Update to current webrtc library

This is from the upstream library commit id
3326535126e435f1ba647885ce43a8f0f3d317eb, corresponding to Chromium
88.0.4290.1.
This commit is contained in:
Arun Raghavan
2020-10-12 18:08:02 -04:00
parent b1b02581d3
commit bcec8b0b21
859 changed files with 76187 additions and 49580 deletions

View File

@ -8,446 +8,364 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "modules/audio_processing/audio_buffer.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/common_audio/channel_buffer.h"
#include "webrtc/modules/audio_processing/common.h"
#include <string.h>
#include <cstdint>
#include "common_audio/channel_buffer.h"
#include "common_audio/include/audio_util.h"
#include "common_audio/resampler/push_sinc_resampler.h"
#include "modules/audio_processing/splitting_filter.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
const size_t kSamplesPer16kHzChannel = 160;
const size_t kSamplesPer32kHzChannel = 320;
const size_t kSamplesPer48kHzChannel = 480;
constexpr size_t kSamplesPer32kHzChannel = 320;
constexpr size_t kSamplesPer48kHzChannel = 480;
constexpr size_t kMaxSamplesPerChannel = AudioBuffer::kMaxSampleRate / 100;
int KeyboardChannelIndex(const StreamConfig& stream_config) {
if (!stream_config.has_keyboard()) {
assert(false);
return -1;
size_t NumBandsFromFramesPerChannel(size_t num_frames) {
if (num_frames == kSamplesPer32kHzChannel) {
return 2;
}
return stream_config.num_channels();
}
size_t NumBandsFromSamplesPerChannel(size_t num_frames) {
size_t num_bands = 1;
if (num_frames == kSamplesPer32kHzChannel ||
num_frames == kSamplesPer48kHzChannel) {
num_bands = rtc::CheckedDivExact(num_frames, kSamplesPer16kHzChannel);
if (num_frames == kSamplesPer48kHzChannel) {
return 3;
}
return num_bands;
return 1;
}
} // namespace
AudioBuffer::AudioBuffer(size_t input_rate,
size_t input_num_channels,
size_t buffer_rate,
size_t buffer_num_channels,
size_t output_rate,
size_t output_num_channels)
: AudioBuffer(static_cast<int>(input_rate) / 100,
input_num_channels,
static_cast<int>(buffer_rate) / 100,
buffer_num_channels,
static_cast<int>(output_rate) / 100) {}
AudioBuffer::AudioBuffer(size_t input_num_frames,
int num_input_channels,
size_t process_num_frames,
int num_process_channels,
size_t input_num_channels,
size_t buffer_num_frames,
size_t buffer_num_channels,
size_t output_num_frames)
: input_num_frames_(input_num_frames),
num_input_channels_(num_input_channels),
proc_num_frames_(process_num_frames),
num_proc_channels_(num_process_channels),
output_num_frames_(output_num_frames),
num_channels_(num_process_channels),
num_bands_(NumBandsFromSamplesPerChannel(proc_num_frames_)),
num_split_frames_(rtc::CheckedDivExact(proc_num_frames_, num_bands_)),
mixed_low_pass_valid_(false),
reference_copied_(false),
activity_(AudioFrame::kVadUnknown),
keyboard_data_(NULL),
data_(new IFChannelBuffer(proc_num_frames_, num_proc_channels_)) {
assert(input_num_frames_ > 0);
assert(proc_num_frames_ > 0);
assert(output_num_frames_ > 0);
assert(num_input_channels_ > 0);
assert(num_proc_channels_ > 0 && num_proc_channels_ <= num_input_channels_);
: input_num_frames_(input_num_frames),
input_num_channels_(input_num_channels),
buffer_num_frames_(buffer_num_frames),
buffer_num_channels_(buffer_num_channels),
output_num_frames_(output_num_frames),
output_num_channels_(0),
num_channels_(buffer_num_channels),
num_bands_(NumBandsFromFramesPerChannel(buffer_num_frames_)),
num_split_frames_(rtc::CheckedDivExact(buffer_num_frames_, num_bands_)),
data_(
new ChannelBuffer<float>(buffer_num_frames_, buffer_num_channels_)) {
RTC_DCHECK_GT(input_num_frames_, 0);
RTC_DCHECK_GT(buffer_num_frames_, 0);
RTC_DCHECK_GT(output_num_frames_, 0);
RTC_DCHECK_GT(input_num_channels_, 0);
RTC_DCHECK_GT(buffer_num_channels_, 0);
RTC_DCHECK_LE(buffer_num_channels_, input_num_channels_);
if (input_num_frames_ != proc_num_frames_ ||
output_num_frames_ != proc_num_frames_) {
// Create an intermediate buffer for resampling.
