_CalcStepSize(aecm);
// Update counters
aecm->totCount++;
// This is the channel estimation algorithm.
// It is base on NLMS but has a variable step length,
// which was calculated above.
WebRtcAecm_UpdateChannel(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisy,
mu,
echoEst32);
supGain = WebRtcAecm_CalcSuppressionGain(aecm);
// Calculate Wiener filter hnl[]
for (i = 0; i < PART_LEN1; i++)
{
// Far end signal through channel estimate in Q8
// How much can we shift right to preserve resolution
tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
aecm->echoFilt[i] += (tmp32no1 * 50) >> 8;
zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
zeros16 = WebRtcSpl_NormW16(supGain) + 1;
if (zeros32 + zeros16 > 16)
{
// Multiplication is safe
// Result in
// Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
// aecm->xfaQDomainBuf[diff])
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
(uint16_t)supGain);
resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
} else
{
tmp16no1 = 17 - zeros32 - zeros16;
resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
if (zeros32 > tmp16no1)
{
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
supGain >> tmp16no1);
} else
{
// Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
}
}
zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative.
dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
tmp16no1 = aecm->nearFilt[i] << zeros16;
qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
} else {
tmp16no1 = dfa_clean_q_domain_diff < 0
? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
: aecm->nearFilt[i] << dfa_clean_q_domain_diff;
qDomainDiff = 0;
tmp16no2 = ptrDfaClean[i];
}
tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
tmp16no2 = (int16_t)(tmp32no1 >> 4);
tmp16no2 += tmp16no1;
zeros16 = WebRtcSpl_NormW16(tmp16no2);
if ((tmp16no2) & (-qDomainDiff > zeros16)) {
aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
} else {
aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff
: tmp16no2 >> qDomainDiff;
}
// Wiener filter coefficients, resulting hnl in Q14
if (echoEst32Gained == 0)
{
hnl[i] = ONE_Q14;
} else if (aecm->nearFilt[i] == 0)
{
hnl[i] = 0;
} else
{
// Multiply the suppression gain
// Rounding
echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
(uint16_t)aecm->nearFilt[i]);
// Current resolution is
// Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
// Make sure we are in Q14
tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
if (tmp32no1 > ONE_Q14)
{
hnl[i] = 0;
} else if (tmp32no1 < 0)
{
hnl[i] = ONE_Q14;
} else
{
// 1-echoEst/dfa
hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
if (hnl[i] < 0)
{
hnl[i] = 0;
}
}
}
if (hnl[i])
{
numPosCoef++;
}
}
// Only in wideband. Prevent the gain in upper band from being larger than
// in lower band.
if (aecm->mult == 2)
{
// TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
// speech distortion in double-talk.
for (i = 0; i < PART_LEN1; i++)
{
hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14);
}
for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
{
avgHnl32 += (int32_t)hnl[i];
}
assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
for (i = kMaxPrefBand; i < PART_LEN1; i++)
{
if (hnl[i] > (int16_t)avgHnl32)
{
hnl[i] = (int16_t)avgHnl32;
}
}
}
// Calculate NLP gain, result is in Q14
if (aecm->nlpFlag)
{
for (i = 0; i < PART_LEN1; i++)
{
// Truncate values close to zero and one.
if (hnl[i] > NLP_COMP_HIGH)
{
hnl[i] = ONE_Q14;
} else if (hnl[i] < NLP_COMP_LOW)
{
hnl[i] = 0;
}
// Remove outliers
if (numPosCoef < 3)
{
nlpGain = 0;
} else
{
nlpGain = ONE_Q14;
}
// NLP
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
{
hnl[i] = ONE_Q14;
} else
{
hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14);
}
// multiply with Wiener coefficients
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
else
{
// multiply with Wiener coefficients
for (i = 0; i < PART_LEN1; i++)
{
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
if (aecm->cngMode == AecmTrue)
{
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
}
InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
return 0;
}
static void ComfortNoise(AecmCore* aecm,
const uint16_t* dfa,
ComplexInt16* out,
const int16_t* lambda) {
int16_t i;
int16_t tmp16;
int32_t tmp32;
int16_t randW16[PART_LEN];
int16_t uReal[PART_LEN1];
int16_t uImag[PART_LEN1];
int32_t outLShift32;
int16_t noiseRShift16[PART_LEN1];
int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
int16_t minTrackShift;
assert(shiftFromNearToNoise >= 0);
assert(shiftFromNearToNoise < 16);
if (aecm->noiseEstCtr < 100)
{
// Track the minimum more quickly initially.
aecm->noiseEstCtr++;
minTrackShift = 6;
} else
{
minTrackShift = 9;
}
// Estimate noise power.
for (i = 0; i < PART_LEN1; i++)
{
// Shift to the noise domain.
tmp32 = (int32_t)dfa[i];
outLShift32 = tmp32 << shiftFromNearToNoise;
if (outLShift32 < aecm->noiseEst[i])
{
// Reset "too low" counter
aecm->noiseEstTooLowCtr[i] = 0;
// Track the minimum.
if (aecm->noiseEst[i] < (1 << minTrackShift))
{
// For small values, decrease noiseEst[i] every
// |kNoiseEstIncCount| block. The regular approach below can not
// go further down due to truncation.
aecm->noiseEstTooHighCtr[i]++;
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i]--;
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
}
}
else
{
aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32)
>> minTrackShift);
}
} else
{
// Reset "too high" counter
aecm->noiseEstTooHighCtr[i] = 0;
// Ramp slowly upwards until we hit the minimum again.
if ((aecm->noiseEst[i] >> 19) > 0)
{
// Avoid overflow.
// Multiplication with 2049 will cause wrap around. Scale
// down first and then multiply
aecm->noiseEst[i] >>= 11;
aecm->noiseEst[i] *= 2049;
}
else if ((aecm->noiseEst[i] >> 11) > 0)
{
// Large enough for relative increase
aecm->noiseEst[i] *= 2049;
aecm->noiseEst[i] >>= 11;
}
else
{
// Make incremental increases based on size every
// |kNoiseEstIncCount| block
aecm->noiseEstTooLowCtr[i]++;
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
}
}
}
}
for (i = 0; i < PART_LEN1; i++)
{
tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
if (tmp32 > 32767)
{
tmp32 = 32767;
aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
}
noiseRShift16[i] = (int16_t)tmp32;
tmp16 = ONE_Q14 - lambda[i];
noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14);
}
// Generate a uniform random array on [0 2^15-1].
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
// Generate noise according to estimated energy.
uReal[0] = 0; // Reject LF noise.
uImag[0] = 0;
for (i = 1; i < PART_LEN1; i++)
{
// Get a random index for the cos and sin tables over [0 359].
tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
// Tables are in Q13.
uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >>
13);
uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >>
13);
}
uImag[PART_LEN] = 0;
for (i = 0; i < PART_LEN1; i++)
{
out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@ -7,308 +7,206 @@
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(WEBRTC_ANDROID) && defined(WEBRTC_ARCH_ARM_NEON)
#include "aecm_core.h"
#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
#include <arm_neon.h>
#include <assert.h>
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
// TODO(kma): Re-write the corresponding assembly file, the offset
// generating script and makefile, to replace these C functions.
