Update to current webrtc library

This is from the upstream library commit id
3326535126e435f1ba647885ce43a8f0f3d317eb, corresponding to Chromium
88.0.4290.1.
This commit is contained in:
Arun Raghavan
2020-10-12 18:08:02 -04:00
parent b1b02581d3
commit bcec8b0b21
859 changed files with 76187 additions and 49580 deletions

View File

@ -0,0 +1,44 @@
# Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
import("../../../webrtc.gni")
rtc_library("aecm_core") {
sources = [
"aecm_core.cc",
"aecm_core.h",
"aecm_defines.h",
"echo_control_mobile.cc",
"echo_control_mobile.h",
]
deps = [
"../../../common_audio:common_audio_c",
"../../../rtc_base:checks",
"../../../rtc_base:rtc_base_approved",
"../../../rtc_base:sanitizer",
"../../../system_wrappers",
"../utility:legacy_delay_estimator",
]
cflags = []
if (rtc_build_with_neon) {
sources += [ "aecm_core_neon.cc" ]
if (current_cpu != "arm64") {
# Enable compilation for the NEON instruction set.
suppressed_configs += [ "//build/config/compiler:compiler_arm_fpu" ]
cflags += [ "-mfpu=neon" ]
}
}
if (current_cpu == "mipsel") {
sources += [ "aecm_core_mips.cc" ]
} else {
sources += [ "aecm_core_c.cc" ]
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -10,13 +10,18 @@
// Performs echo control (suppression) with fft routines in fixed-point.
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
#ifndef MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
#define MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
#include "webrtc/common_audio/ring_buffer.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aecm/aecm_defines.h"
#include "webrtc/typedefs.h"
extern "C" {
#include "common_audio/ring_buffer.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
}
#include "modules/audio_processing/aecm/aecm_defines.h"
struct RealFFT;
namespace webrtc {
#ifdef _MSC_VER // visual c++
#define ALIGN8_BEG __declspec(align(8))
@ -27,109 +32,109 @@
#endif
typedef struct {
int16_t real;
int16_t imag;
int16_t real;
int16_t imag;
} ComplexInt16;
typedef struct {
int farBufWritePos;
int farBufReadPos;
int knownDelay;
int lastKnownDelay;
int firstVAD; // Parameter to control poorly initialized channels
int farBufWritePos;
int farBufReadPos;
int knownDelay;
int lastKnownDelay;
int firstVAD; // Parameter to control poorly initialized channels
RingBuffer* farFrameBuf;
RingBuffer* nearNoisyFrameBuf;
RingBuffer* nearCleanFrameBuf;
RingBuffer* outFrameBuf;
RingBuffer* farFrameBuf;
RingBuffer* nearNoisyFrameBuf;
RingBuffer* nearCleanFrameBuf;
RingBuffer* outFrameBuf;
int16_t farBuf[FAR_BUF_LEN];
int16_t farBuf[FAR_BUF_LEN];
int16_t mult;
uint32_t seed;
int16_t mult;
uint32_t seed;
// Delay estimation variables
void* delay_estimator_farend;
void* delay_estimator;
uint16_t currentDelay;
// Far end history variables
// TODO(bjornv): Replace |far_history| with ring_buffer.
uint16_t far_history[PART_LEN1 * MAX_DELAY];
int far_history_pos;
int far_q_domains[MAX_DELAY];
// Delay estimation variables
void* delay_estimator_farend;
void* delay_estimator;
uint16_t currentDelay;
// Far end history variables
// TODO(bjornv): Replace |far_history| with ring_buffer.
uint16_t far_history[PART_LEN1 * MAX_DELAY];
int far_history_pos;
int far_q_domains[MAX_DELAY];
int16_t nlpFlag;
int16_t fixedDelay;
int16_t nlpFlag;
int16_t fixedDelay;
uint32_t totCount;
uint32_t totCount;
int16_t dfaCleanQDomain;
int16_t dfaCleanQDomainOld;
int16_t dfaNoisyQDomain;
int16_t dfaNoisyQDomainOld;
int16_t dfaCleanQDomain;
int16_t dfaCleanQDomainOld;
int16_t dfaNoisyQDomain;
int16_t dfaNoisyQDomainOld;
int16_t nearLogEnergy[MAX_BUF_LEN];
int16_t farLogEnergy;
int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
int16_t echoStoredLogEnergy[MAX_BUF_LEN];
int16_t nearLogEnergy[MAX_BUF_LEN];
int16_t farLogEnergy;
int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
int16_t echoStoredLogEnergy[MAX_BUF_LEN];
// The extra 16 or 32 bytes in the following buffers are for alignment based
// Neon code.
// It's designed this way since the current GCC compiler can't align a
// buffer in 16 or 32 byte boundaries properly.
int16_t channelStored_buf[PART_LEN1 + 8];
int16_t channelAdapt16_buf[PART_LEN1 + 8];
int32_t channelAdapt32_buf[PART_LEN1 + 8];
int16_t xBuf_buf[PART_LEN2 + 16]; // farend
int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
int16_t outBuf_buf[PART_LEN + 8];
// The extra 16 or 32 bytes in the following buffers are for alignment based
// Neon code.
// It's designed this way since the current GCC compiler can't align a
// buffer in 16 or 32 byte boundaries properly.
int16_t channelStored_buf[PART_LEN1 + 8];
int16_t channelAdapt16_buf[PART_LEN1 + 8];
int32_t channelAdapt32_buf[PART_LEN1 + 8];
int16_t xBuf_buf[PART_LEN2 + 16]; // farend
int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
int16_t outBuf_buf[PART_LEN + 8];
// Pointers to the above buffers
int16_t *channelStored;
int16_t *channelAdapt16;
int32_t *channelAdapt32;
int16_t *xBuf;
int16_t *dBufClean;
int16_t *dBufNoisy;
int16_t *outBuf;
// Pointers to the above buffers
int16_t* channelStored;
int16_t* channelAdapt16;
int32_t* channelAdapt32;
int16_t* xBuf;
int16_t* dBufClean;
int16_t* dBufNoisy;
int16_t* outBuf;
int32_t echoFilt[PART_LEN1];
int16_t nearFilt[PART_LEN1];
int32_t noiseEst[PART_LEN1];
int noiseEstTooLowCtr[PART_LEN1];
int noiseEstTooHighCtr[PART_LEN1];
int16_t noiseEstCtr;
int16_t cngMode;
int32_t echoFilt[PART_LEN1];
int16_t nearFilt[PART_LEN1];
int32_t noiseEst[PART_LEN1];
int noiseEstTooLowCtr[PART_LEN1];
int noiseEstTooHighCtr[PART_LEN1];
int16_t noiseEstCtr;
int16_t cngMode;
int32_t mseAdaptOld;
int32_t mseStoredOld;
int32_t mseThreshold;
int32_t mseAdaptOld;
int32_t mseStoredOld;
int32_t mseThreshold;
int16_t farEnergyMin;
int16_t farEnergyMax;
int16_t farEnergyMaxMin;
int16_t farEnergyVAD;
int16_t farEnergyMSE;
int currentVADValue;
int16_t vadUpdateCount;
int16_t farEnergyMin;
int16_t farEnergyMax;
int16_t farEnergyMaxMin;
int16_t farEnergyVAD;
int16_t farEnergyMSE;
int currentVADValue;
int16_t vadUpdateCount;
int16_t startupState;
int16_t mseChannelCount;
int16_t supGain;
int16_t supGainOld;
int16_t startupState;
int16_t mseChannelCount;
int16_t supGain;
int16_t supGainOld;
int16_t supGainErrParamA;
int16_t supGainErrParamD;
int16_t supGainErrParamDiffAB;
int16_t supGainErrParamDiffBD;
int16_t supGainErrParamA;
int16_t supGainErrParamD;
int16_t supGainErrParamDiffAB;
int16_t supGainErrParamDiffBD;
struct RealFFT* real_fft;
struct RealFFT* real_fft;
#ifdef AEC_DEBUG
FILE *farFile;
FILE *nearFile;
FILE *outFile;
FILE* farFile;
FILE* nearFile;
FILE* outFile;
#endif
} AecmCore;
@ -400,7 +405,7 @@ extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
// For the above function pointers, functions for generic platforms are declared
// and defined as static in file aecm_core.c, while those for ARM Neon platforms
// are declared below and defined in file aecm_core_neon.c.
#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
#if defined(WEBRTC_HAS_NEON)
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
@ -431,4 +436,6 @@ void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm);
#endif
#endif
} // namespace webrtc
#endif

View File

@ -8,49 +8,50 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include "webrtc/common_audio/ring_buffer.h"
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
#include "webrtc/system_wrappers/include/compile_assert_c.h"
#include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
#include "webrtc/typedefs.h"
#include "modules/audio_processing/aecm/aecm_core.h"
extern "C" {
#include "common_audio/ring_buffer.h"
#include "common_audio/signal_processing/include/real_fft.h"
}
#include "modules/audio_processing/aecm/echo_control_mobile.h"
#include "modules/audio_processing/utility/delay_estimator_wrapper.h"
extern "C" {
#include "system_wrappers/include/cpu_features_wrapper.h"
}
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/sanitizer.h"
namespace webrtc {
namespace {
// Square root of Hanning window in Q14.
