Update to current webrtc library
This is from the upstream library commit id 3326535126e435f1ba647885ce43a8f0f3d317eb, corresponding to Chromium 88.0.4290.1.
This commit is contained in:
327
webrtc/rtc_base/time_utils.cc
Normal file
327
webrtc/rtc_base/time_utils.cc
Normal file
@ -0,0 +1,327 @@
|
||||
/*
|
||||
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(WEBRTC_POSIX)
|
||||
#include <sys/time.h>
|
||||
#if defined(WEBRTC_MAC)
|
||||
#include <mach/mach_time.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(WEBRTC_WIN)
|
||||
// clang-format off
|
||||
// clang formatting would put <windows.h> last,
|
||||
// which leads to compilation failure.
|
||||
#include <windows.h>
|
||||
#include <mmsystem.h>
|
||||
#include <sys/timeb.h>
|
||||
// clang-format on
|
||||
#endif
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/numerics/safe_conversions.h"
|
||||
#include "rtc_base/time_utils.h"
|
||||
|
||||
namespace rtc {
|
||||
|
||||
ClockInterface* g_clock = nullptr;
|
||||
|
||||
ClockInterface* SetClockForTesting(ClockInterface* clock) {
|
||||
ClockInterface* prev = g_clock;
|
||||
g_clock = clock;
|
||||
return prev;
|
||||
}
|
||||
|
||||
ClockInterface* GetClockForTesting() {
|
||||
return g_clock;
|
||||
}
|
||||
|
||||
#if defined(WINUWP)
|
||||
|
||||
namespace {
|
||||
|
||||
class TimeHelper final {
|
||||
public:
|
||||
TimeHelper(const TimeHelper&) = delete;
|
||||
|
||||
// Resets the clock based upon an NTP server. This routine must be called
|
||||
// prior to the main system start-up to ensure all clocks are based upon
|
||||
// an NTP server time if NTP synchronization is required. No critical
|
||||
// section is used thus this method must be called prior to any clock
|
||||
// routines being used.
|
||||
static void SyncWithNtp(int64_t ntp_server_time_ms) {
|
||||
auto& singleton = Singleton();
|
||||
TIME_ZONE_INFORMATION time_zone;
|
||||
GetTimeZoneInformation(&time_zone);
|
||||
int64_t time_zone_bias_ns =
|
||||
rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
|
||||
singleton.app_start_time_ns_ =
|
||||
(ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 -
|
||||
time_zone_bias_ns;
|
||||
singleton.UpdateReferenceTime();
|
||||
}
|
||||
|
||||
// Returns the number of nanoseconds that have passed since unix epoch.
|
||||
static int64_t TicksNs() {
|
||||
auto& singleton = Singleton();
|
||||
int64_t result = 0;
|
||||
LARGE_INTEGER qpcnt;
|
||||
QueryPerformanceCounter(&qpcnt);
|
||||
result = rtc::dchecked_cast<int64_t>(
|
||||
(rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
|
||||
rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) *
|
||||
10000);
|
||||
result = singleton.app_start_time_ns_ + result -
|
||||
singleton.time_since_os_start_ns_;
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
TimeHelper() {
|
||||
TIME_ZONE_INFORMATION time_zone;
|
||||
GetTimeZoneInformation(&time_zone);
|
||||
int64_t time_zone_bias_ns =
|
||||
rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
|
||||
FILETIME ft;
|
||||
// This will give us system file in UTC format.