// Square root of Hanning window in Q14.
static const WebRtc_Word16 kSqrtHanningReversed[] __attribute__ ((aligned (8))) = {
16384, 16373, 16354, 16325,
16286, 16237, 16179, 16111,
16034, 15947, 15851, 15746,
15631, 15506, 15373, 15231,
15079, 14918, 14749, 14571,
14384, 14189, 13985, 13773,
13553, 13325, 13089, 12845,
12594, 12335, 12068, 11795,
11514, 11227, 10933, 10633,
10326, 10013, 9695, 9370,
9040, 8705, 8364, 8019,
7668, 7313, 6954, 6591,
6224, 5853, 5478, 5101,
4720, 4337, 3951, 3562,
3172, 2780, 2386, 1990,
1594, 1196, 798, 399
const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
0,
399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
};
void WebRtcAecm_WindowAndFFT(WebRtc_Word16* fft,
const WebRtc_Word16* time_signal,
complex16_t* freq_signal,
int time_signal_scaling)
{
int i, j;
int16x4_t tmp16x4_scaling = vdup_n_s16(time_signal_scaling);
__asm__("vmov.i16 d21, #0" ::: "d21");
for(i = 0, j = 0; i < PART_LEN; i += 4, j += 8)
{
int16x4_t tmp16x4_0;
int16x4_t tmp16x4_1;
int32x4_t tmp32x4_0;
/* Window near end */
// fft[j] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT((time_signal[i]
// << time_signal_scaling), WebRtcAecm_kSqrtHanning[i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&time_signal[i]));
tmp16x4_0 = vshl_s16(tmp16x4_0, tmp16x4_scaling);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&WebRtcAecm_kSqrtHanning[i]));
tmp32x4_0 = vmull_s16(tmp16x4_0, tmp16x4_1);
__asm__("vshrn.i32 d20, %q0, #14" : : "w"(tmp32x4_0) : "d20");
__asm__("vst2.16 {d20, d21}, [%0, :128]" : : "r"(&fft[j]) : "q10");
// fft[PART_LEN2 + j] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT(
// (time_signal[PART_LEN + i] << time_signal_scaling),
// WebRtcAecm_kSqrtHanning[PART_LEN - i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&time_signal[i + PART_LEN]));
tmp16x4_0 = vshl_s16(tmp16x4_0, tmp16x4_scaling);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&kSqrtHanningReversed[i]));
tmp32x4_0 = vmull_s16(tmp16x4_0, tmp16x4_1);
__asm__("vshrn.i32 d20, %q0, #14" : : "w"(tmp32x4_0) : "d20");
__asm__("vst2.16 {d20, d21}, [%0, :128]" : : "r"(&fft[PART_LEN2 + j]) : "q10");
}
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
WebRtcSpl_ComplexFFT(fft, PART_LEN_SHIFT, 1);
// Take only the first PART_LEN2 samples, and switch the sign of the imaginary part.
for(i = 0, j = 0; j < PART_LEN2; i += 8, j += 16)
{
__asm__("vld2.16 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&fft[j]) : "q10", "q11");
__asm__("vneg.s16 d22, d22" : : : "q10");
__asm__("vneg.s16 d23, d23" : : : "q11");
__asm__("vst2.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&freq_signal[i].real): "q10", "q11");
}
static inline void AddLanes(uint32_t* ptr, uint32x4_t v) {
#if defined(WEBRTC_ARCH_ARM64)
*(ptr) = vaddvq_u32(v);
#else
uint32x2_t tmp_v;
tmp_v = vadd_u32(vget_low_u32(v), vget_high_u32(v));
tmp_v = vpadd_u32(tmp_v, tmp_v);
*(ptr) = vget_lane_u32(tmp_v, 0);
#endif
}
void WebRtcAecm_InverseFFTAndWindow(AecmCore_t* aecm,
WebRtc_Word16* fft,
complex16_t* efw,
WebRtc_Word16* output,
const WebRtc_Word16* nearendClean)
{
int i, j, outCFFT;
WebRtc_Word32 tmp32no1;
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored) {
int16_t* start_stored_p = aecm->channelStored;
int16_t* start_adapt_p = aecm->channelAdapt16;
int32_t* echo_est_p = echo_est;
const int16_t* end_stored_p = aecm->channelStored + PART_LEN;
const uint16_t* far_spectrum_p = far_spectrum;
int16x8_t store_v, adapt_v;
uint16x8_t spectrum_v;
uint32x4_t echo_est_v_low, echo_est_v_high;
uint32x4_t far_energy_v, echo_stored_v, echo_adapt_v;
// Synthesis
for(i = 0, j = 0; i < PART_LEN; i += 4, j += 8)
{
// We overwrite two more elements in fft[], but it's ok.
__asm__("vld2.16 {d20, d21}, [%0, :128]" : : "r"(&(efw[i].real)) : "q10");
__asm__("vmov q11, q10" : : : "q10", "q11");
far_energy_v = vdupq_n_u32(0);
echo_adapt_v = vdupq_n_u32(0);
echo_stored_v = vdupq_n_u32(0);
__asm__("vneg.s16 d23, d23" : : : "q11");
__asm__("vst2.16 {d22, d23}, [%0, :128]" : : "r"(&fft[j]): "q11");
// Get energy for the delayed far end signal and estimated
// echo using both stored and adapted channels.
// The C code:
// for (i = 0; i < PART_LEN1; i++) {
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
// far_spectrum[i]);
// (*far_energy) += (uint32_t)(far_spectrum[i]);
// *echo_energy_adapt += aecm->channelAdapt16[i] * far_spectrum[i];
// (*echo_energy_stored) += (uint32_t)echo_est[i];
// }
while (start_stored_p < end_stored_p) {
spectrum_v = vld1q_u16(far_spectrum_p);
adapt_v = vld1q_s16(start_adapt_p);
store_v = vld1q_s16(start_stored_p);
__asm__("vrev64.16 q10, q10" : : : "q10");
__asm__("vst2.16 {d20, d21}, [%0]" : : "r"(&fft[PART_LEN4 - j - 6]): "q10");
}
far_energy_v = vaddw_u16(far_energy_v, vget_low_u16(spectrum_v));
far_energy_v = vaddw_u16(far_energy_v, vget_high_u16(spectrum_v));
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
echo_est_v_low = vmull_u16(vreinterpret_u16_s16(vget_low_s16(store_v)),
vget_low_u16(spectrum_v));
echo_est_v_high = vmull_u16(vreinterpret_u16_s16(vget_high_s16(store_v)),
vget_high_u16(spectrum_v));
vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
// Inverse FFT, result should be scaled with outCFFT.