process_buffer_.reset(new ChannelBuffer<float>(proc_num_frames_,
num_proc_channels_));
if (input_num_frames_ != proc_num_frames_) {
for (int i = 0; i < num_proc_channels_; ++i) {
input_resamplers_.push_back(
new PushSincResampler(input_num_frames_,
proc_num_frames_));
}
const bool input_resampling_needed = input_num_frames_ != buffer_num_frames_;
const bool output_resampling_needed =
output_num_frames_ != buffer_num_frames_;
if (input_resampling_needed) {
for (size_t i = 0; i < buffer_num_channels_; ++i) {
input_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(input_num_frames_, buffer_num_frames_)));
}
}
if (output_num_frames_ != proc_num_frames_) {
for (int i = 0; i < num_proc_channels_; ++i) {
output_resamplers_.push_back(
new PushSincResampler(proc_num_frames_,
output_num_frames_));
}
if (output_resampling_needed) {
for (size_t i = 0; i < buffer_num_channels_; ++i) {
output_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(buffer_num_frames_, output_num_frames_)));
}
}
if (num_bands_ > 1) {
split_data_.reset(new IFChannelBuffer(proc_num_frames_,
num_proc_channels_,
num_bands_));
splitting_filter_.reset(new SplittingFilter(num_proc_channels_,
num_bands_,
proc_num_frames_));
split_data_.reset(new ChannelBuffer<float>(
buffer_num_frames_, buffer_num_channels_, num_bands_));
splitting_filter_.reset(new SplittingFilter(
buffer_num_channels_, num_bands_, buffer_num_frames_));
}
}
AudioBuffer::~AudioBuffer() {}
void AudioBuffer::CopyFrom(const float* const* data,
void AudioBuffer::set_downmixing_to_specific_channel(size_t channel) {
downmix_by_averaging_ = false;
RTC_DCHECK_GT(input_num_channels_, channel);
channel_for_downmixing_ = std::min(channel, input_num_channels_ - 1);
}
void AudioBuffer::set_downmixing_by_averaging() {
downmix_by_averaging_ = true;
}
void AudioBuffer::CopyFrom(const float* const* stacked_data,
const StreamConfig& stream_config) {
assert(stream_config.num_frames() == input_num_frames_);
assert(stream_config.num_channels() == num_input_channels_);
InitForNewData();
// Initialized lazily because there's a different condition in
// DeinterleaveFrom.
const bool need_to_downmix =
num_input_channels_ > 1 && num_proc_channels_ == 1;
if (need_to_downmix && !input_buffer_) {
input_buffer_.reset(
new IFChannelBuffer(input_num_frames_, num_proc_channels_));
}
RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_);
RTC_DCHECK_EQ(stream_config.num_channels(), input_num_channels_);
RestoreNumChannels();
const bool downmix_needed = input_num_channels_ > 1 && num_channels_ == 1;
if (stream_config.has_keyboard()) {
keyboard_data_ = data[KeyboardChannelIndex(stream_config)];
}
const bool resampling_needed = input_num_frames_ != buffer_num_frames_;
// Downmix.
const float* const* data_ptr = data;
if (need_to_downmix) {
DownmixToMono<float, float>(data, input_num_frames_, num_input_channels_,
input_buffer_->fbuf()->channels()[0]);
data_ptr = input_buffer_->fbuf_const()->channels();
}
if (downmix_needed) {
RTC_DCHECK_GE(kMaxSamplesPerChannel, input_num_frames_);
// Resample.
if (input_num_frames_ != proc_num_frames_) {
for (int i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(data_ptr[i],
input_num_frames_,
process_buffer_->channels()[i],
proc_num_frames_);
std::array<float, kMaxSamplesPerChannel> downmix;
if (downmix_by_averaging_) {
const float kOneByNumChannels = 1.f / input_num_channels_;
for (size_t i = 0; i < input_num_frames_; ++i) {
float value = stacked_data[0][i];
for (size_t j = 1; j < input_num_channels_; ++j) {
value += stacked_data[j][i];
}
downmix[i] = value * kOneByNumChannels;
}
}
data_ptr = process_buffer_->channels();
}
const float* downmixed_data = downmix_by_averaging_
? downmix.data()
: stacked_data[channel_for_downmixing_];
// Convert to the S16 range.