#if defined(WEBRTC_DETECT_NEON) || defined(WEBRTC_HAS_NEON)
// Table is defined in an ARM assembly file.
extern const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END;
#else
static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
};
#endif
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, 3562, 3951,
4337, 4720, 5101, 5478, 5853, 6224, 6591, 6954, 7313, 7668, 8019,
8364, 8705, 9040, 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, 13773, 13985, 14189,
14384, 14571, 14749, 14918, 15079, 15231, 15373, 15506, 15631, 15746, 15851,
15947, 16034, 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384};
#ifdef AECM_WITH_ABS_APPROX
//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
// Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
static const uint16_t kAlpha1 = 32584;
//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
// Q15 beta = 0.12967166976970 const Factor for magnitude approximation
static const uint16_t kBeta1 = 4249;
//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
// Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
static const uint16_t kAlpha2 = 30879;
//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
// Q15 beta = 0.33787806009150 const Factor for magnitude approximation
static const uint16_t kBeta2 = 11072;
//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
// Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
static const uint16_t kAlpha3 = 26951;
//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
// Q15 beta = 0.57762063060713 const Factor for magnitude approximation
static const uint16_t kBeta3 = 18927;
#endif
@ -60,7 +61,115 @@ static const int16_t kNoiseEstIncCount = 5;
static void ComfortNoise(AecmCore* aecm,
const uint16_t* dfa,
ComplexInt16* out,
const int16_t* lambda);
const int16_t* lambda) {
int16_t i;
int16_t tmp16;
int32_t tmp32;
int16_t randW16[PART_LEN];
int16_t uReal[PART_LEN1];
int16_t uImag[PART_LEN1];
int32_t outLShift32;
int16_t noiseRShift16[PART_LEN1];
int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
int16_t minTrackShift;
RTC_DCHECK_GE(shiftFromNearToNoise, 0);
RTC_DCHECK_LT(shiftFromNearToNoise, 16);
if (aecm->noiseEstCtr < 100) {
// Track the minimum more quickly initially.
aecm->noiseEstCtr++;
minTrackShift = 6;
} else {
minTrackShift = 9;
}
// Estimate noise power.
for (i = 0; i < PART_LEN1; i++) {
// Shift to the noise domain.
tmp32 = (int32_t)dfa[i];
outLShift32 = tmp32 << shiftFromNearToNoise;
if (outLShift32 < aecm->noiseEst[i]) {
// Reset "too low" counter
aecm->noiseEstTooLowCtr[i] = 0;
// Track the minimum.
if (aecm->noiseEst[i] < (1 << minTrackShift)) {
// For small values, decrease noiseEst[i] every
// |kNoiseEstIncCount| block. The regular approach below can not
// go further down due to truncation.
aecm->noiseEstTooHighCtr[i]++;
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) {
aecm->noiseEst[i]--;
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
}
} else {
aecm->noiseEst[i] -=
((aecm->noiseEst[i] - outLShift32) >> minTrackShift);
}
} else {
// Reset "too high" counter
aecm->noiseEstTooHighCtr[i] = 0;
// Ramp slowly upwards until we hit the minimum again.
if ((aecm->noiseEst[i] >> 19) > 0) {
// Avoid overflow.
// Multiplication with 2049 will cause wrap around. Scale
// down first and then multiply
aecm->noiseEst[i] >>= 11;
aecm->noiseEst[i] *= 2049;
} else if ((aecm->noiseEst[i] >> 11) > 0) {
// Large enough for relative increase
aecm->noiseEst[i] *= 2049;
aecm->noiseEst[i] >>= 11;
} else {
// Make incremental increases based on size every
// |kNoiseEstIncCount| block
aecm->noiseEstTooLowCtr[i]++;
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) {
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
}
}
}
}
for (i = 0; i < PART_LEN1; i++) {
tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
if (tmp32 > 32767) {
tmp32 = 32767;
aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
}
noiseRShift16[i] = (int16_t)tmp32;
tmp16 = ONE_Q14 - lambda[i];
noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14);
}
// Generate a uniform random array on [0 2^15-1].
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
// Generate noise according to estimated energy.
uReal[0] = 0; // Reject LF noise.
uImag[0] = 0;
for (i = 1; i < PART_LEN1; i++) {
// Get a random index for the cos and sin tables over [0 359].
tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
// Tables are in Q13.
uReal[i] =
(int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> 13);
uImag[i] =
(int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> 13);
}
uImag[PART_LEN] = 0;
for (i = 0; i < PART_LEN1; i++) {
out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
}
}
static void WindowAndFFT(AecmCore* aecm,
int16_t* fft,
@ -73,11 +182,11 @@ static void WindowAndFFT(AecmCore* aecm,
for (i = 0; i < PART_LEN; i++) {
// Window time domain signal and insert into real part of
// transformation array |fft|
int16_t scaled_time_signal = time_signal[i] << time_signal_scaling;
int16_t scaled_time_signal = time_signal[i] * (1 << time_signal_scaling);
fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
scaled_time_signal = time_signal[i + PART_LEN] << time_signal_scaling;
fft[PART_LEN + i] = (int16_t)((
scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
scaled_time_signal = time_signal[i + PART_LEN] * (1 << time_signal_scaling);
fft[PART_LEN + i] = (int16_t)(
(scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
}
// Do forward FFT, then take only the first PART_LEN complex samples,
@ -114,32 +223,27 @@ static void InverseFFTAndWindow(AecmCore* aecm,
outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
for (i = 0; i < PART_LEN; i++) {
ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
outCFFT - aecm->dfaCleanQDomain);
outCFFT - aecm->dfaCleanQDomain);
output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i],
WEBRTC_SPL_WORD16_MIN);
tmp32no1 = (ifft_out[PART_LEN + i] *
WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1,
WEBRTC_SPL_WORD16_MIN);
tmp32no1 =
(ifft_out[PART_LEN + i] * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, tmp32no1,
WEBRTC_SPL_WORD16_MIN);
}
// Copy the current block to the old position
// (aecm->outBuf is shifted elsewhere)
memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy,
aecm->dBufNoisy + PART_LEN,
memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN,
sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean,
aecm->dBufClean + PART_LEN,
if (nearendClean != NULL) {
memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN,
sizeof(int16_t) * PART_LEN);
}
}
@ -170,7 +274,7 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
// In fft_buf, +16 for 32-byte alignment.
int16_t fft_buf[PART_LEN4 + 16];
int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
int16_t* fft = (int16_t*)(((uintptr_t)fft_buf + 31) & ~31);
int16_t tmp16no1;
#ifndef WEBRTC_ARCH_ARM_V7
@ -195,23 +299,17 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
freq_signal[0].imag = 0;
freq_signal[PART_LEN].imag = 0;
freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
freq_signal[PART_LEN].real);
(*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
(uint32_t)(freq_signal_abs[PART_LEN]);
freq_signal_abs[PART_LEN] =
(uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[PART_LEN].real);
(*freq_signal_sum_abs) =
(uint32_t)(freq_signal_abs[0]) + (uint32_t)(freq_signal_abs[PART_LEN]);
for (i = 1; i < PART_LEN; i++)
{
if (freq_signal[i].real == 0)
{
for (i = 1; i < PART_LEN; i++) {
if (freq_signal[i].real == 0) {
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
}
else if (freq_signal[i].imag == 0)
{
} else if (freq_signal[i].imag == 0) {
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
}
else
{
} else {
// Approximation for magnitude of complex fft output
// magn = sqrt(real^2 + imag^2)
// magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
@ -222,27 +320,22 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
if(tmp16no1 > tmp16no2)
{
if (tmp16no1 > tmp16no2) {
max_value = tmp16no1;
min_value = tmp16no2;
} else
{
} else {
max_value = tmp16no2;
min_value = tmp16no1;
}
// Magnitude in Q(-6)
if ((max_value >> 2) > min_value)
{
if ((max_value >> 2) > min_value) {
alpha = kAlpha1;
beta = kBeta1;
} else if ((max_value >> 1) > min_value)
{
} else if ((max_value >> 1) > min_value) {
alpha = kAlpha2;
beta = kBeta2;
} else
{
} else {
alpha = kAlpha3;
beta = kBeta3;
}
@ -252,24 +345,21 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
#else
#ifdef WEBRTC_ARCH_ARM_V7
__asm __volatile(
"smulbb %[tmp32no1], %[real], %[real]\n\t"
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
:[tmp32no1]"+&r"(tmp32no1),
[tmp32no2]"=r"(tmp32no2)
:[real]"r"(freq_signal[i].real),
[imag]"r"(freq_signal[i].imag)
);
"smulbb %[tmp32no1], %[real], %[real]\n\t"
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
: [tmp32no1] "+&r"(tmp32no1), [tmp32no2] "=r"(tmp32no2)
: [real] "r"(freq_signal[i].real), [imag] "r"(freq_signal[i].imag));
#else
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
tmp32no1 = tmp16no1 * tmp16no1;
tmp32no2 = tmp16no2 * tmp16no2;
tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
#endif // WEBRTC_ARCH_ARM_V7
#endif // WEBRTC_ARCH_ARM_V7
tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
freq_signal_abs[i] = (uint16_t)tmp32no1;
#endif // AECM_WITH_ABS_APPROX
#endif // AECM_WITH_ABS_APPROX
}
(*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
}
@ -277,7 +367,10 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
return time_signal_scaling;
}
int WebRtcAecm_ProcessBlock(AecmCore* aecm,
} // namespace
int RTC_NO_SANITIZE("signed-integer-overflow") // bugs.webrtc.org/8200
WebRtcAecm_ProcessBlock(AecmCore* aecm,
const int16_t* farend,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
@ -300,13 +393,13 @@ int WebRtcAecm_ProcessBlock(AecmCore* aecm,
// 32 byte aligned buffers (with +8 or +16).
// TODO(kma): define fft with ComplexInt16.