WebRtcSpl_ComplexBitReverse(fft, PART_LEN_SHIFT);
outCFFT = WebRtcSpl_ComplexIFFT(fft, PART_LEN_SHIFT, 1);
echo_stored_v = vaddq_u32(echo_est_v_low, echo_stored_v);
echo_stored_v = vaddq_u32(echo_est_v_high, echo_stored_v);
// Take only the real values and scale with outCFFT.
for (i = 0, j = 0; i < PART_LEN2; i += 8, j+= 16)
{
__asm__("vld2.16 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&fft[j]) : "q10", "q11");
__asm__("vst1.16 {d20, d21}, [%0, :128]" : : "r"(&fft[i]): "q10");
}
echo_adapt_v = vmlal_u16(echo_adapt_v,
vreinterpret_u16_s16(vget_low_s16(adapt_v)),
vget_low_u16(spectrum_v));
echo_adapt_v = vmlal_u16(echo_adapt_v,
vreinterpret_u16_s16(vget_high_s16(adapt_v)),
vget_high_u16(spectrum_v));
int32x4_t tmp32x4_2;
__asm__("vdup.32 %q0, %1" : "=w"(tmp32x4_2) : "r"((WebRtc_Word32)
(outCFFT - aecm->dfaCleanQDomain)));
for (i = 0; i < PART_LEN; i += 4)
{
int16x4_t tmp16x4_0;
int16x4_t tmp16x4_1;
int32x4_t tmp32x4_0;
int32x4_t tmp32x4_1;
start_stored_p += 8;
start_adapt_p += 8;
far_spectrum_p += 8;
echo_est_p += 8;
}
// fft[i] = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
// fft[i], WebRtcAecm_kSqrtHanning[i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&fft[i]));
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&WebRtcAecm_kSqrtHanning[i]));
__asm__("vmull.s16 %q0, %P1, %P2" : "=w"(tmp32x4_0) : "w"(tmp16x4_0), "w"(tmp16x4_1));
__asm__("vrshr.s32 %q0, %q1, #14" : "=w"(tmp32x4_0) : "0"(tmp32x4_0));
AddLanes(far_energy, far_energy_v);
AddLanes(echo_energy_stored, echo_stored_v);
AddLanes(echo_energy_adapt, echo_adapt_v);
// tmp32no1 = WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)fft[i],
// outCFFT - aecm->dfaCleanQDomain);
__asm__("vshl.s32 %q0, %q1, %q2" : "=w"(tmp32x4_0) : "0"(tmp32x4_0), "w"(tmp32x4_2));
// fft[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
// tmp32no1 + outBuf[i], WEBRTC_SPL_WORD16_MIN);
// output[i] = fft[i];
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&aecm->outBuf[i]));
__asm__("vmovl.s16 %q0, %P1" : "=w"(tmp32x4_1) : "w"(tmp16x4_0));
__asm__("vadd.i32 %q0, %q1" : : "w"(tmp32x4_0), "w"(tmp32x4_1));
__asm__("vqshrn.s32 %P0, %q1, #0" : "=w"(tmp16x4_0) : "w"(tmp32x4_0));
__asm__("vst1.16 %P0, [%1, :64]" : : "w"(tmp16x4_0), "r"(&fft[i]));
__asm__("vst1.16 %P0, [%1, :64]" : : "w"(tmp16x4_0), "r"(&output[i]));
// tmp32no1 = WEBRTC_SPL_MUL_16_16_RSFT(
// fft[PART_LEN + i], WebRtcAecm_kSqrtHanning[PART_LEN - i], 14);
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_0) : "r"(&fft[PART_LEN + i]));
__asm__("vld1.16 %P0, [%1, :64]" : "=w"(tmp16x4_1) : "r"(&kSqrtHanningReversed[i]));
__asm__("vmull.s16 %q0, %P1, %P2" : "=w"(tmp32x4_0) : "w"(tmp16x4_0), "w"(tmp16x4_1));
__asm__("vshr.s32 %q0, %q1, #14" : "=w"(tmp32x4_0) : "0"(tmp32x4_0));
// tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, outCFFT - aecm->dfaCleanQDomain);
__asm__("vshl.s32 %q0, %q1, %q2" : "=w"(tmp32x4_0) : "0"(tmp32x4_0), "w"(tmp32x4_2));
// outBuf[i] = (WebRtc_Word16)WEBRTC_SPL_SAT(
// WEBRTC_SPL_WORD16_MAX, tmp32no1, WEBRTC_SPL_WORD16_MIN);
__asm__("vqshrn.s32 %P0, %q1, #0" : "=w"(tmp16x4_0) : "w"(tmp32x4_0));
__asm__("vst1.16 %P0, [%1, :64]" : : "w"(tmp16x4_0), "r"(&aecm->outBuf[i]));
}
// Copy the current block to the old position (outBuf is shifted elsewhere).
for (i = 0; i < PART_LEN; i += 16)
{
__asm__("vld1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->xBuf[i + PART_LEN]) : "q10");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&aecm->xBuf[i]): "q10");
}
for (i = 0; i < PART_LEN; i += 16)
{
__asm__("vld1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufNoisy[i + PART_LEN]) : "q10");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufNoisy[i]): "q10");
}
if (nearendClean != NULL) {
for (i = 0; i < PART_LEN; i += 16)
{
__asm__("vld1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufClean[i + PART_LEN]) : "q10");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->dBufClean[i]): "q10");
}
}
echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
far_spectrum[PART_LEN]);
*echo_energy_stored += (uint32_t)echo_est[PART_LEN];
*far_energy += (uint32_t)far_spectrum[PART_LEN];
*echo_energy_adapt += aecm->channelAdapt16[PART_LEN] * far_spectrum[PART_LEN];
}
void WebRtcAecm_CalcLinearEnergies(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est,
WebRtc_UWord32* far_energy,
WebRtc_UWord32* echo_energy_adapt,
WebRtc_UWord32* echo_energy_stored)
{
int i;
void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est) {
assert((uintptr_t)echo_est % 32 == 0);
assert((uintptr_t)(aecm->channelStored) % 16 == 0);
assert((uintptr_t)(aecm->channelAdapt16) % 16 == 0);
register WebRtc_UWord32 far_energy_r;
register WebRtc_UWord32 echo_energy_stored_r;
register WebRtc_UWord32 echo_energy_adapt_r;
uint32x4_t tmp32x4_0;
// This is C code of following optimized code.
// During startup we store the channel every block.