for (int i = 0; i < num_proc_channels_; ++i) {
FloatToFloatS16(data_ptr[i],
proc_num_frames_,
data_->fbuf()->channels()[i]);
if (resampling_needed) {
input_resamplers_[0]->Resample(downmixed_data, input_num_frames_,
data_->channels()[0], buffer_num_frames_);
}
const float* data_to_convert =
resampling_needed ? data_->channels()[0] : downmixed_data;
FloatToFloatS16(data_to_convert, buffer_num_frames_, data_->channels()[0]);
} else {
if (resampling_needed) {
for (size_t i = 0; i < num_channels_; ++i) {
input_resamplers_[i]->Resample(stacked_data[i], input_num_frames_,
data_->channels()[i],
buffer_num_frames_);
FloatToFloatS16(data_->channels()[i], buffer_num_frames_,
data_->channels()[i]);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
FloatToFloatS16(stacked_data[i], buffer_num_frames_,
data_->channels()[i]);
}
}
}
}
void AudioBuffer::CopyTo(const StreamConfig& stream_config,
float* const* data) {
assert(stream_config.num_frames() == output_num_frames_);
assert(stream_config.num_channels() == num_channels_);
float* const* stacked_data) {
RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_);
// Convert to the float range.
float* const* data_ptr = data;
if (output_num_frames_ != proc_num_frames_) {
// Convert to an intermediate buffer for subsequent resampling.
data_ptr = process_buffer_->channels();
}
for (int i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(data_->fbuf()->channels()[i],
proc_num_frames_,
data_ptr[i]);
}
// Resample.
if (output_num_frames_ != proc_num_frames_) {
for (int i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(data_ptr[i],
proc_num_frames_,
data[i],
output_num_frames_);
const bool resampling_needed = output_num_frames_ != buffer_num_frames_;
if (resampling_needed) {
for (size_t i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(data_->channels()[i], buffer_num_frames_,
data_->channels()[i]);
output_resamplers_[i]->Resample(data_->channels()[i], buffer_num_frames_,
stacked_data[i], output_num_frames_);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(data_->channels()[i], buffer_num_frames_,
stacked_data[i]);
}
}
}
void AudioBuffer::InitForNewData() {
keyboard_data_ = NULL;
mixed_low_pass_valid_ = false;
reference_copied_ = false;
activity_ = AudioFrame::kVadUnknown;
num_channels_ = num_proc_channels_;
}
const int16_t* const* AudioBuffer::channels_const() const {
return data_->ibuf_const()->channels();
}
int16_t* const* AudioBuffer::channels() {
mixed_low_pass_valid_ = false;
return data_->ibuf()->channels();
}
const int16_t* const* AudioBuffer::split_bands_const(int channel) const {
return split_data_.get() ?
split_data_->ibuf_const()->bands(channel) :
data_->ibuf_const()->bands(channel);
}
int16_t* const* AudioBuffer::split_bands(int channel) {
mixed_low_pass_valid_ = false;
return split_data_.get() ?
split_data_->ibuf()->bands(channel) :
data_->ibuf()->bands(channel);
}
const int16_t* const* AudioBuffer::split_channels_const(Band band) const {
if (split_data_.get()) {
return split_data_->ibuf_const()->channels(band);
} else {
return band == kBand0To8kHz ? data_->ibuf_const()->channels() : nullptr;
for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) {
memcpy(stacked_data[i], stacked_data[0],
output_num_frames_ * sizeof(**stacked_data));
}
}
int16_t* const* AudioBuffer::split_channels(Band band) {
mixed_low_pass_valid_ = false;
if (split_data_.get()) {
return split_data_->ibuf()->channels(band);
} else {
return band == kBand0To8kHz ? data_->ibuf()->channels() : nullptr;
}
}
void AudioBuffer::CopyTo(AudioBuffer* buffer) const {
RTC_DCHECK_EQ(buffer->num_frames(), output_num_frames_);
ChannelBuffer<int16_t>* AudioBuffer::data() {
mixed_low_pass_valid_ = false;
return data_->ibuf();
}
const ChannelBuffer<int16_t>* AudioBuffer::data() const {
return data_->ibuf_const();
}
ChannelBuffer<int16_t>* AudioBuffer::split_data() {
mixed_low_pass_valid_ = false;
return split_data_.get() ? split_data_->ibuf() : data_->ibuf();
}
const ChannelBuffer<int16_t>* AudioBuffer::split_data() const {
return split_data_.get() ? split_data_->ibuf_const() : data_->ibuf_const();
}
const float* const* AudioBuffer::channels_const_f() const {
return data_->fbuf_const()->channels();
}
float* const* AudioBuffer::channels_f() {
mixed_low_pass_valid_ = false;
return data_->fbuf()->channels();
}
const float* const* AudioBuffer::split_bands_const_f(int channel) const {
return split_data_.get() ?