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
int32_t echoEst32_buf[PART_LEN1 + 8];
int32_t dfw_buf[PART_LEN2 + 8];
int32_t efw_buf[PART_LEN2 + 8];
int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
int16_t* fft = (int16_t*)(((uintptr_t)fft_buf + 31) & ~31);
int32_t* echoEst32 = (int32_t*)(((uintptr_t)echoEst32_buf + 31) & ~31);
ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31);
ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31);
@ -332,53 +425,37 @@ int WebRtcAecm_ProcessBlock(AecmCore* aecm,
// (1) another CONV_LEN blocks
// (2) the rest
if (aecm->startupState < 2)
{
aecm->startupState = (aecm->totCount >= CONV_LEN) +
(aecm->totCount >= CONV_LEN2);
if (aecm->startupState < 2) {
aecm->startupState =
(aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2);
}
// END: Determine startup state
// Buffer near and far end signals
memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL)
{
memcpy(aecm->dBufClean + PART_LEN,
nearendClean,
if (nearendClean != NULL) {
memcpy(aecm->dBufClean + PART_LEN, nearendClean,
sizeof(int16_t) * PART_LEN);
}
// Transform far end signal from time domain to frequency domain.
far_q = TimeToFrequencyDomain(aecm,
aecm->xBuf,
dfw,
xfa,
&xfaSum);
far_q = TimeToFrequencyDomain(aecm, aecm->xBuf, dfw, xfa, &xfaSum);
// Transform noisy near end signal from time domain to frequency domain.
zerosDBufNoisy = TimeToFrequencyDomain(aecm,
aecm->dBufNoisy,
dfw,
dfaNoisy,
&dfaNoisySum);
zerosDBufNoisy =
TimeToFrequencyDomain(aecm, aecm->dBufNoisy, dfw, dfaNoisy, &dfaNoisySum);
aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
if (nearendClean == NULL)
{
if (nearendClean == NULL) {
ptrDfaClean = dfaNoisy;
aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
dfaCleanSum = dfaNoisySum;
} else
{
} else {
// Transform clean near end signal from time domain to frequency domain.
zerosDBufClean = TimeToFrequencyDomain(aecm,
aecm->dBufClean,
dfw,
dfaClean,
zerosDBufClean = TimeToFrequencyDomain(aecm, aecm->dBufClean, dfw, dfaClean,
&dfaCleanSum);
aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
@ -387,46 +464,34 @@ int WebRtcAecm_ProcessBlock(AecmCore* aecm,
// Get the delay
// Save far-end history and estimate delay
WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend,
xfa,
PART_LEN1,
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1,
far_q) == -1) {
return -1;
}
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
dfaNoisy,
PART_LEN1,
zerosDBufNoisy);
if (delay == -1)
{
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, dfaNoisy,
PART_LEN1, zerosDBufNoisy);
if (delay == -1) {
return -1;
}
else if (delay == -2)
{
} else if (delay == -2) {
// If the delay is unknown, we assume zero.
// NOTE: this will have to be adjusted if we ever add lookahead.
delay = 0;
}
if (aecm->fixedDelay >= 0)
{
if (aecm->fixedDelay >= 0) {
// Use fixed delay
delay = aecm->fixedDelay;
}
// Get aligned far end spectrum
far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
zerosXBuf = (int16_t) far_q;
if (far_spectrum_ptr == NULL)
{
zerosXBuf = (int16_t)far_q;
if (far_spectrum_ptr == NULL) {
return -1;
}
// Calculate log(energy) and update energy threshold levels
WebRtcAecm_CalcEnergies(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisySum,
WebRtcAecm_CalcEnergies(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisySum,
echoEst32);
// Calculate stepsize
@ -438,63 +503,54 @@ int WebRtcAecm_ProcessBlock(AecmCore* aecm,
// This is the channel estimation algorithm.
// It is base on NLMS but has a variable step length,
// which was calculated above.
WebRtcAecm_UpdateChannel(aecm,
far_spectrum_ptr,
zerosXBuf,
dfaNoisy,
mu,
WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu,
echoEst32);
supGain = WebRtcAecm_CalcSuppressionGain(aecm);
// Calculate Wiener filter hnl[]
for (i = 0; i < PART_LEN1; i++)
{
for (i = 0; i < PART_LEN1; i++) {
// Far end signal through channel estimate in Q8
// How much can we shift right to preserve resolution
tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
aecm->echoFilt[i] += (tmp32no1 * 50) >> 8;
aecm->echoFilt[i] +=
rtc::dchecked_cast<int32_t>((int64_t{tmp32no1} * 50) >> 8);
zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
zeros16 = WebRtcSpl_NormW16(supGain) + 1;
if (zeros32 + zeros16 > 16)
{
if (zeros32 + zeros16 > 16) {
// Multiplication is safe
// Result in
// Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
// aecm->xfaQDomainBuf[diff])
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
(uint16_t)supGain);
echoEst32Gained =
WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], (uint16_t)supGain);
resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
} else
{
} else {
tmp16no1 = 17 - zeros32 - zeros16;
resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
RESOLUTION_SUPGAIN;
resolutionDiff =
14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
if (zeros32 > tmp16no1)
{
if (zeros32 > tmp16no1) {
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
supGain >> tmp16no1);
} else
{
} else {
// Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
}
}
zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
assert(zeros16 >= 0); // |zeros16| is a norm, hence non-negative.
RTC_DCHECK_GE(zeros16, 0); // |zeros16| is a norm, hence non-negative.
dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
tmp16no1 = aecm->nearFilt[i] << zeros16;
tmp16no1 = aecm->nearFilt[i] * (1 << zeros16);
qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
} else {
tmp16no1 = dfa_clean_q_domain_diff < 0
? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
: aecm->nearFilt[i] << dfa_clean_q_domain_diff;
? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
: aecm->nearFilt[i] * (1 << dfa_clean_q_domain_diff);
qDomainDiff = 0;
tmp16no2 = ptrDfaClean[i];
}
@ -505,130 +561,105 @@ int WebRtcAecm_ProcessBlock(AecmCore* aecm,
if ((tmp16no2) & (-qDomainDiff > zeros16)) {
aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
} else {
aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 << -qDomainDiff
aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 * (1 << -qDomainDiff)
: tmp16no2 >> qDomainDiff;
}
// Wiener filter coefficients, resulting hnl in Q14
if (echoEst32Gained == 0)
{
if (echoEst32Gained == 0) {
hnl[i] = ONE_Q14;
} else if (aecm->nearFilt[i] == 0)
{
} else if (aecm->nearFilt[i] == 0) {
hnl[i] = 0;
} else
{
} else {
// Multiply the suppression gain
// Rounding
echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
(uint16_t)aecm->nearFilt[i]);
tmpU32 =
WebRtcSpl_DivU32U16(echoEst32Gained, (uint16_t)aecm->nearFilt[i]);
// Current resolution is
// Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
// Make sure we are in Q14
tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
if (tmp32no1 > ONE_Q14)
{
if (tmp32no1 > ONE_Q14) {
hnl[i] = 0;
} else if (tmp32no1 < 0)
{
} else if (tmp32no1 < 0) {
hnl[i] = ONE_Q14;
} else
{
} else {
// 1-echoEst/dfa
hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
if (hnl[i] < 0)
{
if (hnl[i] < 0) {
hnl[i] = 0;
}
}
}
if (hnl[i])
{
if (hnl[i]) {
numPosCoef++;
}
}
// Only in wideband. Prevent the gain in upper band from being larger than
// in lower band.
if (aecm->mult == 2)
{
if (aecm->mult == 2) {
// TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
// speech distortion in double-talk.
for (i = 0; i < PART_LEN1; i++)
{
for (i = 0; i < PART_LEN1; i++) {
hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14);
}
for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
{
for (i = kMinPrefBand; i <= kMaxPrefBand; i++) {
avgHnl32 += (int32_t)hnl[i];
}
assert(kMaxPrefBand - kMinPrefBand + 1 > 0);
RTC_DCHECK_GT(kMaxPrefBand - kMinPrefBand + 1, 0);
avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
for (i = kMaxPrefBand; i < PART_LEN1; i++)
{
if (hnl[i] > (int16_t)avgHnl32)
{
for (i = kMaxPrefBand; i < PART_LEN1; i++) {
if (hnl[i] > (int16_t)avgHnl32) {
hnl[i] = (int16_t)avgHnl32;
}
}
}
// Calculate NLP gain, result is in Q14
if (aecm->nlpFlag)
{
for (i = 0; i < PART_LEN1; i++)
{
if (aecm->nlpFlag) {
for (i = 0; i < PART_LEN1; i++) {
// Truncate values close to zero and one.