// memcpy(aecm->channelStored,
// aecm->channelAdapt16,
// sizeof(int16_t) * PART_LEN1);
// Recalculate echo estimate
// for (i = 0; i < PART_LEN; i += 4) {
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
// far_spectrum[i]);
// echo_est[i + 1] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1],
// far_spectrum[i + 1]);
// echo_est[i + 2] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2],
// far_spectrum[i + 2]);
// echo_est[i + 3] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3],
// far_spectrum[i + 3]);
// }
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
// far_spectrum[i]);
const uint16_t* far_spectrum_p = far_spectrum;
int16_t* start_adapt_p = aecm->channelAdapt16;
int16_t* start_stored_p = aecm->channelStored;
const int16_t* end_stored_p = aecm->channelStored + PART_LEN;
int32_t* echo_est_p = echo_est;
__asm__("vmov.i32 q14, #0" : : : "q14"); // far_energy
__asm__("vmov.i32 q8, #0" : : : "q8"); // echo_energy_stored
__asm__("vmov.i32 q9, #0" : : : "q9"); // echo_energy_adapt
uint16x8_t far_spectrum_v;
int16x8_t adapt_v;
uint32x4_t echo_est_v_low, echo_est_v_high;
for(i = 0; i < PART_LEN -7; i += 8)
{
// far_energy += (WebRtc_UWord32)(far_spectrum[i]);
__asm__("vld1.16 {d26, d27}, [%0]" : : "r"(&far_spectrum[i]) : "q13");
__asm__("vaddw.u16 q14, q14, d26" : : : "q14", "q13");
__asm__("vaddw.u16 q14, q14, d27" : : : "q14", "q13");
while (start_stored_p < end_stored_p) {
far_spectrum_v = vld1q_u16(far_spectrum_p);
adapt_v = vld1q_s16(start_adapt_p);
// Get estimated echo energies for adaptive channel and stored channel.
// echoEst[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
__asm__("vld1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelStored[i]) : "q12");
__asm__("vmull.u16 q10, d26, d24" : : : "q12", "q13", "q10");
__asm__("vmull.u16 q11, d27, d25" : : : "q12", "q13", "q11");
__asm__("vst1.32 {d20, d21, d22, d23}, [%0, :256]" : : "r"(&echo_est[i]):
"q10", "q11");
vst1q_s16(start_stored_p, adapt_v);
// echo_energy_stored += (WebRtc_UWord32)echoEst[i];
__asm__("vadd.u32 q8, q10" : : : "q10", "q8");
__asm__("vadd.u32 q8, q11" : : : "q11", "q8");
echo_est_v_low = vmull_u16(vget_low_u16(far_spectrum_v),
vget_low_u16(vreinterpretq_u16_s16(adapt_v)));
echo_est_v_high = vmull_u16(vget_high_u16(far_spectrum_v),
vget_high_u16(vreinterpretq_u16_s16(adapt_v)));
// echo_energy_adapt += WEBRTC_SPL_UMUL_16_16(
// aecm->channelAdapt16[i], far_spectrum[i]);
__asm__("vld1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelAdapt16[i]) : "q12");
__asm__("vmull.u16 q10, d26, d24" : : : "q12", "q13", "q10");
__asm__("vmull.u16 q11, d27, d25" : : : "q12", "q13", "q11");
__asm__("vadd.u32 q9, q10" : : : "q9", "q15");
__asm__("vadd.u32 q9, q11" : : : "q9", "q11");
}
vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
__asm__("vadd.u32 d28, d29" : : : "q14");
__asm__("vpadd.u32 d28, d28" : : : "q14");
__asm__("vmov.32 %0, d28[0]" : "=r"(far_energy_r): : "q14");
__asm__("vadd.u32 d18, d19" : : : "q9");
__asm__("vpadd.u32 d18, d18" : : : "q9");
__asm__("vmov.32 %0, d18[0]" : "=r"(echo_energy_adapt_r): : "q9");
__asm__("vadd.u32 d16, d17" : : : "q8");
__asm__("vpadd.u32 d16, d16" : : : "q8");
__asm__("vmov.32 %0, d16[0]" : "=r"(echo_energy_stored_r): : "q8");
// Get estimated echo energies for adaptive channel and stored channel.
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
*echo_energy_stored = echo_energy_stored_r + (WebRtc_UWord32)echo_est[i];
*far_energy = far_energy_r + (WebRtc_UWord32)(far_spectrum[i]);
*echo_energy_adapt = echo_energy_adapt_r + WEBRTC_SPL_UMUL_16_16(
aecm->channelAdapt16[i], far_spectrum[i]);
far_spectrum_p += 8;
start_adapt_p += 8;
start_stored_p += 8;
echo_est_p += 8;
}
aecm->channelStored[PART_LEN] = aecm->channelAdapt16[PART_LEN];
echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
far_spectrum[PART_LEN]);
}
void WebRtcAecm_StoreAdaptiveChannel(AecmCore_t* aecm,
const WebRtc_UWord16* far_spectrum,
WebRtc_Word32* echo_est)
{
int i;
void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm) {
assert((uintptr_t)(aecm->channelStored) % 16 == 0);
assert((uintptr_t)(aecm->channelAdapt16) % 16 == 0);
assert((uintptr_t)(aecm->channelAdapt32) % 32 == 0);
// During startup we store the channel every block.
// Recalculate echo estimate.
for(i = 0; i < PART_LEN -7; i += 8)
{
// aecm->channelStored[i] = acem->channelAdapt16[i];
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
__asm__("vld1.16 {d26, d27}, [%0]" : : "r"(&far_spectrum[i]) : "q13");
__asm__("vld1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelAdapt16[i]) : "q12");
__asm__("vst1.16 {d24, d25}, [%0, :128]" : : "r"(&aecm->channelStored[i]) : "q12");
__asm__("vmull.u16 q10, d26, d24" : : : "q12", "q13", "q10");
__asm__("vmull.u16 q11, d27, d25" : : : "q12", "q13", "q11");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&echo_est[i]) : "q10", "q11");
}
aecm->channelStored[i] = aecm->channelAdapt16[i];
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]);
// The C code of following optimized code.