split_data_->fbuf_const()->bands(channel) :
data_->fbuf_const()->bands(channel);
}
float* const* AudioBuffer::split_bands_f(int channel) {
mixed_low_pass_valid_ = false;
return split_data_.get() ?
split_data_->fbuf()->bands(channel) :
data_->fbuf()->bands(channel);
}
const float* const* AudioBuffer::split_channels_const_f(Band band) const {
if (split_data_.get()) {
return split_data_->fbuf_const()->channels(band);
} else {
return band == kBand0To8kHz ? data_->fbuf_const()->channels() : nullptr;
}
}
float* const* AudioBuffer::split_channels_f(Band band) {
mixed_low_pass_valid_ = false;
if (split_data_.get()) {
return split_data_->fbuf()->channels(band);
} else {
return band == kBand0To8kHz ? data_->fbuf()->channels() : nullptr;
}
}
ChannelBuffer<float>* AudioBuffer::data_f() {
mixed_low_pass_valid_ = false;
return data_->fbuf();
}
const ChannelBuffer<float>* AudioBuffer::data_f() const {
return data_->fbuf_const();
}
ChannelBuffer<float>* AudioBuffer::split_data_f() {
mixed_low_pass_valid_ = false;
return split_data_.get() ? split_data_->fbuf() : data_->fbuf();
}
const ChannelBuffer<float>* AudioBuffer::split_data_f() const {
return split_data_.get() ? split_data_->fbuf_const() : data_->fbuf_const();
}
const int16_t* AudioBuffer::mixed_low_pass_data() {
if (num_proc_channels_ == 1) {
return split_bands_const(0)[kBand0To8kHz];
}
if (!mixed_low_pass_valid_) {
if (!mixed_low_pass_channels_.get()) {
mixed_low_pass_channels_.reset(
new ChannelBuffer<int16_t>(num_split_frames_, 1));
const bool resampling_needed = output_num_frames_ != buffer_num_frames_;
if (resampling_needed) {
for (size_t i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(data_->channels()[i], buffer_num_frames_,
buffer->channels()[i],
buffer->num_frames());
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
memcpy(buffer->channels()[i], data_->channels()[i],
buffer_num_frames_ * sizeof(**buffer->channels()));
}
DownmixToMono<int16_t, int32_t>(split_channels_const(kBand0To8kHz),
num_split_frames_, num_channels_,
mixed_low_pass_channels_->channels()[0]);
mixed_low_pass_valid_ = true;
}
return mixed_low_pass_channels_->channels()[0];
}
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
if (!reference_copied_) {
return NULL;
}
return low_pass_reference_channels_->channels()[channel];
for (size_t i = num_channels_; i < buffer->num_channels(); ++i) {
memcpy(buffer->channels()[i], buffer->channels()[0],
output_num_frames_ * sizeof(**buffer->channels()));
}
}
const float* AudioBuffer::keyboard_data() const {
return keyboard_data_;
void AudioBuffer::RestoreNumChannels() {
num_channels_ = buffer_num_channels_;
data_->set_num_channels(buffer_num_channels_);
if (split_data_.get()) {
split_data_->set_num_channels(buffer_num_channels_);
}
}
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
activity_ = activity;
}
AudioFrame::VADActivity AudioBuffer::activity() const {
return activity_;
}
int AudioBuffer::num_channels() const {
return num_channels_;
}
void AudioBuffer::set_num_channels(int num_channels) {
void AudioBuffer::set_num_channels(size_t num_channels) {
RTC_DCHECK_GE(buffer_num_channels_, num_channels);
num_channels_ = num_channels;
}
size_t AudioBuffer::num_frames() const {
return proc_num_frames_;
}
size_t AudioBuffer::num_frames_per_band() const {
return num_split_frames_;
}
size_t AudioBuffer::num_keyboard_frames() const {
// We don't resample the keyboard channel.
return input_num_frames_;
}
size_t AudioBuffer::num_bands() const {
return num_bands_;
data_->set_num_channels(num_channels);
if (split_data_.get()) {
split_data_->set_num_channels(num_channels);
}
}
// The resampler is only for supporting 48kHz to 16kHz in the reverse stream.