if (hnl[i] > NLP_COMP_HIGH)
{
if (hnl[i] > NLP_COMP_HIGH) {
hnl[i] = ONE_Q14;
} else if (hnl[i] < NLP_COMP_LOW)
{
} else if (hnl[i] < NLP_COMP_LOW) {
hnl[i] = 0;
}
// Remove outliers
if (numPosCoef < 3)
{
if (numPosCoef < 3) {
nlpGain = 0;
} else
{
} else {
nlpGain = ONE_Q14;
}
// NLP
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
{
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) {
hnl[i] = ONE_Q14;
} else
{
} else {
hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14);
}
// multiply with Wiener coefficients
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
efw[i].real = (int16_t)(
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14));
efw[i].imag = (int16_t)(
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14));
}
}
else
{
} else {
// multiply with Wiener coefficients
for (i = 0; i < PART_LEN1; i++)
{
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
for (i = 0; i < PART_LEN1; i++) {
efw[i].real = (int16_t)(
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14));
efw[i].imag = (int16_t)(
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14));
}
}
if (aecm->cngMode == AecmTrue)
{
if (aecm->cngMode == AecmTrue) {
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
}
@ -637,135 +668,4 @@ int WebRtcAecm_ProcessBlock(AecmCore* aecm,
return 0;
}
static void ComfortNoise(AecmCore* aecm,
const uint16_t* dfa,
ComplexInt16* out,
const int16_t* lambda) {
int16_t i;
int16_t tmp16;
int32_t tmp32;
int16_t randW16[PART_LEN];
int16_t uReal[PART_LEN1];
int16_t uImag[PART_LEN1];
int32_t outLShift32;
int16_t noiseRShift16[PART_LEN1];
int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
int16_t minTrackShift;
assert(shiftFromNearToNoise >= 0);
assert(shiftFromNearToNoise < 16);
if (aecm->noiseEstCtr < 100)
{
// Track the minimum more quickly initially.
aecm->noiseEstCtr++;
minTrackShift = 6;
} else
{
minTrackShift = 9;
}
// Estimate noise power.
for (i = 0; i < PART_LEN1; i++)
{
// Shift to the noise domain.
tmp32 = (int32_t)dfa[i];
outLShift32 = tmp32 << shiftFromNearToNoise;
if (outLShift32 < aecm->noiseEst[i])
{
// Reset "too low" counter
aecm->noiseEstTooLowCtr[i] = 0;
// Track the minimum.
if (aecm->noiseEst[i] < (1 << minTrackShift))
{
// For small values, decrease noiseEst[i] every
// |kNoiseEstIncCount| block. The regular approach below can not
// go further down due to truncation.
aecm->noiseEstTooHighCtr[i]++;
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i]--;
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
}
}
else
{
aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32)
>> minTrackShift);
}
} else
{
// Reset "too high" counter
aecm->noiseEstTooHighCtr[i] = 0;
// Ramp slowly upwards until we hit the minimum again.
if ((aecm->noiseEst[i] >> 19) > 0)
{
// Avoid overflow.
// Multiplication with 2049 will cause wrap around. Scale
// down first and then multiply
aecm->noiseEst[i] >>= 11;
aecm->noiseEst[i] *= 2049;
}
else if ((aecm->noiseEst[i] >> 11) > 0)
{
// Large enough for relative increase
aecm->noiseEst[i] *= 2049;
aecm->noiseEst[i] >>= 11;
}
else
{
// Make incremental increases based on size every
// |kNoiseEstIncCount| block
aecm->noiseEstTooLowCtr[i]++;
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
{
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
}
}
}
}
for (i = 0; i < PART_LEN1; i++)
{
tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
if (tmp32 > 32767)
{
tmp32 = 32767;
aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
}
noiseRShift16[i] = (int16_t)tmp32;
tmp16 = ONE_Q14 - lambda[i];
noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14);
}
// Generate a uniform random array on [0 2^15-1].
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
// Generate noise according to estimated energy.
uReal[0] = 0; // Reject LF noise.
uImag[0] = 0;
for (i = 1; i < PART_LEN1; i++)
{
// Get a random index for the cos and sin tables over [0 359].
tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
// Tables are in Q13.
uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >>
13);
uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >>
13);
}
uImag[PART_LEN] = 0;
for (i = 0; i < PART_LEN1; i++)
{
out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
}
}
} // namespace webrtc

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -8,29 +8,19 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
#include <arm_neon.h>
#include <assert.h>
#include "webrtc/common_audio/signal_processing/include/real_fft.h"
#include "common_audio/signal_processing/include/real_fft.h"
#include "modules/audio_processing/aecm/aecm_core.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// TODO(kma): Re-write the corresponding assembly file, the offset
// generating script and makefile, to replace these C functions.
// Square root of Hanning window in Q14.
const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
0,
399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
};
static inline void AddLanes(uint32_t* ptr, uint32x4_t v) {
#if defined(WEBRTC_ARCH_ARM64)
*(ptr) = vaddvq_u32(v);
@ -42,6 +32,8 @@ static inline void AddLanes(uint32_t* ptr, uint32x4_t v) {
#endif
}
} // namespace
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
@ -90,12 +82,12 @@ void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
echo_stored_v = vaddq_u32(echo_est_v_low, echo_stored_v);
echo_stored_v = vaddq_u32(echo_est_v_high, echo_stored_v);
echo_adapt_v = vmlal_u16(echo_adapt_v,
vreinterpret_u16_s16(vget_low_s16(adapt_v)),
vget_low_u16(spectrum_v));
echo_adapt_v = vmlal_u16(echo_adapt_v,
vreinterpret_u16_s16(vget_high_s16(adapt_v)),
vget_high_u16(spectrum_v));
echo_adapt_v =
vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_low_s16(adapt_v)),
vget_low_u16(spectrum_v));
echo_adapt_v =
vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_high_s16(adapt_v)),
vget_high_u16(spectrum_v));
start_stored_p += 8;
start_adapt_p += 8;
@ -117,9 +109,9 @@ void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est) {
assert((uintptr_t)echo_est % 32 == 0);
assert((uintptr_t)(aecm->channelStored) % 16 == 0);
assert((uintptr_t)(aecm->channelAdapt16) % 16 == 0);
RTC_DCHECK_EQ(0, (uintptr_t)echo_est % 32);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelStored % 16);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelAdapt16 % 16);
// This is C code of following optimized code.
// During startup we store the channel every block.
@ -174,9 +166,9 @@ void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
}
void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm) {
assert((uintptr_t)(aecm->channelStored) % 16 == 0);
assert((uintptr_t)(aecm->channelAdapt16) % 16 == 0);
assert((uintptr_t)(aecm->channelAdapt32) % 32 == 0);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelStored % 16);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelAdapt16 % 16);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelAdapt32 % 32);
// The C code of following optimized code.
// for (i = 0; i < PART_LEN1; i++) {
@ -210,3 +202,5 @@ void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm) {
aecm->channelAdapt16[PART_LEN] = aecm->channelStored[PART_LEN];
aecm->channelAdapt32[PART_LEN] = (int32_t)aecm->channelStored[PART_LEN] << 16;
}
} // namespace webrtc

View File

@ -8,80 +8,80 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#ifndef MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#define MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
#define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
/* Algorithm parameters */
#define FRAME_LEN 80 /* Total frame length, 10 ms. */
#define FRAME_LEN 80 /* Total frame length, 10 ms. */
#define PART_LEN 64 /* Length of partition. */
#define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
#define PART_LEN 64 /* Length of partition. */
#define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
#define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
#define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
#define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
#define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
#define MAX_DELAY 100
#define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
#define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
#define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
#define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
#define MAX_DELAY 100
/* Counter parameters */
#define CONV_LEN 512 /* Convergence length used at startup. */
#define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
#define CONV_LEN 512 /* Convergence length used at startup. */
#define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
/* Energy parameters */
#define MAX_BUF_LEN 64 /* History length of energy signals. */
#define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
/* in energy. */
#define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
/* and min. */
#define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
#define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
#define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
#define MAX_BUF_LEN 64 /* History length of energy signals. */
#define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
/* in energy. */
#define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
/* and min. */
#define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
#define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
#define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
/* Stepsize parameters */
#define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
/* dependent). */
#define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
/* dependent). */
#define MU_DIFF 9 /* MU_MIN - MU_MAX */
#define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
/* dependent). */
#define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
/* dependent). */
#define MU_DIFF 9 /* MU_MIN - MU_MAX */
/* Channel parameters */
#define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
/* far end energy to compare channel estimates. */
#define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
/* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
#define MSE_RESOLUTION 5 /* MSE parameter resolution. */