// for (i = 0; i < PART_LEN1; i++) {
// aecm->channelAdapt16[i] = aecm->channelStored[i];
// aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
// (int32_t)aecm->channelStored[i], 16);
// }
int16_t* start_stored_p = aecm->channelStored;
int16_t* start_adapt16_p = aecm->channelAdapt16;
int32_t* start_adapt32_p = aecm->channelAdapt32;
const int16_t* end_stored_p = start_stored_p + PART_LEN;
int16x8_t stored_v;
int32x4_t adapt32_v_low, adapt32_v_high;
while (start_stored_p < end_stored_p) {
stored_v = vld1q_s16(start_stored_p);
vst1q_s16(start_adapt16_p, stored_v);
adapt32_v_low = vshll_n_s16(vget_low_s16(stored_v), 16);
adapt32_v_high = vshll_n_s16(vget_high_s16(stored_v), 16);
vst1q_s32(start_adapt32_p, adapt32_v_low);
vst1q_s32(start_adapt32_p + 4, adapt32_v_high);
start_stored_p += 8;
start_adapt16_p += 8;
start_adapt32_p += 8;
}
aecm->channelAdapt16[PART_LEN] = aecm->channelStored[PART_LEN];
aecm->channelAdapt32[PART_LEN] = (int32_t)aecm->channelStored[PART_LEN] << 16;
}
void WebRtcAecm_ResetAdaptiveChannel(AecmCore_t* aecm)
{
int i;
for(i = 0; i < PART_LEN -7; i += 8)
{
// aecm->channelAdapt16[i] = aecm->channelStored[i];
// aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)
// aecm->channelStored[i], 16);
__asm__("vld1.16 {d24, d25}, [%0, :128]" : :
"r"(&aecm->channelStored[i]) : "q12");
__asm__("vst1.16 {d24, d25}, [%0, :128]" : :
"r"(&aecm->channelAdapt16[i]) : "q12");
__asm__("vshll.s16 q10, d24, #16" : : : "q12", "q13", "q10");
__asm__("vshll.s16 q11, d25, #16" : : : "q12", "q13", "q11");
__asm__("vst1.16 {d20, d21, d22, d23}, [%0, :256]" : :
"r"(&aecm->channelAdapt32[i]): "q10", "q11");
}
aecm->channelAdapt16[i] = aecm->channelStored[i];
aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
(WebRtc_Word32)aecm->channelStored[i], 16);
}
#endif // #if defined(WEBRTC_ANDROID) && defined(WEBRTC_ARCH_ARM_NEON)

View File

@ -0,0 +1,87 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
/* Algorithm parameters */
#define FRAME_LEN 80 /* Total frame length, 10 ms. */
#define PART_LEN 64 /* Length of partition. */
#define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
#define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
#define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
#define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
#define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
#define MAX_DELAY 100
/* Counter parameters */
#define CONV_LEN 512 /* Convergence length used at startup. */
#define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
/* Energy parameters */
#define MAX_BUF_LEN 64 /* History length of energy signals. */
#define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
/* in energy. */
#define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
/* and min. */
#define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
#define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
#define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
/* Stepsize parameters */
#define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
/* dependent). */
#define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
/* dependent). */
#define MU_DIFF 9 /* MU_MIN - MU_MAX */
/* Channel parameters */
#define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
/* far end energy to compare channel estimates. */
#define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
/* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
#define MSE_RESOLUTION 5 /* MSE parameter resolution. */
#define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
#define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
#define CHANNEL_VAD 16 /* Minimum energy in frequency band */
/* to update channel. */
/* Suppression gain parameters: SUPGAIN parameters in Q-(RESOLUTION_SUPGAIN). */
#define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
#define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
/* (Maximum gain) (8 in Q8). */
#define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
/* (Gain before going down). */
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
/* (Should be the same as Default) (1 in Q8). */
#define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
/* Defines for "check delay estimation" */
#define CORR_WIDTH 31 /* Number of samples to correlate over. */
#define CORR_MAX 16 /* Maximum correlation offset. */
#define CORR_MAX_BUF 63
#define CORR_DEV 4
#define CORR_MAX_LEVEL 20
#define CORR_MAX_LOW 4
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
/* Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN. */
#define ONE_Q14 (1 << 14)
/* NLP defines */
#define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
#define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@ -8,22 +8,16 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
//#include <string.h>
#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
#include "echo_control_mobile.h"
#include "aecm_core.h"
#include "ring_buffer.h"
#ifdef AEC_DEBUG
#include <stdio.h>
#endif
#ifdef MAC_IPHONE_PRINT
#include <time.h>
#include <stdio.h>
#elif defined ARM_WINM_LOG
#include "windows.h"
extern HANDLE logFile;
#endif
#include <stdlib.h>
#include "webrtc/common_audio/ring_buffer.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
#define BUF_SIZE_FRAMES 50 // buffer size (frames)
// Maximum length of resampled signal. Must be an integer multiple of frames
@ -31,7 +25,7 @@ extern HANDLE logFile;
// The factor of 2 handles wb, and the + 1 is as a safety margin
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const int kBufSizeSamp = BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
static const size_t kBufSizeSamp = BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
static const int kSampMsNb = 8; // samples per ms in nb
// Target suppression levels for nlp modes
// log{0.001, 0.00001, 0.00000001}
@ -63,7 +57,7 @@ typedef struct
int delayChange;
short lastDelayDiff;
WebRtc_Word16 echoMode;
int16_t echoMode;
#ifdef AEC_DEBUG
FILE *bufFile;
@ -72,47 +66,37 @@ typedef struct
FILE *postCompFile;
#endif // AEC_DEBUG
// Structures
void *farendBuf;
RingBuffer *farendBuf;
int lastError;
AecmCore_t *aecmCore;
} aecmob_t;
AecmCore* aecmCore;
} AecMobile;
// Estimates delay to set the position of the farend buffer read pointer
// (controlled by knownDelay)
static int WebRtcAecm_EstBufDelay(aecmob_t *aecmInst, short msInSndCardBuf);