|
||||
GetSystemTimeAsFileTime(&ft);
|
||||
LARGE_INTEGER li;
|
||||
li.HighPart = ft.dwHighDateTime;
|
||||
li.LowPart = ft.dwLowDateTime;
|
||||
|
||||
app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 -
|
||||
time_zone_bias_ns;
|
||||
|
||||
UpdateReferenceTime();
|
||||
}
|
||||
|
||||
static TimeHelper& Singleton() {
|
||||
static TimeHelper singleton;
|
||||
return singleton;
|
||||
}
|
||||
|
||||
void UpdateReferenceTime() {
|
||||
LARGE_INTEGER qpfreq;
|
||||
QueryPerformanceFrequency(&qpfreq);
|
||||
os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart);
|
||||
|
||||
LARGE_INTEGER qpcnt;
|
||||
QueryPerformanceCounter(&qpcnt);
|
||||
time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>(
|
||||
(rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
|
||||
rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) *
|
||||
10000);
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr uint64_t kFileTimeToUnixTimeEpochOffset =
|
||||
116444736000000000ULL;
|
||||
static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L;
|
||||
|
||||
// The number of nanoseconds since unix system epoch
|
||||
int64_t app_start_time_ns_;
|
||||
// The number of nanoseconds since the OS started
|
||||
int64_t time_since_os_start_ns_;
|
||||
// The OS calculated ticks per second
|
||||
int64_t os_ticks_per_second_;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void SyncWithNtp(int64_t time_from_ntp_server_ms) {
|
||||
TimeHelper::SyncWithNtp(time_from_ntp_server_ms);
|
||||
}
|
||||
|
||||
#endif // defined(WINUWP)
|
||||
|
||||
int64_t SystemTimeNanos() {
|
||||
int64_t ticks;
|
||||
#if defined(WEBRTC_MAC)
|
||||
static mach_timebase_info_data_t timebase;
|
||||
if (timebase.denom == 0) {
|
||||
// Get the timebase if this is the first time we run.
|
||||
// Recommended by Apple's QA1398.
|
||||
if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
|
||||
RTC_NOTREACHED();
|
||||
}
|
||||
}
|
||||
// Use timebase to convert absolute time tick units into nanoseconds.
|
||||
const auto mul = [](uint64_t a, uint32_t b) -> int64_t {
|
||||
RTC_DCHECK_NE(b, 0);
|
||||
RTC_DCHECK_LE(a, std::numeric_limits<int64_t>::max() / b)
|
||||
<< "The multiplication " << a << " * " << b << " overflows";
|
||||
return rtc::dchecked_cast<int64_t>(a * b);
|
||||
};
|
||||
ticks = mul(mach_absolute_time(), timebase.numer) / timebase.denom;
|
||||
#elif defined(WEBRTC_POSIX)
|
||||
struct timespec ts;
|
||||
// TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not
|
||||
// supported?
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||
ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
|
||||
static_cast<int64_t>(ts.tv_nsec);
|
||||
#elif defined(WINUWP)
|
||||
ticks = TimeHelper::TicksNs();
|
||||
#elif defined(WEBRTC_WIN)
|
||||
static volatile LONG last_timegettime = 0;
|
||||
static volatile int64_t num_wrap_timegettime = 0;
|
||||
volatile LONG* last_timegettime_ptr = &last_timegettime;
|
||||
DWORD now = timeGetTime();
|
||||
// Atomically update the last gotten time
|
||||
DWORD old = InterlockedExchange(last_timegettime_ptr, now);
|
||||
if (now < old) {
|
||||
// If now is earlier than old, there may have been a race between threads.
|
||||
// 0x0fffffff ~3.1 days, the code will not take that long to execute
|
||||
// so it must have been a wrap around.
|
||||
if (old > 0xf0000000 && now < 0x0fffffff) {
|
||||
num_wrap_timegettime++;
|
||||
}
|
||||
}
|
||||
ticks = now + (num_wrap_timegettime << 32);
|
||||
// TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're
|
||||
// just wasting a multiply and divide when doing Time() on Windows.
|
||||
ticks = ticks * kNumNanosecsPerMillisec;
|
||||
#else
|
||||
#error Unsupported platform.