#define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
#define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
#define CHANNEL_VAD 16 /* Minimum energy in frequency band */
/* to update channel. */
#define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
/* far end energy to compare channel estimates. */
#define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
/* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
#define MSE_RESOLUTION 5 /* MSE parameter resolution. */
#define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
#define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
#define CHANNEL_VAD 16 /* Minimum energy in frequency band */
/* to update channel. */
/* Suppression gain parameters: SUPGAIN parameters in Q-(RESOLUTION_SUPGAIN). */
#define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
#define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
/* (Maximum gain) (8 in Q8). */
#define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
/* (Gain before going down). */
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
/* (Should be the same as Default) (1 in Q8). */
#define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
#define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
#define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
/* (Maximum gain) (8 in Q8). */
#define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
/* (Gain before going down). */
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
/* (Should be the same as Default) (1 in Q8). */
#define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
/* Defines for "check delay estimation" */
#define CORR_WIDTH 31 /* Number of samples to correlate over. */
#define CORR_MAX 16 /* Maximum correlation offset. */
#define CORR_MAX_BUF 63
#define CORR_DEV 4
#define CORR_MAX_LEVEL 20
#define CORR_MAX_LOW 4
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
#define CORR_WIDTH 31 /* Number of samples to correlate over. */
#define CORR_MAX 16 /* Maximum correlation offset. */
#define CORR_MAX_BUF 63
#define CORR_DEV 4
#define CORR_MAX_LEVEL 20
#define CORR_MAX_LOW 4
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
/* Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN. */
#define ONE_Q14 (1 << 14)
#define ONE_Q14 (1 << 14)
/* NLP defines */
#define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
#define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
#define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
#define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
#endif

View File

@ -1,702 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aecm/include/echo_control_mobile.h"
#ifdef AEC_DEBUG
#include <stdio.h>
#endif
#include <stdlib.h>
#include "webrtc/common_audio/ring_buffer.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aecm/aecm_core.h"
#define BUF_SIZE_FRAMES 50 // buffer size (frames)
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const size_t kBufSizeSamp = BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
static const int kSampMsNb = 8; // samples per ms in nb
// Target suppression levels for nlp modes
// log{0.001, 0.00001, 0.00000001}
static const int kInitCheck = 42;
typedef struct
{
int sampFreq;
int scSampFreq;
short bufSizeStart;
int knownDelay;
// Stores the last frame added to the farend buffer
short farendOld[2][FRAME_LEN];
short initFlag; // indicates if AEC has been initialized
// Variables used for averaging far end buffer size
short counter;
short sum;
short firstVal;
short checkBufSizeCtr;
// Variables used for delay shifts
short msInSndCardBuf;
short filtDelay;
int timeForDelayChange;
int ECstartup;
int checkBuffSize;
int delayChange;
short lastDelayDiff;
int16_t echoMode;
#ifdef AEC_DEBUG
FILE *bufFile;
FILE *delayFile;
FILE *preCompFile;
FILE *postCompFile;
#endif // AEC_DEBUG
// Structures
RingBuffer *farendBuf;
int lastError;
AecmCore* aecmCore;
} AecMobile;
// Estimates delay to set the position of the farend buffer read pointer
// (controlled by knownDelay)
static int WebRtcAecm_EstBufDelay(AecMobile* aecmInst, short msInSndCardBuf);
// Stuffs the farend buffer if the estimated delay is too large
static int WebRtcAecm_DelayComp(AecMobile* aecmInst);
void* WebRtcAecm_Create() {
AecMobile* aecm = malloc(sizeof(AecMobile));
WebRtcSpl_Init();
aecm->aecmCore = WebRtcAecm_CreateCore();
if (!aecm->aecmCore) {
WebRtcAecm_Free(aecm);
return NULL;
}
aecm->farendBuf = WebRtc_CreateBuffer(kBufSizeSamp,
sizeof(int16_t));
if (!aecm->farendBuf)
{
WebRtcAecm_Free(aecm);
return NULL;
}
aecm->initFlag = 0;
aecm->lastError = 0;
#ifdef AEC_DEBUG
aecm->aecmCore->farFile = fopen("aecFar.pcm","wb");
aecm->aecmCore->nearFile = fopen("aecNear.pcm","wb");
aecm->aecmCore->outFile = fopen("aecOut.pcm","wb");
//aecm->aecmCore->outLpFile = fopen("aecOutLp.pcm","wb");
aecm->bufFile = fopen("aecBuf.dat", "wb");
aecm->delayFile = fopen("aecDelay.dat", "wb");
aecm->preCompFile = fopen("preComp.pcm", "wb");
aecm->postCompFile = fopen("postComp.pcm", "wb");
#endif // AEC_DEBUG
return aecm;
}
void WebRtcAecm_Free(void* aecmInst) {
AecMobile* aecm = aecmInst;
if (aecm == NULL) {
return;
}
#ifdef AEC_DEBUG
fclose(aecm->aecmCore->farFile);
fclose(aecm->aecmCore->nearFile);
fclose(aecm->aecmCore->outFile);
//fclose(aecm->aecmCore->outLpFile);
fclose(aecm->bufFile);
fclose(aecm->delayFile);
fclose(aecm->preCompFile);
fclose(aecm->postCompFile);
#endif // AEC_DEBUG
WebRtcAecm_FreeCore(aecm->aecmCore);
WebRtc_FreeBuffer(aecm->farendBuf);
free(aecm);
}
int32_t WebRtcAecm_Init(void *aecmInst, int32_t sampFreq)
{
AecMobile* aecm = aecmInst;
AecmConfig aecConfig;
if (aecm == NULL)
{
return -1;
}
if (sampFreq != 8000 && sampFreq != 16000)
{
aecm->lastError = AECM_BAD_PARAMETER_ERROR;
return -1;
}
aecm->sampFreq = sampFreq;
// Initialize AECM core
if (WebRtcAecm_InitCore(aecm->aecmCore, aecm->sampFreq) == -1)
{
aecm->lastError = AECM_UNSPECIFIED_ERROR;
return -1;
}
// Initialize farend buffer
WebRtc_InitBuffer(aecm->farendBuf);
aecm->initFlag = kInitCheck; // indicates that initialization has been done
aecm->delayChange = 1;
aecm->sum = 0;
aecm->counter = 0;
aecm->checkBuffSize = 1;
aecm->firstVal = 0;
aecm->ECstartup = 1;
aecm->bufSizeStart = 0;
aecm->checkBufSizeCtr = 0;
aecm->filtDelay = 0;
aecm->timeForDelayChange = 0;
aecm->knownDelay = 0;
aecm->lastDelayDiff = 0;
memset(&aecm->farendOld[0][0], 0, 160);
// Default settings.
aecConfig.cngMode = AecmTrue;
aecConfig.echoMode = 3;
if (WebRtcAecm_set_config(aecm, aecConfig) == -1)
{
aecm->lastError = AECM_UNSPECIFIED_ERROR;
return -1;
}
return 0;
}
int32_t WebRtcAecm_BufferFarend(void *aecmInst, const int16_t *farend,
size_t nrOfSamples)
{
AecMobile* aecm = aecmInst;
int32_t retVal = 0;
if (aecm == NULL)
{
return -1;
}
if (farend == NULL)
{
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (aecm->initFlag != kInitCheck)
{
aecm->lastError = AECM_UNINITIALIZED_ERROR;
return -1;
}
if (nrOfSamples != 80 && nrOfSamples != 160)
{
aecm->lastError = AECM_BAD_PARAMETER_ERROR;
return -1;
}
// TODO: Is this really a good idea?
if (!aecm->ECstartup)
{
WebRtcAecm_DelayComp(aecm);
}
WebRtc_WriteBuffer(aecm->farendBuf, farend, nrOfSamples);
return retVal;
}
int32_t WebRtcAecm_Process(void *aecmInst, const int16_t *nearendNoisy,
const int16_t *nearendClean, int16_t *out,
size_t nrOfSamples, int16_t msInSndCardBuf)
{
AecMobile* aecm = aecmInst;
int32_t retVal = 0;
size_t i;
short nmbrOfFilledBuffers;
size_t nBlocks10ms;
size_t nFrames;
#ifdef AEC_DEBUG
short msInAECBuf;
#endif
if (aecm == NULL)
{
return -1;
}
if (nearendNoisy == NULL)
{
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (out == NULL)
{
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (aecm->initFlag != kInitCheck)
{
aecm->lastError = AECM_UNINITIALIZED_ERROR;
return -1;
}
if (nrOfSamples != 80 && nrOfSamples != 160)
{
aecm->lastError = AECM_BAD_PARAMETER_ERROR;
return -1;
}
if (msInSndCardBuf < 0)
{
msInSndCardBuf = 0;
aecm->lastError = AECM_BAD_PARAMETER_WARNING;
retVal = -1;
} else if (msInSndCardBuf > 500)
{
msInSndCardBuf = 500;
aecm->lastError = AECM_BAD_PARAMETER_WARNING;
retVal = -1;
}
msInSndCardBuf += 10;
aecm->msInSndCardBuf = msInSndCardBuf;
nFrames = nrOfSamples / FRAME_LEN;
nBlocks10ms = nFrames / aecm->aecmCore->mult;
if (aecm->ECstartup)
{
if (nearendClean == NULL)
{
if (out != nearendNoisy)
{
memcpy(out, nearendNoisy, sizeof(short) * nrOfSamples);
}
} else if (out != nearendClean)
{
memcpy(out, nearendClean, sizeof(short) * nrOfSamples);
}
nmbrOfFilledBuffers =
(short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// The AECM is in the start up mode
// AECM is disabled until the soundcard buffer and farend buffers are OK
// Mechanism to ensure that the soundcard buffer is reasonably stable.
if (aecm->checkBuffSize)
{
aecm->checkBufSizeCtr++;
// Before we fill up the far end buffer we require the amount of data on the
// sound card to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 4 consecutive frames. If it seems
// to be stable then we start to fill up the far end buffer.
if (aecm->counter == 0)
{
aecm->firstVal = aecm->msInSndCardBuf;
aecm->sum = 0;
}
if (abs(aecm->firstVal - aecm->msInSndCardBuf)
< WEBRTC_SPL_MAX(0.2 * aecm->msInSndCardBuf, kSampMsNb))
{
aecm->sum += aecm->msInSndCardBuf;
aecm->counter++;
} else
{
aecm->counter = 0;
}
if (aecm->counter * nBlocks10ms >= 6)
{
// The farend buffer size is determined in blocks of 80 samples
// Use 75% of the average value of the soundcard buffer
aecm->bufSizeStart
= WEBRTC_SPL_MIN((3 * aecm->sum
* aecm->aecmCore->mult) / (aecm->counter * 40), BUF_SIZE_FRAMES);
// buffersize has now been determined
aecm->checkBuffSize = 0;
}
if (aecm->checkBufSizeCtr * nBlocks10ms > 50)
{
// for really bad sound cards, don't disable echocanceller for more than 0.5 sec
aecm->bufSizeStart = WEBRTC_SPL_MIN((3 * aecm->msInSndCardBuf
* aecm->aecmCore->mult) / 40, BUF_SIZE_FRAMES);
aecm->checkBuffSize = 0;
}
}
// if checkBuffSize changed in the if-statement above
if (!aecm->checkBuffSize)
{
// soundcard buffer is now reasonably stable
// When the far end buffer is filled with approximately the same amount of
// data as the amount on the sound card we end the start up phase and start
// to cancel echoes.