static int WebRtcAecm_EstBufDelay(AecMobile* aecmInst, short msInSndCardBuf);
// Stuffs the farend buffer if the estimated delay is too large
static int WebRtcAecm_DelayComp(aecmob_t *aecmInst);
static int WebRtcAecm_DelayComp(AecMobile* aecmInst);
WebRtc_Word32 WebRtcAecm_Create(void **aecmInst)
{
aecmob_t *aecm;
if (aecmInst == NULL)
{
return -1;
void* WebRtcAecm_Create() {
AecMobile* aecm = malloc(sizeof(AecMobile));
WebRtcSpl_Init();
aecm->aecmCore = WebRtcAecm_CreateCore();
if (!aecm->aecmCore) {
WebRtcAecm_Free(aecm);
return NULL;
}
aecm = malloc(sizeof(aecmob_t));
*aecmInst = aecm;
if (aecm == NULL)
{
return -1;
}
if (WebRtcAecm_CreateCore(&aecm->aecmCore) == -1)
aecm->farendBuf = WebRtc_CreateBuffer(kBufSizeSamp,
sizeof(int16_t));
if (!aecm->farendBuf)
{
WebRtcAecm_Free(aecm);
aecm = NULL;
return -1;
}
if (WebRtcApm_CreateBuffer(&aecm->farendBuf, kBufSizeSamp) == -1)
{
WebRtcAecm_Free(aecm);
aecm = NULL;
return -1;
return NULL;
}
aecm->initFlag = 0;
@ -129,16 +113,14 @@ WebRtc_Word32 WebRtcAecm_Create(void **aecmInst)
aecm->preCompFile = fopen("preComp.pcm", "wb");
aecm->postCompFile = fopen("postComp.pcm", "wb");
#endif // AEC_DEBUG
return 0;
return aecm;
}
WebRtc_Word32 WebRtcAecm_Free(void *aecmInst)
{
aecmob_t *aecm = aecmInst;
void WebRtcAecm_Free(void* aecmInst) {
AecMobile* aecm = aecmInst;
if (aecm == NULL)
{
return -1;
if (aecm == NULL) {
return;
}
#ifdef AEC_DEBUG
@ -153,15 +135,13 @@ WebRtc_Word32 WebRtcAecm_Free(void *aecmInst)
fclose(aecm->postCompFile);
#endif // AEC_DEBUG
WebRtcAecm_FreeCore(aecm->aecmCore);
WebRtcApm_FreeBuffer(aecm->farendBuf);
WebRtc_FreeBuffer(aecm->farendBuf);
free(aecm);
return 0;
}
WebRtc_Word32 WebRtcAecm_Init(void *aecmInst, WebRtc_Word32 sampFreq)
int32_t WebRtcAecm_Init(void *aecmInst, int32_t sampFreq)
{
aecmob_t *aecm = aecmInst;
AecMobile* aecm = aecmInst;
AecmConfig aecConfig;
if (aecm == NULL)
@ -184,11 +164,7 @@ WebRtc_Word32 WebRtcAecm_Init(void *aecmInst, WebRtc_Word32 sampFreq)
}
// Initialize farend buffer
if (WebRtcApm_InitBuffer(aecm->farendBuf) == -1)
{
aecm->lastError = AECM_UNSPECIFIED_ERROR;
return -1;
}
WebRtc_InitBuffer(aecm->farendBuf);
aecm->initFlag = kInitCheck; // indicates that initialization has been done
@ -222,11 +198,11 @@ WebRtc_Word32 WebRtcAecm_Init(void *aecmInst, WebRtc_Word32 sampFreq)
return 0;
}
WebRtc_Word32 WebRtcAecm_BufferFarend(void *aecmInst, const WebRtc_Word16 *farend,
WebRtc_Word16 nrOfSamples)
int32_t WebRtcAecm_BufferFarend(void *aecmInst, const int16_t *farend,
size_t nrOfSamples)
{
aecmob_t *aecm = aecmInst;
WebRtc_Word32 retVal = 0;
AecMobile* aecm = aecmInst;
int32_t retVal = 0;
if (aecm == NULL)
{
@ -257,38 +233,25 @@ WebRtc_Word32 WebRtcAecm_BufferFarend(void *aecmInst, const WebRtc_Word16 *faren
WebRtcAecm_DelayComp(aecm);
}
WebRtcApm_WriteBuffer(aecm->farendBuf, farend, nrOfSamples);
WebRtc_WriteBuffer(aecm->farendBuf, farend, nrOfSamples);
return retVal;
}
WebRtc_Word32 WebRtcAecm_Process(void *aecmInst, const WebRtc_Word16 *nearendNoisy,
const WebRtc_Word16 *nearendClean, WebRtc_Word16 *out,
WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf)
int32_t WebRtcAecm_Process(void *aecmInst, const int16_t *nearendNoisy,
const int16_t *nearendClean, int16_t *out,
size_t nrOfSamples, int16_t msInSndCardBuf)
{
aecmob_t *aecm = aecmInst;
WebRtc_Word32 retVal = 0;
short i;
short farend[FRAME_LEN];
AecMobile* aecm = aecmInst;
int32_t retVal = 0;
size_t i;
short nmbrOfFilledBuffers;
short nBlocks10ms;
short nFrames;
size_t nBlocks10ms;
size_t nFrames;
#ifdef AEC_DEBUG
short msInAECBuf;
#endif
#ifdef ARM_WINM_LOG
__int64 freq, start, end, diff;
unsigned int milliseconds;
DWORD temp;
#elif defined MAC_IPHONE_PRINT
// double endtime = 0, starttime = 0;
struct timeval starttime;
struct timeval endtime;
static long int timeused = 0;
static int timecount = 0;
#endif
if (aecm == NULL)
{
return -1;
@ -339,13 +302,17 @@ WebRtc_Word32 WebRtcAecm_Process(void *aecmInst, const WebRtc_Word16 *nearendNoi
{
if (nearendClean == NULL)
{
memcpy(out, nearendNoisy, sizeof(short) * nrOfSamples);
} else
if (out != nearendNoisy)
{
memcpy(out, nearendNoisy, sizeof(short) * nrOfSamples);
}
} else if (out != nearendClean)
{
memcpy(out, nearendClean, sizeof(short) * nrOfSamples);
}
nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecm->farendBuf) / FRAME_LEN;
nmbrOfFilledBuffers =
(short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// The AECM is in the start up mode
// AECM is disabled until the soundcard buffer and farend buffers are OK
@ -407,10 +374,9 @@ WebRtc_Word32 WebRtcAecm_Process(void *aecmInst, const WebRtc_Word16 *nearendNoi
aecm->ECstartup = 0; // Enable the AECM
} else if (nmbrOfFilledBuffers > aecm->bufSizeStart)
{
WebRtcApm_FlushBuffer(
aecm->farendBuf,
WebRtcApm_get_buffer_size(aecm->farendBuf)
- aecm->bufSizeStart * FRAME_LEN);
WebRtc_MoveReadPtr(aecm->farendBuf,
(int) WebRtc_available_read(aecm->farendBuf)
- (int) aecm->bufSizeStart * FRAME_LEN);
aecm->ECstartup = 0;
}
}
@ -422,20 +388,27 @@ WebRtc_Word32 WebRtcAecm_Process(void *aecmInst, const WebRtc_Word16 *nearendNoi
// Note only 1 block supported for nb and 2 blocks for wb
for (i = 0; i < nFrames; i++)
{
nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecm->farendBuf) / FRAME_LEN;
int16_t farend[FRAME_LEN];
const int16_t* farend_ptr = NULL;
nmbrOfFilledBuffers =
(short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// Check that there is data in the far end buffer
if (nmbrOfFilledBuffers > 0)
{
// Get the next 80 samples from the farend buffer
WebRtcApm_ReadBuffer(aecm->farendBuf, farend, FRAME_LEN);
WebRtc_ReadBuffer(aecm->farendBuf, (void**) &farend_ptr, farend,
FRAME_LEN);
// Always store the last frame for use when we run out of data
memcpy(&(aecm->farendOld[i][0]), farend, FRAME_LEN * sizeof(short));
memcpy(&(aecm->farendOld[i][0]), farend_ptr,
FRAME_LEN * sizeof(short));
} else
{
// We have no data so we use the last played frame
memcpy(farend, &(aecm->farendOld[i][0]), FRAME_LEN * sizeof(short));
farend_ptr = farend;
}
// Call buffer delay estimator when all data is extracted,
@ -445,77 +418,23 @@ WebRtc_Word32 WebRtcAecm_Process(void *aecmInst, const WebRtc_Word16 *nearendNoi
WebRtcAecm_EstBufDelay(aecm, aecm->msInSndCardBuf);
}
#ifdef ARM_WINM_LOG
// measure tick start
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
QueryPerformanceCounter((LARGE_INTEGER*)&start);
#elif defined MAC_IPHONE_PRINT