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
assert(frame->num_channels_ == num_input_channels_);
assert(frame->samples_per_channel_ == input_num_frames_);
InitForNewData();
// Initialized lazily because there's a different condition in CopyFrom.
if ((input_num_frames_ != proc_num_frames_) && !input_buffer_) {
input_buffer_.reset(
new IFChannelBuffer(input_num_frames_, num_proc_channels_));
}
activity_ = frame->vad_activity_;
void AudioBuffer::CopyFrom(const int16_t* const interleaved_data,
const StreamConfig& stream_config) {
RTC_DCHECK_EQ(stream_config.num_channels(), input_num_channels_);
RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_);
RestoreNumChannels();
int16_t* const* deinterleaved;
if (input_num_frames_ == proc_num_frames_) {
deinterleaved = data_->ibuf()->channels();
} else {
deinterleaved = input_buffer_->ibuf()->channels();
}
if (num_proc_channels_ == 1) {
// Downmix and deinterleave simultaneously.
DownmixInterleavedToMono(frame->data_, input_num_frames_,
num_input_channels_, deinterleaved[0]);
} else {
assert(num_proc_channels_ == num_input_channels_);
Deinterleave(frame->data_,
input_num_frames_,
num_proc_channels_,
deinterleaved);
}
const bool resampling_required = input_num_frames_ != buffer_num_frames_;
// Resample.
if (input_num_frames_ != proc_num_frames_) {
for (int i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(input_buffer_->fbuf_const()->channels()[i],
input_num_frames_,
data_->fbuf()->channels()[i],
proc_num_frames_);
const int16_t* interleaved = interleaved_data;
if (num_channels_ == 1) {
if (input_num_channels_ == 1) {
if (resampling_required) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
S16ToFloatS16(interleaved, input_num_frames_, float_buffer.data());
input_resamplers_[0]->Resample(float_buffer.data(), input_num_frames_,
data_->channels()[0],
buffer_num_frames_);
} else {
S16ToFloatS16(interleaved, input_num_frames_, data_->channels()[0]);
}
} else {
std::array<float, kMaxSamplesPerChannel> float_buffer;
float* downmixed_data =
resampling_required ? float_buffer.data() : data_->channels()[0];
if (downmix_by_averaging_) {
for (size_t j = 0, k = 0; j < input_num_frames_; ++j) {
int32_t sum = 0;
for (size_t i = 0; i < input_num_channels_; ++i, ++k) {
sum += interleaved[k];
}
downmixed_data[j] = sum / static_cast<int16_t>(input_num_channels_);
}
} else {
for (size_t j = 0, k = channel_for_downmixing_; j < input_num_frames_;
++j, k += input_num_channels_) {
downmixed_data[j] = interleaved[k];
}
}
if (resampling_required) {
input_resamplers_[0]->Resample(downmixed_data, input_num_frames_,
data_->channels()[0],
buffer_num_frames_);
}
}
} else {
auto deinterleave_channel = [](size_t channel, size_t num_channels,
size_t samples_per_channel, const int16_t* x,
float* y) {
for (size_t j = 0, k = channel; j < samples_per_channel;
++j, k += num_channels) {
y[j] = x[k];
}
};
if (resampling_required) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
for (size_t i = 0; i < num_channels_; ++i) {
deinterleave_channel(i, num_channels_, input_num_frames_, interleaved,
float_buffer.data());
input_resamplers_[i]->Resample(float_buffer.data(), input_num_frames_,
data_->channels()[i],
buffer_num_frames_);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
deinterleave_channel(i, num_channels_, input_num_frames_, interleaved,
data_->channels()[i]);
}
}
}
}
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) {
frame->vad_activity_ = activity_;
if (!data_changed) {
return;
}
void AudioBuffer::CopyTo(const StreamConfig& stream_config,
int16_t* const interleaved_data) {
const size_t config_num_channels = stream_config.num_channels();
assert(frame->num_channels_ == num_channels_ || num_channels_ == 1);
assert(frame->samples_per_channel_ == output_num_frames_);
RTC_DCHECK(config_num_channels == num_channels_ || num_channels_ == 1);
RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_);
// Resample if necessary.