if (nmbrOfFilledBuffers == aecm->bufSizeStart)
{
aecm->ECstartup = 0; // Enable the AECM
} else if (nmbrOfFilledBuffers > aecm->bufSizeStart)
{
WebRtc_MoveReadPtr(aecm->farendBuf,
(int) WebRtc_available_read(aecm->farendBuf)
- (int) aecm->bufSizeStart * FRAME_LEN);
aecm->ECstartup = 0;
}
}
} else
{
// AECM is enabled
// Note only 1 block supported for nb and 2 blocks for wb
for (i = 0; i < nFrames; i++)
{
int16_t farend[FRAME_LEN];
const int16_t* farend_ptr = NULL;
nmbrOfFilledBuffers =
(short) WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// Check that there is data in the far end buffer
if (nmbrOfFilledBuffers > 0)
{
// Get the next 80 samples from the farend buffer
WebRtc_ReadBuffer(aecm->farendBuf, (void**) &farend_ptr, farend,
FRAME_LEN);
// Always store the last frame for use when we run out of data
memcpy(&(aecm->farendOld[i][0]), farend_ptr,
FRAME_LEN * sizeof(short));
} else
{
// We have no data so we use the last played frame
memcpy(farend, &(aecm->farendOld[i][0]), FRAME_LEN * sizeof(short));
farend_ptr = farend;
}
// Call buffer delay estimator when all data is extracted,
// i,e. i = 0 for NB and i = 1 for WB
if ((i == 0 && aecm->sampFreq == 8000) || (i == 1 && aecm->sampFreq == 16000))
{
WebRtcAecm_EstBufDelay(aecm, aecm->msInSndCardBuf);
}
// Call the AECM
/*WebRtcAecm_ProcessFrame(aecm->aecmCore, farend, &nearend[FRAME_LEN * i],
&out[FRAME_LEN * i], aecm->knownDelay);*/
if (WebRtcAecm_ProcessFrame(aecm->aecmCore,
farend_ptr,
&nearendNoisy[FRAME_LEN * i],
(nearendClean
? &nearendClean[FRAME_LEN * i]
: NULL),
&out[FRAME_LEN * i]) == -1)
return -1;
}
}
#ifdef AEC_DEBUG
msInAECBuf = (short) WebRtc_available_read(aecm->farendBuf) /
(kSampMsNb * aecm->aecmCore->mult);
fwrite(&msInAECBuf, 2, 1, aecm->bufFile);
fwrite(&(aecm->knownDelay), sizeof(aecm->knownDelay), 1, aecm->delayFile);
#endif
return retVal;
}
int32_t WebRtcAecm_set_config(void *aecmInst, AecmConfig config)
{
AecMobile* aecm = aecmInst;
if (aecm == NULL)
{
return -1;
}
if (aecm->initFlag != kInitCheck)
{
aecm->lastError = AECM_UNINITIALIZED_ERROR;
return -1;
}
if (config.cngMode != AecmFalse && config.cngMode != AecmTrue)
{
aecm->lastError = AECM_BAD_PARAMETER_ERROR;
return -1;
}
aecm->aecmCore->cngMode = config.cngMode;
if (config.echoMode < 0 || config.echoMode > 4)
{
aecm->lastError = AECM_BAD_PARAMETER_ERROR;
return -1;
}
aecm->echoMode = config.echoMode;
if (aecm->echoMode == 0)
{
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 3;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 3;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 3;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 3;
aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A >> 3)
- (SUPGAIN_ERROR_PARAM_B >> 3);
aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B >> 3)
- (SUPGAIN_ERROR_PARAM_D >> 3);
} else if (aecm->echoMode == 1)
{
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 2;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 2;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 2;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 2;
aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A >> 2)
- (SUPGAIN_ERROR_PARAM_B >> 2);
aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B >> 2)
- (SUPGAIN_ERROR_PARAM_D >> 2);
} else if (aecm->echoMode == 2)
{
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 1;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 1;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 1;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 1;
aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A >> 1)
- (SUPGAIN_ERROR_PARAM_B >> 1);
aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B >> 1)
- (SUPGAIN_ERROR_PARAM_D >> 1);
} else if (aecm->echoMode == 3)
{
aecm->aecmCore->supGain = SUPGAIN_DEFAULT;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
aecm->aecmCore->supGainErrParamDiffAB = SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
aecm->aecmCore->supGainErrParamDiffBD = SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
} else if (aecm->echoMode == 4)
{
aecm->aecmCore->supGain = SUPGAIN_DEFAULT << 1;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT << 1;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A << 1;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D << 1;
aecm->aecmCore->supGainErrParamDiffAB = (SUPGAIN_ERROR_PARAM_A << 1)
- (SUPGAIN_ERROR_PARAM_B << 1);
aecm->aecmCore->supGainErrParamDiffBD = (SUPGAIN_ERROR_PARAM_B << 1)
- (SUPGAIN_ERROR_PARAM_D << 1);
}
return 0;
}
int32_t WebRtcAecm_get_config(void *aecmInst, AecmConfig *config)
{
AecMobile* aecm = aecmInst;
if (aecm == NULL)
{
return -1;
}
if (config == NULL)
{
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (aecm->initFlag != kInitCheck)
{
aecm->lastError = AECM_UNINITIALIZED_ERROR;
return -1;
}
config->cngMode = aecm->aecmCore->cngMode;
config->echoMode = aecm->echoMode;
return 0;
}
int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes)
{
AecMobile* aecm = aecmInst;
const int16_t* echo_path_ptr = echo_path;
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes())
{
// Input channel size does not match the size of AECM
aecm->lastError = AECM_BAD_PARAMETER_ERROR;
return -1;
}
if (aecm->initFlag != kInitCheck)
{
aecm->lastError = AECM_UNINITIALIZED_ERROR;
return -1;
}
WebRtcAecm_InitEchoPathCore(aecm->aecmCore, echo_path_ptr);
return 0;
}
int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes)
{
AecMobile* aecm = aecmInst;
int16_t* echo_path_ptr = echo_path;
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
aecm->lastError = AECM_NULL_POINTER_ERROR;
return -1;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes())
{
// Input channel size does not match the size of AECM
aecm->lastError = AECM_BAD_PARAMETER_ERROR;
return -1;
}
if (aecm->initFlag != kInitCheck)
{
aecm->lastError = AECM_UNINITIALIZED_ERROR;
return -1;
}
memcpy(echo_path_ptr, aecm->aecmCore->channelStored, size_bytes);
return 0;
}
size_t WebRtcAecm_echo_path_size_bytes()
{
return (PART_LEN1 * sizeof(int16_t));
}
int32_t WebRtcAecm_get_error_code(void *aecmInst)
{
AecMobile* aecm = aecmInst;
if (aecm == NULL)
{
return -1;
}
return aecm->lastError;
}
static int WebRtcAecm_EstBufDelay(AecMobile* aecm, short msInSndCardBuf) {
short delayNew, nSampSndCard;
short nSampFar = (short) WebRtc_available_read(aecm->farendBuf);
short diff;
nSampSndCard = msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
if (delayNew < FRAME_LEN)
{
WebRtc_MoveReadPtr(aecm->farendBuf, FRAME_LEN);
delayNew += FRAME_LEN;
}
aecm->filtDelay = WEBRTC_SPL_MAX(0, (8 * aecm->filtDelay + 2 * delayNew) / 10);
diff = aecm->filtDelay - aecm->knownDelay;
if (diff > 224)
{
if (aecm->lastDelayDiff < 96)
{
aecm->timeForDelayChange = 0;
} else
{
aecm->timeForDelayChange++;
}
} else if (diff < 96 && aecm->knownDelay > 0)
{
if (aecm->lastDelayDiff > 224)
{
aecm->timeForDelayChange = 0;
} else
{
aecm->timeForDelayChange++;
}
} else
{
aecm->timeForDelayChange = 0;
}
aecm->lastDelayDiff = diff;
if (aecm->timeForDelayChange > 25)
{
aecm->knownDelay = WEBRTC_SPL_MAX((int)aecm->filtDelay - 160, 0);
}
return 0;
}
static int WebRtcAecm_DelayComp(AecMobile* aecm) {
int nSampFar = (int) WebRtc_available_read(aecm->farendBuf);
int nSampSndCard, delayNew, nSampAdd;
const int maxStuffSamp = 10 * FRAME_LEN;
nSampSndCard = aecm->msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
if (delayNew > FAR_BUF_LEN - FRAME_LEN * aecm->aecmCore->mult)
{
// The difference of the buffer sizes is larger than the maximum
// allowed known delay. Compensate by stuffing the buffer.
nSampAdd = (int)(WEBRTC_SPL_MAX(((nSampSndCard >> 1) - nSampFar),
FRAME_LEN));
nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
WebRtc_MoveReadPtr(aecm->farendBuf, -nSampAdd);
aecm->delayChange = 1; // the delay needs to be updated
}
return 0;
}

View File

@ -0,0 +1,599 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aecm/echo_control_mobile.h"
#ifdef AEC_DEBUG
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
extern "C" {
#include "common_audio/ring_buffer.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_processing/aecm/aecm_defines.h"
}
#include "modules/audio_processing/aecm/aecm_core.h"
namespace webrtc {
namespace {
#define BUF_SIZE_FRAMES 50 // buffer size (frames)
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const size_t kBufSizeSamp =
BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
static const int kSampMsNb = 8; // samples per ms in nb
// Target suppression levels for nlp modes
// log{0.001, 0.00001, 0.00000001}
static const int kInitCheck = 42;
typedef struct {
int sampFreq;
int scSampFreq;
short bufSizeStart;
int knownDelay;
// Stores the last frame added to the farend buffer
short farendOld[2][FRAME_LEN];
short initFlag; // indicates if AEC has been initialized
// Variables used for averaging far end buffer size
short counter;
short sum;
short firstVal;
short checkBufSizeCtr;
// Variables used for delay shifts
short msInSndCardBuf;
short filtDelay;
int timeForDelayChange;
int ECstartup;
int checkBuffSize;
int delayChange;
short lastDelayDiff;
int16_t echoMode;
#ifdef AEC_DEBUG
FILE* bufFile;
FILE* delayFile;
FILE* preCompFile;
FILE* postCompFile;
#endif // AEC_DEBUG
// Structures
RingBuffer* farendBuf;
AecmCore* aecmCore;
} AecMobile;
} // namespace
// Estimates delay to set the position of the farend buffer read pointer
// (controlled by knownDelay)
static int WebRtcAecm_EstBufDelay(AecMobile* aecm, short msInSndCardBuf);
// Stuffs the farend buffer if the estimated delay is too large
static int WebRtcAecm_DelayComp(AecMobile* aecm);
void* WebRtcAecm_Create() {
// Allocate zero-filled memory.