// starttime = clock()/(double)CLOCKS_PER_SEC;
gettimeofday(&starttime, NULL);
#endif
// Call the AECM
/*WebRtcAecm_ProcessFrame(aecm->aecmCore, farend, &nearend[FRAME_LEN * i],
&out[FRAME_LEN * i], aecm->knownDelay);*/
if (nearendClean == NULL)
{
if (WebRtcAecm_ProcessFrame(aecm->aecmCore,
farend,
&nearendNoisy[FRAME_LEN * i],
NULL,
&out[FRAME_LEN * i]) == -1)
{
return -1;
}
} else
{
if (WebRtcAecm_ProcessFrame(aecm->aecmCore,
farend,
&nearendNoisy[FRAME_LEN * i],
&nearendClean[FRAME_LEN * i],
&out[FRAME_LEN * i]) == -1)
{
return -1;
}
}
#ifdef ARM_WINM_LOG
// measure tick end
QueryPerformanceCounter((LARGE_INTEGER*)&end);
if(end > start)
{
diff = ((end - start) * 1000) / (freq/1000);
milliseconds = (unsigned int)(diff & 0xffffffff);
WriteFile (logFile, &milliseconds, sizeof(unsigned int), &temp, NULL);
}
#elif defined MAC_IPHONE_PRINT
// endtime = clock()/(double)CLOCKS_PER_SEC;
// printf("%f\n", endtime - starttime);
gettimeofday(&endtime, NULL);
if( endtime.tv_usec > starttime.tv_usec)
{
timeused += endtime.tv_usec - starttime.tv_usec;
} else
{
timeused += endtime.tv_usec + 1000000 - starttime.tv_usec;
}
if(++timecount == 1000)
{
timecount = 0;
printf("AEC: %ld\n", timeused);
timeused = 0;
}
#endif
if (WebRtcAecm_ProcessFrame(aecm->aecmCore,
farend_ptr,
&nearendNoisy[FRAME_LEN * i],
(nearendClean
? &nearendClean[FRAME_LEN * i]
: NULL),
&out[FRAME_LEN * i]) == -1)
return -1;
}
}
#ifdef AEC_DEBUG
msInAECBuf = WebRtcApm_get_buffer_size(aecm->farendBuf) / (kSampMsNb*aecm->aecmCore->mult);
msInAECBuf = (short) WebRtc_available_read(aecm->farendBuf) /
(kSampMsNb * aecm->aecmCore->mult);
fwrite(&msInAECBuf, 2, 1, aecm->bufFile);
fwrite(&(aecm->knownDelay), sizeof(aecm->knownDelay), 1, aecm->delayFile);
#endif
@ -523,9 +442,9 @@ WebRtc_Word32 WebRtcAecm_Process(void *aecmInst, const WebRtc_Word16 *nearendNoi
return retVal;
}
WebRtc_Word32 WebRtcAecm_set_config(void *aecmInst, AecmConfig config)
int32_t WebRtcAecm_set_config(void *aecmInst, AecmConfig config)
{
aecmob_t *aecm = aecmInst;
AecMobile* aecm = aecmInst;
if (aecm == NULL)
{
@ -605,9 +524,9 @@ WebRtc_Word32 WebRtcAecm_set_config(void *aecmInst, AecmConfig config)
return 0;
}
WebRtc_Word32 WebRtcAecm_get_config(void *aecmInst, AecmConfig *config)
int32_t WebRtcAecm_get_config(void *aecmInst, AecmConfig *config)
{
aecmob_t *aecm = aecmInst;
AecMobile* aecm = aecmInst;
if (aecm == NULL)
{
@ -632,17 +551,19 @@ WebRtc_Word32 WebRtcAecm_get_config(void *aecmInst, AecmConfig *config)
return 0;
}
WebRtc_Word32 WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes)
int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes)
{
aecmob_t *aecm = aecmInst;
const WebRtc_Word16* echo_path_ptr = echo_path;
AecMobile* aecm = aecmInst;
const int16_t* echo_path_ptr = echo_path;
if ((aecm == NULL) || (echo_path == NULL))
{
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes())
{
@ -661,17 +582,19 @@ WebRtc_Word32 WebRtcAecm_InitEchoPath(void* aecmInst,
return 0;
}
WebRtc_Word32 WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes)
int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes)
{
aecmob_t *aecm = aecmInst;
WebRtc_Word16* echo_path_ptr = echo_path;
AecMobile* aecm = aecmInst;
int16_t* echo_path_ptr = echo_path;
if ((aecm == NULL) || (echo_path == NULL))
{
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes())
{
@ -691,31 +614,12 @@ WebRtc_Word32 WebRtcAecm_GetEchoPath(void* aecmInst,
size_t WebRtcAecm_echo_path_size_bytes()
{
return (PART_LEN1 * sizeof(WebRtc_Word16));
return (PART_LEN1 * sizeof(int16_t));
}
WebRtc_Word32 WebRtcAecm_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len)
int32_t WebRtcAecm_get_error_code(void *aecmInst)
{
const char version[] = "AECM 1.2.0";
const short versionLen = (short)strlen(version) + 1; // +1 for null-termination
if (versionStr == NULL)
{
return -1;
}
if (versionLen > len)
{
return -1;
}
strncpy(versionStr, version, versionLen);
return 0;
}
WebRtc_Word32 WebRtcAecm_get_error_code(void *aecmInst)
{
aecmob_t *aecm = aecmInst;
AecMobile* aecm = aecmInst;
if (aecm == NULL)
{
@ -725,19 +629,18 @@ WebRtc_Word32 WebRtcAecm_get_error_code(void *aecmInst)
return aecm->lastError;
}
static int WebRtcAecm_EstBufDelay(aecmob_t *aecm, short msInSndCardBuf)
{
short delayNew, nSampFar, nSampSndCard;
static int WebRtcAecm_EstBufDelay(AecMobile* aecm, short msInSndCardBuf) {
short delayNew, nSampSndCard;
short nSampFar = (short) WebRtc_available_read(aecm->farendBuf);
short diff;
nSampFar = WebRtcApm_get_buffer_size(aecm->farendBuf);
nSampSndCard = msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
if (delayNew < FRAME_LEN)
{
WebRtcApm_FlushBuffer(aecm->farendBuf, FRAME_LEN);
WebRtc_MoveReadPtr(aecm->farendBuf, FRAME_LEN);
delayNew += FRAME_LEN;
}
@ -775,12 +678,11 @@ static int WebRtcAecm_EstBufDelay(aecmob_t *aecm, short msInSndCardBuf)
return 0;
}
static int WebRtcAecm_DelayComp(aecmob_t *aecm)
{
int nSampFar, nSampSndCard, delayNew, nSampAdd;
static int WebRtcAecm_DelayComp(AecMobile* aecm) {
int nSampFar = (int) WebRtc_available_read(aecm->farendBuf);
int nSampSndCard, delayNew, nSampAdd;
const int maxStuffSamp = 10 * FRAME_LEN;
nSampFar = WebRtcApm_get_buffer_size(aecm->farendBuf);
nSampSndCard = aecm->msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
@ -792,7 +694,7 @@ static int WebRtcAecm_DelayComp(aecmob_t *aecm)
FRAME_LEN));
nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
WebRtcApm_StuffBuffer(aecm->farendBuf, nSampAdd);
WebRtc_MoveReadPtr(aecm->farendBuf, -nSampAdd);
aecm->delayChange = 1; // the delay needs to be updated
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@ -8,10 +8,12 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_INTERFACE_ECHO_CONTROL_MOBILE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_INTERFACE_ECHO_CONTROL_MOBILE_H_
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_
#include "typedefs.h"
#include <stdlib.h>
#include "webrtc/typedefs.h"
enum {
AecmFalse = 0,
@ -29,8 +31,8 @@ enum {
#define AECM_BAD_PARAMETER_WARNING 12100
typedef struct {
WebRtc_Word16 cngMode; // AECM_FALSE, AECM_TRUE (default)
WebRtc_Word16 echoMode; // 0, 1, 2, 3 (default), 4
int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
int16_t echoMode; // 0, 1, 2, 3 (default), 4
} AecmConfig;
#ifdef __cplusplus
@ -40,133 +42,116 @@ extern "C" {
/*
* Allocates the memory needed by the AECM. The memory needs to be
* initialized separately using the WebRtcAecm_Init() function.