|
||||
#endif
|
||||
return ticks;
|
||||
}
|
||||
|
||||
int64_t SystemTimeMillis() {
|
||||
return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec);
|
||||
}
|
||||
|
||||
int64_t TimeNanos() {
|
||||
if (g_clock) {
|
||||
return g_clock->TimeNanos();
|
||||
}
|
||||
return SystemTimeNanos();
|
||||
}
|
||||
|
||||
uint32_t Time32() {
|
||||
return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
|
||||
}
|
||||
|
||||
int64_t TimeMillis() {
|
||||
return TimeNanos() / kNumNanosecsPerMillisec;
|
||||
}
|
||||
|
||||
int64_t TimeMicros() {
|
||||
return TimeNanos() / kNumNanosecsPerMicrosec;
|
||||
}
|
||||
|
||||
int64_t TimeAfter(int64_t elapsed) {
|
||||
RTC_DCHECK_GE(elapsed, 0);
|
||||
return TimeMillis() + elapsed;
|
||||
}
|
||||
|
||||
int32_t TimeDiff32(uint32_t later, uint32_t earlier) {
|
||||
return later - earlier;
|
||||
}
|
||||
|
||||
int64_t TimeDiff(int64_t later, int64_t earlier) {
|
||||
return later - earlier;
|
||||
}
|
||||
|
||||
TimestampWrapAroundHandler::TimestampWrapAroundHandler()
|
||||
: last_ts_(0), num_wrap_(-1) {}
|
||||
|
||||
int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
|
||||
if (num_wrap_ == -1) {
|
||||
last_ts_ = ts;
|
||||
num_wrap_ = 0;
|
||||
return ts;
|
||||
}
|
||||
|
||||
if (ts < last_ts_) {
|
||||
if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff)
|
||||
++num_wrap_;
|
||||
} else if ((ts - last_ts_) > 0xf0000000) {
|
||||
// Backwards wrap. Unwrap with last wrap count and don't update last_ts_.
|
||||
return ts + (num_wrap_ - 1) * (int64_t{1} << 32);
|
||||
}
|
||||
|
||||
last_ts_ = ts;
|
||||
return ts + (num_wrap_ << 32);
|
||||
}
|
||||
|
||||
int64_t TmToSeconds(const tm& tm) {
|
||||
static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
||||
static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151,
|
||||
181, 212, 243, 273, 304, 334};
|
||||
int year = tm.tm_year + 1900;
|
||||
int month = tm.tm_mon;
|
||||
int day = tm.tm_mday - 1; // Make 0-based like the rest.
|
||||
int hour = tm.tm_hour;
|
||||
int min = tm.tm_min;
|
||||
int sec = tm.tm_sec;
|
||||
|
||||
bool expiry_in_leap_year =
|
||||
(year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
|
||||
|
||||
if (year < 1970)
|
||||
return -1;
|
||||
if (month < 0 || month > 11)
|
||||
return -1;
|
||||
if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
|
||||
return -1;
|
||||
if (hour < 0 || hour > 23)
|
||||
return -1;
|
||||
if (min < 0 || min > 59)
|
||||
return -1;
|
||||
if (sec < 0 || sec > 59)
|
||||
return -1;
|
||||
|
||||
day += cumul_mdays[month];
|
||||
|
||||
// Add number of leap days between 1970 and the expiration year, inclusive.
|
||||
day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
|
||||
(year / 400 - 1970 / 400));
|
||||
|
||||
// We will have added one day too much above if expiration is during a leap
|
||||
// year, and expiration is in January or February.
|
||||
if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
|
||||
day -= 1;
|
||||
|
||||
// Combine all variables into seconds from 1970-01-01 00:00 (except |month|
|
||||
// which was accumulated into |day| above).
|
||||
return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 +
|
||||
min) *
|
||||
60 +
|
||||
sec;
|
||||
}
|
||||
|
||||
int64_t TimeUTCMicros() {
|
||||
if (g_clock) {
|
||||
return g_clock->TimeNanos() / kNumNanosecsPerMicrosec;
|
||||
}
|
||||
#if defined(WEBRTC_POSIX)
|
||||
struct timeval time;
|
||||
gettimeofday(&time, nullptr);
|
||||
// Convert from second (1.0) and microsecond (1e-6).
|
||||
return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec +
|
||||
time.tv_usec);
|
||||
|
||||
#elif defined(WEBRTC_WIN)
|
||||
struct _timeb time;
|
||||
_ftime(&time);
|
||||
// Convert from second (1.0) and milliseconds (1e-3).
|
||||
return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec +
|
||||
static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec);
|
||||
#endif
|
||||
}
|
||||
|
||||
int64_t TimeUTCMillis() {
|
||||
return TimeUTCMicros() / kNumMicrosecsPerMillisec;
|
||||
}
|
||||
|
||||
} // namespace rtc
|
Reference in New Issue
Block a user