AecMobile* aecm = static_cast<AecMobile*>(calloc(1, sizeof(AecMobile)));
aecm->aecmCore = WebRtcAecm_CreateCore();
if (!aecm->aecmCore) {
WebRtcAecm_Free(aecm);
return NULL;
}
aecm->farendBuf = WebRtc_CreateBuffer(kBufSizeSamp, sizeof(int16_t));
if (!aecm->farendBuf) {
WebRtcAecm_Free(aecm);
return NULL;
}
#ifdef AEC_DEBUG
aecm->aecmCore->farFile = fopen("aecFar.pcm", "wb");
aecm->aecmCore->nearFile = fopen("aecNear.pcm", "wb");
aecm->aecmCore->outFile = fopen("aecOut.pcm", "wb");
// aecm->aecmCore->outLpFile = fopen("aecOutLp.pcm","wb");
aecm->bufFile = fopen("aecBuf.dat", "wb");
aecm->delayFile = fopen("aecDelay.dat", "wb");
aecm->preCompFile = fopen("preComp.pcm", "wb");
aecm->postCompFile = fopen("postComp.pcm", "wb");
#endif // AEC_DEBUG
return aecm;
}
void WebRtcAecm_Free(void* aecmInst) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
if (aecm == NULL) {
return;
}
#ifdef AEC_DEBUG
fclose(aecm->aecmCore->farFile);
fclose(aecm->aecmCore->nearFile);
fclose(aecm->aecmCore->outFile);
// fclose(aecm->aecmCore->outLpFile);
fclose(aecm->bufFile);
fclose(aecm->delayFile);
fclose(aecm->preCompFile);
fclose(aecm->postCompFile);
#endif // AEC_DEBUG
WebRtcAecm_FreeCore(aecm->aecmCore);
WebRtc_FreeBuffer(aecm->farendBuf);
free(aecm);
}
int32_t WebRtcAecm_Init(void* aecmInst, int32_t sampFreq) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
AecmConfig aecConfig;
if (aecm == NULL) {
return -1;
}
if (sampFreq != 8000 && sampFreq != 16000) {
return AECM_BAD_PARAMETER_ERROR;
}
aecm->sampFreq = sampFreq;
// Initialize AECM core
if (WebRtcAecm_InitCore(aecm->aecmCore, aecm->sampFreq) == -1) {
return AECM_UNSPECIFIED_ERROR;
}
// Initialize farend buffer
WebRtc_InitBuffer(aecm->farendBuf);
aecm->initFlag = kInitCheck; // indicates that initialization has been done
aecm->delayChange = 1;
aecm->sum = 0;
aecm->counter = 0;
aecm->checkBuffSize = 1;
aecm->firstVal = 0;
aecm->ECstartup = 1;
aecm->bufSizeStart = 0;
aecm->checkBufSizeCtr = 0;
aecm->filtDelay = 0;
aecm->timeForDelayChange = 0;
aecm->knownDelay = 0;
aecm->lastDelayDiff = 0;
memset(&aecm->farendOld, 0, sizeof(aecm->farendOld));
// Default settings.
aecConfig.cngMode = AecmTrue;
aecConfig.echoMode = 3;
if (WebRtcAecm_set_config(aecm, aecConfig) == -1) {
return AECM_UNSPECIFIED_ERROR;
}
return 0;
}
// Returns any error that is caused when buffering the
// farend signal.
int32_t WebRtcAecm_GetBufferFarendError(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
if (aecm == NULL)
return -1;
if (farend == NULL)
return AECM_NULL_POINTER_ERROR;
if (aecm->initFlag != kInitCheck)
return AECM_UNINITIALIZED_ERROR;
if (nrOfSamples != 80 && nrOfSamples != 160)
return AECM_BAD_PARAMETER_ERROR;
return 0;
}
int32_t WebRtcAecm_BufferFarend(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
const int32_t err =
WebRtcAecm_GetBufferFarendError(aecmInst, farend, nrOfSamples);
if (err != 0)
return err;
// TODO(unknown): Is this really a good idea?
if (!aecm->ECstartup) {
WebRtcAecm_DelayComp(aecm);
}
WebRtc_WriteBuffer(aecm->farendBuf, farend, nrOfSamples);
return 0;
}
int32_t WebRtcAecm_Process(void* aecmInst,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* out,
size_t nrOfSamples,
int16_t msInSndCardBuf) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
int32_t retVal = 0;
size_t i;
short nmbrOfFilledBuffers;
size_t nBlocks10ms;
size_t nFrames;
#ifdef AEC_DEBUG
short msInAECBuf;
#endif
if (aecm == NULL) {
return -1;
}
if (nearendNoisy == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (out == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
if (nrOfSamples != 80 && nrOfSamples != 160) {
return AECM_BAD_PARAMETER_ERROR;
}
if (msInSndCardBuf < 0) {
msInSndCardBuf = 0;
retVal = AECM_BAD_PARAMETER_WARNING;
} else if (msInSndCardBuf > 500) {
msInSndCardBuf = 500;
retVal = AECM_BAD_PARAMETER_WARNING;
}
msInSndCardBuf += 10;
aecm->msInSndCardBuf = msInSndCardBuf;
nFrames = nrOfSamples / FRAME_LEN;
nBlocks10ms = nFrames / aecm->aecmCore->mult;
if (aecm->ECstartup) {
if (nearendClean == NULL) {
if (out != nearendNoisy) {
memcpy(out, nearendNoisy, sizeof(short) * nrOfSamples);
}
} else if (out != nearendClean) {
memcpy(out, nearendClean, sizeof(short) * nrOfSamples);
}
nmbrOfFilledBuffers =
(short)WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// The AECM is in the start up mode
// AECM is disabled until the soundcard buffer and farend buffers are OK
// Mechanism to ensure that the soundcard buffer is reasonably stable.
if (aecm->checkBuffSize) {
aecm->checkBufSizeCtr++;
// Before we fill up the far end buffer we require the amount of data on
// the sound card to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 4 consecutive frames. If it
// seems to be stable then we start to fill up the far end buffer.
if (aecm->counter == 0) {
aecm->firstVal = aecm->msInSndCardBuf;
aecm->sum = 0;
}
if (abs(aecm->firstVal - aecm->msInSndCardBuf) <
WEBRTC_SPL_MAX(0.2 * aecm->msInSndCardBuf, kSampMsNb)) {
aecm->sum += aecm->msInSndCardBuf;
aecm->counter++;
} else {
aecm->counter = 0;
}
if (aecm->counter * nBlocks10ms >= 6) {
// The farend buffer size is determined in blocks of 80 samples
// Use 75% of the average value of the soundcard buffer
aecm->bufSizeStart = WEBRTC_SPL_MIN(
(3 * aecm->sum * aecm->aecmCore->mult) / (aecm->counter * 40),
BUF_SIZE_FRAMES);
// buffersize has now been determined
aecm->checkBuffSize = 0;
}
if (aecm->checkBufSizeCtr * nBlocks10ms > 50) {
// for really bad sound cards, don't disable echocanceller for more than
// 0.5 sec
aecm->bufSizeStart = WEBRTC_SPL_MIN(
(3 * aecm->msInSndCardBuf * aecm->aecmCore->mult) / 40,
BUF_SIZE_FRAMES);
aecm->checkBuffSize = 0;
}
}
// if checkBuffSize changed in the if-statement above
if (!aecm->checkBuffSize) {
// soundcard buffer is now reasonably stable
// When the far end buffer is filled with approximately the same amount of
// data as the amount on the sound card we end the start up phase and
// start to cancel echoes.