*
* Inputs Description
* -------------------------------------------------------------------
* void **aecmInst Pointer to the AECM instance to be
* created and initialized
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
* Returns a pointer to the instance and a nullptr at failure.
*/
WebRtc_Word32 WebRtcAecm_Create(void **aecmInst);
void* WebRtcAecm_Create();
/*
* This function releases the memory allocated by WebRtcAecm_Create()
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
* void* aecmInst Pointer to the AECM instance
*/
WebRtc_Word32 WebRtcAecm_Free(void *aecmInst);
void WebRtcAecm_Free(void* aecmInst);
/*
* Initializes an AECM instance.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* WebRtc_Word32 sampFreq Sampling frequency of data
* void* aecmInst Pointer to the AECM instance
* int32_t sampFreq Sampling frequency of data
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* int32_t return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_Init(void* aecmInst,
WebRtc_Word32 sampFreq);
int32_t WebRtcAecm_Init(void* aecmInst, int32_t sampFreq);
/*
* Inserts an 80 or 160 sample block of data into the farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* WebRtc_Word16 *farend In buffer containing one frame of
* void* aecmInst Pointer to the AECM instance
* int16_t* farend In buffer containing one frame of
* farend signal
* WebRtc_Word16 nrOfSamples Number of samples in farend buffer
* int16_t nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* int32_t return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_BufferFarend(void* aecmInst,
const WebRtc_Word16* farend,
WebRtc_Word16 nrOfSamples);
int32_t WebRtcAecm_BufferFarend(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples);
/*
* Runs the AECM on an 80 or 160 sample blocks of data.
*
* Inputs Description
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* WebRtc_Word16 *nearendNoisy In buffer containing one frame of
* void* aecmInst Pointer to the AECM instance
* int16_t* nearendNoisy In buffer containing one frame of
* reference nearend+echo signal. If
* noise reduction is active, provide
* the noisy signal here.
* WebRtc_Word16 *nearendClean In buffer containing one frame of
* int16_t* nearendClean In buffer containing one frame of
* nearend+echo signal. If noise
* reduction is active, provide the
* clean signal here. Otherwise pass a
* NULL pointer.
* WebRtc_Word16 nrOfSamples Number of samples in nearend buffer
* WebRtc_Word16 msInSndCardBuf Delay estimate for sound card and
* int16_t nrOfSamples Number of samples in nearend buffer
* int16_t msInSndCardBuf Delay estimate for sound card and
* system buffers
*
* Outputs Description
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word16 *out Out buffer, one frame of processed nearend
* WebRtc_Word32 return 0: OK
* -1: error
* int16_t* out Out buffer, one frame of processed nearend
* int32_t return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_Process(void* aecmInst,
const WebRtc_Word16* nearendNoisy,
const WebRtc_Word16* nearendClean,
WebRtc_Word16* out,
WebRtc_Word16 nrOfSamples,
WebRtc_Word16 msInSndCardBuf);
int32_t WebRtcAecm_Process(void* aecmInst,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* out,
size_t nrOfSamples,
int16_t msInSndCardBuf);
/*
* This function enables the user to set certain parameters on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* AecmConfig config Config instance that contains all
* void* aecmInst Pointer to the AECM instance
* AecmConfig config Config instance that contains all
* properties to be set
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* int32_t return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_set_config(void* aecmInst,
AecmConfig config);
int32_t WebRtcAecm_set_config(void* aecmInst, AecmConfig config);
/*
* This function enables the user to set certain parameters on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* void* aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecmConfig *config Pointer to the config instance that
* AecmConfig* config Pointer to the config instance that
* all properties will be written to
* WebRtc_Word32 return 0: OK
* int32_t return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_get_config(void *aecmInst,
AecmConfig *config);
int32_t WebRtcAecm_get_config(void *aecmInst, AecmConfig *config);
/*
* This function enables the user to set the echo path on-the-fly.
@ -179,12 +164,12 @@ WebRtc_Word32 WebRtcAecm_get_config(void *aecmInst,
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* int32_t return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes);
int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes);
/*
* This function enables the user to get the currently used echo path
@ -198,19 +183,19 @@ WebRtc_Word32 WebRtcAecm_InitEchoPath(void* aecmInst,
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* int32_t return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes);
int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes);
/*
* This function enables the user to get the echo path size in bytes
*
* Outputs Description
* -------------------------------------------------------------------
* size_t return : size in bytes
* size_t return Size in bytes
*/
size_t WebRtcAecm_echo_path_size_bytes();
@ -219,32 +204,15 @@ size_t WebRtcAecm_echo_path_size_bytes();
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecmInst Pointer to the AECM instance
* void* aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 11000-11100: error code
* int32_t return 11000-11100: error code
*/
WebRtc_Word32 WebRtcAecm_get_error_code(void *aecmInst);
/*
* Gets a version string
*
* Inputs Description
* -------------------------------------------------------------------
* char *versionStr Pointer to a string array
* WebRtc_Word16 len The maximum length of the string
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word8 *versionStr Pointer to a string array
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAecm_get_version(WebRtc_Word8 *versionStr,
WebRtc_Word16 len);
int32_t WebRtcAecm_get_error_code(void *aecmInst);
#ifdef __cplusplus
}
#endif
#endif /* WEBRTC_MODULES_AUDIO_PROCESSING_AECM_MAIN_INTERFACE_ECHO_CONTROL_MOBILE_H_ */
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_