IFChannelBuffer* data_ptr = data_.get();
if (proc_num_frames_ != output_num_frames_) {
if (!output_buffer_) {
output_buffer_.reset(
new IFChannelBuffer(output_num_frames_, num_channels_));
const bool resampling_required = buffer_num_frames_ != output_num_frames_;
int16_t* interleaved = interleaved_data;
if (num_channels_ == 1) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
if (resampling_required) {
output_resamplers_[0]->Resample(data_->channels()[0], buffer_num_frames_,
float_buffer.data(), output_num_frames_);
}
for (int i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(
data_->fbuf()->channels()[i], proc_num_frames_,
output_buffer_->fbuf()->channels()[i], output_num_frames_);
}
data_ptr = output_buffer_.get();
}
const float* deinterleaved =
resampling_required ? float_buffer.data() : data_->channels()[0];
if (frame->num_channels_ == num_channels_) {
Interleave(data_ptr->ibuf()->channels(), proc_num_frames_, num_channels_,
frame->data_);
if (config_num_channels == 1) {
for (size_t j = 0; j < output_num_frames_; ++j) {
interleaved[j] = FloatS16ToS16(deinterleaved[j]);
}
} else {
for (size_t i = 0, k = 0; i < output_num_frames_; ++i) {
float tmp = FloatS16ToS16(deinterleaved[i]);
for (size_t j = 0; j < config_num_channels; ++j, ++k) {
interleaved[k] = tmp;
}
}
}
} else {
UpmixMonoToInterleaved(data_ptr->ibuf()->channels()[0], proc_num_frames_,
frame->num_channels_, frame->data_);
}
}
auto interleave_channel = [](size_t channel, size_t num_channels,
size_t samples_per_channel, const float* x,
int16_t* y) {
for (size_t k = 0, j = channel; k < samples_per_channel;
++k, j += num_channels) {
y[j] = FloatS16ToS16(x[k]);
}
};
void AudioBuffer::CopyLowPassToReference() {
reference_copied_ = true;
if (!low_pass_reference_channels_.get() ||
low_pass_reference_channels_->num_channels() != num_channels_) {
low_pass_reference_channels_.reset(
new ChannelBuffer<int16_t>(num_split_frames_,
num_proc_channels_));
}
for (int i = 0; i < num_proc_channels_; i++) {
memcpy(low_pass_reference_channels_->channels()[i],
split_bands_const(i)[kBand0To8kHz],
low_pass_reference_channels_->num_frames_per_band() *
sizeof(split_bands_const(i)[kBand0To8kHz][0]));
if (resampling_required) {
for (size_t i = 0; i < num_channels_; ++i) {
std::array<float, kMaxSamplesPerChannel> float_buffer;
output_resamplers_[i]->Resample(data_->channels()[i],
buffer_num_frames_, float_buffer.data(),
output_num_frames_);
interleave_channel(i, config_num_channels, output_num_frames_,
float_buffer.data(), interleaved);
}
} else {
for (size_t i = 0; i < num_channels_; ++i) {
interleave_channel(i, config_num_channels, output_num_frames_,
data_->channels()[i], interleaved);
}
}
for (size_t i = num_channels_; i < config_num_channels; ++i) {
for (size_t j = 0, k = i, n = num_channels_; j < output_num_frames_;
++j, k += config_num_channels, n += config_num_channels) {
interleaved[k] = interleaved[n];
}
}
}
}
@ -459,4 +377,31 @@ void AudioBuffer::MergeFrequencyBands() {
splitting_filter_->Synthesis(split_data_.get(), data_.get());
}
void AudioBuffer::ExportSplitChannelData(
size_t channel,
int16_t* const* split_band_data) const {
for (size_t k = 0; k < num_bands(); ++k) {
const float* band_data = split_bands_const(channel)[k];
RTC_DCHECK(split_band_data[k]);
RTC_DCHECK(band_data);
for (size_t i = 0; i < num_frames_per_band(); ++i) {
split_band_data[k][i] = FloatS16ToS16(band_data[i]);
}
}
}
void AudioBuffer::ImportSplitChannelData(
size_t channel,
const int16_t* const* split_band_data) {
for (size_t k = 0; k < num_bands(); ++k) {
float* band_data = split_bands(channel)[k];
RTC_DCHECK(split_band_data[k]);
RTC_DCHECK(band_data);
for (size_t i = 0; i < num_frames_per_band(); ++i) {
band_data[i] = split_band_data[k][i];
}
}
}
} // namespace webrtc