if (nmbrOfFilledBuffers == aecm->bufSizeStart) {
aecm->ECstartup = 0; // Enable the AECM
} else if (nmbrOfFilledBuffers > aecm->bufSizeStart) {
WebRtc_MoveReadPtr(aecm->farendBuf,
(int)WebRtc_available_read(aecm->farendBuf) -
(int)aecm->bufSizeStart * FRAME_LEN);
aecm->ECstartup = 0;
}
}
} else {
// AECM is enabled
// Note only 1 block supported for nb and 2 blocks for wb
for (i = 0; i < nFrames; i++) {
int16_t farend[FRAME_LEN];
const int16_t* farend_ptr = NULL;
nmbrOfFilledBuffers =
(short)WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// Check that there is data in the far end buffer
if (nmbrOfFilledBuffers > 0) {
// Get the next 80 samples from the farend buffer
WebRtc_ReadBuffer(aecm->farendBuf, (void**)&farend_ptr, farend,
FRAME_LEN);
// Always store the last frame for use when we run out of data
memcpy(&(aecm->farendOld[i][0]), farend_ptr, FRAME_LEN * sizeof(short));
} else {
// We have no data so we use the last played frame
memcpy(farend, &(aecm->farendOld[i][0]), FRAME_LEN * sizeof(short));
farend_ptr = farend;
}
// Call buffer delay estimator when all data is extracted,
// i,e. i = 0 for NB and i = 1 for WB
if ((i == 0 && aecm->sampFreq == 8000) ||
(i == 1 && aecm->sampFreq == 16000)) {
WebRtcAecm_EstBufDelay(aecm, aecm->msInSndCardBuf);
}
// Call the AECM
/*WebRtcAecm_ProcessFrame(aecm->aecmCore, farend, &nearend[FRAME_LEN * i],
&out[FRAME_LEN * i], aecm->knownDelay);*/
if (WebRtcAecm_ProcessFrame(
aecm->aecmCore, farend_ptr, &nearendNoisy[FRAME_LEN * i],
(nearendClean ? &nearendClean[FRAME_LEN * i] : NULL),
&out[FRAME_LEN * i]) == -1)
return -1;
}
}
#ifdef AEC_DEBUG
msInAECBuf = (short)WebRtc_available_read(aecm->farendBuf) /
(kSampMsNb * aecm->aecmCore->mult);
fwrite(&msInAECBuf, 2, 1, aecm->bufFile);
fwrite(&(aecm->knownDelay), sizeof(aecm->knownDelay), 1, aecm->delayFile);
#endif
return retVal;
}
int32_t WebRtcAecm_set_config(void* aecmInst, AecmConfig config) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
if (aecm == NULL) {
return -1;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
if (config.cngMode != AecmFalse && config.cngMode != AecmTrue) {
return AECM_BAD_PARAMETER_ERROR;
}
aecm->aecmCore->cngMode = config.cngMode;
if (config.echoMode < 0 || config.echoMode > 4) {
return AECM_BAD_PARAMETER_ERROR;
}
aecm->echoMode = config.echoMode;
if (aecm->echoMode == 0) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 3;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 3;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 3;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 3;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A >> 3) - (SUPGAIN_ERROR_PARAM_B >> 3);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B >> 3) - (SUPGAIN_ERROR_PARAM_D >> 3);
} else if (aecm->echoMode == 1) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 2;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 2;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 2;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 2;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A >> 2) - (SUPGAIN_ERROR_PARAM_B >> 2);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B >> 2) - (SUPGAIN_ERROR_PARAM_D >> 2);
} else if (aecm->echoMode == 2) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 1;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 1;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 1;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 1;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A >> 1) - (SUPGAIN_ERROR_PARAM_B >> 1);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B >> 1) - (SUPGAIN_ERROR_PARAM_D >> 1);
} else if (aecm->echoMode == 3) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
aecm->aecmCore->supGainErrParamDiffAB =
SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
aecm->aecmCore->supGainErrParamDiffBD =
SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
} else if (aecm->echoMode == 4) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT << 1;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT << 1;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A << 1;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D << 1;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A << 1) - (SUPGAIN_ERROR_PARAM_B << 1);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B << 1) - (SUPGAIN_ERROR_PARAM_D << 1);
}
return 0;
}
int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
const int16_t* echo_path_ptr = static_cast<const int16_t*>(echo_path);
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes()) {
// Input channel size does not match the size of AECM
return AECM_BAD_PARAMETER_ERROR;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
WebRtcAecm_InitEchoPathCore(aecm->aecmCore, echo_path_ptr);
return 0;
}
int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
int16_t* echo_path_ptr = static_cast<int16_t*>(echo_path);
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes()) {
// Input channel size does not match the size of AECM
return AECM_BAD_PARAMETER_ERROR;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
memcpy(echo_path_ptr, aecm->aecmCore->channelStored, size_bytes);
return 0;
}
size_t WebRtcAecm_echo_path_size_bytes() {
return (PART_LEN1 * sizeof(int16_t));
}
static int WebRtcAecm_EstBufDelay(AecMobile* aecm, short msInSndCardBuf) {
short delayNew, nSampSndCard;
short nSampFar = (short)WebRtc_available_read(aecm->farendBuf);
short diff;
nSampSndCard = msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
if (delayNew < FRAME_LEN) {
WebRtc_MoveReadPtr(aecm->farendBuf, FRAME_LEN);
delayNew += FRAME_LEN;
}
aecm->filtDelay =
WEBRTC_SPL_MAX(0, (8 * aecm->filtDelay + 2 * delayNew) / 10);
diff = aecm->filtDelay - aecm->knownDelay;
if (diff > 224) {
if (aecm->lastDelayDiff < 96) {
aecm->timeForDelayChange = 0;
} else {
aecm->timeForDelayChange++;
}
} else if (diff < 96 && aecm->knownDelay > 0) {
if (aecm->lastDelayDiff > 224) {
aecm->timeForDelayChange = 0;
} else {
aecm->timeForDelayChange++;
}
} else {
aecm->timeForDelayChange = 0;
}
aecm->lastDelayDiff = diff;
if (aecm->timeForDelayChange > 25) {
aecm->knownDelay = WEBRTC_SPL_MAX((int)aecm->filtDelay - 160, 0);
}
return 0;
}
static int WebRtcAecm_DelayComp(AecMobile* aecm) {
int nSampFar = (int)WebRtc_available_read(aecm->farendBuf);
int nSampSndCard, delayNew, nSampAdd;
const int maxStuffSamp = 10 * FRAME_LEN;
nSampSndCard = aecm->msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
if (delayNew > FAR_BUF_LEN - FRAME_LEN * aecm->aecmCore->mult) {
// The difference of the buffer sizes is larger than the maximum
// allowed known delay. Compensate by stuffing the buffer.
nSampAdd =
(int)(WEBRTC_SPL_MAX(((nSampSndCard >> 1) - nSampFar), FRAME_LEN));
nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
WebRtc_MoveReadPtr(aecm->farendBuf, -nSampAdd);
aecm->delayChange = 1; // the delay needs to be updated
}
return 0;
}
} // namespace webrtc

View File

@ -8,31 +8,29 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_
#ifndef MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_
#define MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_
#include <stdlib.h>
#include <stddef.h>
#include <stdint.h>
#include "webrtc/typedefs.h"
namespace webrtc {
enum {
AecmFalse = 0,
AecmTrue
};
enum { AecmFalse = 0, AecmTrue };
// Errors
#define AECM_UNSPECIFIED_ERROR 12000
#define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
#define AECM_UNINITIALIZED_ERROR 12002
#define AECM_NULL_POINTER_ERROR 12003
#define AECM_BAD_PARAMETER_ERROR 12004
#define AECM_UNSPECIFIED_ERROR 12000
#define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
#define AECM_UNINITIALIZED_ERROR 12002
#define AECM_NULL_POINTER_ERROR 12003
#define AECM_BAD_PARAMETER_ERROR 12004
// Warnings
#define AECM_BAD_PARAMETER_WARNING 12100
#define AECM_BAD_PARAMETER_WARNING 12100
typedef struct {
int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
int16_t echoMode; // 0, 1, 2, 3 (default), 4
int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
int16_t echoMode; // 0, 1, 2, 3 (default), 4
} AecmConfig;
#ifdef __cplusplus
@ -66,7 +64,7 @@ void WebRtcAecm_Free(void* aecmInst);
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* -1: error
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_Init(void* aecmInst, int32_t sampFreq);
@ -83,12 +81,31 @@ int32_t WebRtcAecm_Init(void* aecmInst, int32_t sampFreq);
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* -1: error
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_BufferFarend(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples);
/*
* Reports any errors that would arise when buffering a farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* int16_t* farend In buffer containing one frame of
* farend signal
* int16_t nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_GetBufferFarendError(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples);
/*
* Runs the AECM on an 80 or 160 sample blocks of data.
*
@ -112,7 +129,7 @@ int32_t WebRtcAecm_BufferFarend(void* aecmInst,
* -------------------------------------------------------------------
* int16_t* out Out buffer, one frame of processed nearend
* int32_t return 0: OK
* -1: error
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_Process(void* aecmInst,
const int16_t* nearendNoisy,
@ -133,26 +150,10 @@ int32_t WebRtcAecm_Process(void* aecmInst,
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* -1: error
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_set_config(void* aecmInst, AecmConfig config);
/*
* This function enables the user to set certain parameters on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecmConfig* config Pointer to the config instance that
* all properties will be written to
* int32_t return 0: OK
* -1: error
*/
int32_t WebRtcAecm_get_config(void *aecmInst, AecmConfig *config);
/*
* This function enables the user to set the echo path on-the-fly.
*
@ -165,7 +166,7 @@ int32_t WebRtcAecm_get_config(void *aecmInst, AecmConfig *config);
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* -1: error
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
@ -184,7 +185,7 @@ int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* -1: error
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
@ -199,20 +200,10 @@ int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
*/
size_t WebRtcAecm_echo_path_size_bytes();
/*
* Gets the last error code.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 11000-11100: error code
*/
int32_t WebRtcAecm_get_error_code(void *aecmInst);
#ifdef __cplusplus
}
#endif
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AECM_INCLUDE_ECHO_CONTROL_MOBILE_H_
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_