Update common_audio
Corresponds to upstream commit 524e9b043e7e86fd72353b987c9d5f6a1ebf83e1 Update notes: * Moved src/ to webrtc/ to easily diff against the third_party/webrtc in the chromium tree * ARM/NEON/MIPS support is not yet hooked up * Tests have not been copied
This commit is contained in:
50
webrtc/common_audio/vad/include/vad.h
Normal file
50
webrtc/common_audio/vad/include/vad.h
Normal file
@ -0,0 +1,50 @@
|
||||
/*
|
||||
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef WEBRTC_COMMON_AUDIO_VAD_INCLUDE_VAD_H_
|
||||
#define WEBRTC_COMMON_AUDIO_VAD_INCLUDE_VAD_H_
|
||||
|
||||
#include "webrtc/base/checks.h"
|
||||
#include "webrtc/base/scoped_ptr.h"
|
||||
#include "webrtc/common_audio/vad/include/webrtc_vad.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
class Vad {
|
||||
public:
|
||||
enum Aggressiveness {
|
||||
kVadNormal = 0,
|
||||
kVadLowBitrate = 1,
|
||||
kVadAggressive = 2,
|
||||
kVadVeryAggressive = 3
|
||||
};
|
||||
|
||||
enum Activity { kPassive = 0, kActive = 1, kError = -1 };
|
||||
|
||||
virtual ~Vad() = default;
|
||||
|
||||
// Calculates a VAD decision for the given audio frame. Valid sample rates
|
||||
// are 8000, 16000, and 32000 Hz; the number of samples must be such that the
|
||||
// frame is 10, 20, or 30 ms long.
|
||||
virtual Activity VoiceActivity(const int16_t* audio,
|
||||
size_t num_samples,
|
||||
int sample_rate_hz) = 0;
|
||||
|
||||
// Resets VAD state.
|
||||
virtual void Reset() = 0;
|
||||
};
|
||||
|
||||
// Returns a Vad instance that's implemented on top of WebRtcVad.
|
||||
rtc::scoped_ptr<Vad> CreateVad(Vad::Aggressiveness aggressiveness);
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // WEBRTC_COMMON_AUDIO_VAD_INCLUDE_VAD_H_
|
86
webrtc/common_audio/vad/include/webrtc_vad.h
Normal file
86
webrtc/common_audio/vad/include/webrtc_vad.h
Normal file
@ -0,0 +1,86 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This header file includes the VAD API calls. Specific function calls are given below.
|
||||
*/
|
||||
|
||||
#ifndef WEBRTC_COMMON_AUDIO_VAD_INCLUDE_WEBRTC_VAD_H_ // NOLINT
|
||||
#define WEBRTC_COMMON_AUDIO_VAD_INCLUDE_WEBRTC_VAD_H_
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
typedef struct WebRtcVadInst VadInst;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Creates an instance to the VAD structure.
|
||||
VadInst* WebRtcVad_Create();
|
||||
|
||||
// Frees the dynamic memory of a specified VAD instance.
|
||||
//
|
||||
// - handle [i] : Pointer to VAD instance that should be freed.
|
||||
void WebRtcVad_Free(VadInst* handle);
|
||||
|
||||
// Initializes a VAD instance.
|
||||
//
|
||||
// - handle [i/o] : Instance that should be initialized.
|
||||
//
|
||||
// returns : 0 - (OK),
|
||||
// -1 - (NULL pointer or Default mode could not be set).
|
||||
int WebRtcVad_Init(VadInst* handle);
|
||||
|
||||
// Sets the VAD operating mode. A more aggressive (higher mode) VAD is more
|
||||
// restrictive in reporting speech. Put in other words the probability of being
|
||||
// speech when the VAD returns 1 is increased with increasing mode. As a
|
||||
// consequence also the missed detection rate goes up.
|
||||
//
|
||||
// - handle [i/o] : VAD instance.
|
||||
// - mode [i] : Aggressiveness mode (0, 1, 2, or 3).
|
||||
//
|
||||
// returns : 0 - (OK),
|
||||
// -1 - (NULL pointer, mode could not be set or the VAD instance
|
||||
// has not been initialized).
|
||||
int WebRtcVad_set_mode(VadInst* handle, int mode);
|
||||
|
||||
// Calculates a VAD decision for the |audio_frame|. For valid sampling rates
|
||||
// frame lengths, see the description of WebRtcVad_ValidRatesAndFrameLengths().
|
||||
//
|
||||
// - handle [i/o] : VAD Instance. Needs to be initialized by
|
||||
// WebRtcVad_Init() before call.
|
||||
// - fs [i] : Sampling frequency (Hz): 8000, 16000, or 32000
|
||||
// - audio_frame [i] : Audio frame buffer.
|
||||
// - frame_length [i] : Length of audio frame buffer in number of samples.
|
||||
//
|
||||
// returns : 1 - (Active Voice),
|
||||
// 0 - (Non-active Voice),
|
||||
// -1 - (Error)
|
||||
int WebRtcVad_Process(VadInst* handle, int fs, const int16_t* audio_frame,
|
||||
size_t frame_length);
|
||||
|
||||
// Checks for valid combinations of |rate| and |frame_length|. We support 10,
|
||||
// 20 and 30 ms frames and the rates 8000, 16000 and 32000 Hz.
|
||||
//
|
||||
// - rate [i] : Sampling frequency (Hz).
|
||||
// - frame_length [i] : Speech frame buffer length in number of samples.
|
||||
//
|
||||
// returns : 0 - (valid combination), -1 - (invalid combination)
|
||||
int WebRtcVad_ValidRateAndFrameLength(int rate, size_t frame_length);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // WEBRTC_COMMON_AUDIO_VAD_INCLUDE_WEBRTC_VAD_H_ // NOLINT
|
63
webrtc/common_audio/vad/vad.cc
Normal file
63
webrtc/common_audio/vad/vad.cc
Normal file
@ -0,0 +1,63 @@
|
||||
/*
|
||||
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/common_audio/vad/include/vad.h"
|
||||
|
||||
#include "webrtc/base/checks.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
namespace {
|
||||
|
||||
class VadImpl final : public Vad {
|
||||
public:
|
||||
explicit VadImpl(Aggressiveness aggressiveness)
|
||||
: handle_(nullptr), aggressiveness_(aggressiveness) {
|
||||
Reset();
|
||||
}
|
||||
|
||||
~VadImpl() override { WebRtcVad_Free(handle_); }
|
||||
|
||||
Activity VoiceActivity(const int16_t* audio,
|
||||
size_t num_samples,
|
||||
int sample_rate_hz) override {
|
||||
int ret = WebRtcVad_Process(handle_, sample_rate_hz, audio, num_samples);
|
||||
switch (ret) {
|
||||
case 0:
|
||||
return kPassive;
|
||||
case 1:
|
||||
return kActive;
|
||||
default:
|
||||
RTC_DCHECK(false) << "WebRtcVad_Process returned an error.";
|
||||
return kError;
|
||||
}
|
||||
}
|
||||
|
||||
void Reset() override {
|
||||
if (handle_)
|
||||
WebRtcVad_Free(handle_);
|
||||
handle_ = WebRtcVad_Create();
|
||||
RTC_CHECK(handle_);
|
||||
RTC_CHECK_EQ(WebRtcVad_Init(handle_), 0);
|
||||
RTC_CHECK_EQ(WebRtcVad_set_mode(handle_, aggressiveness_), 0);
|
||||
}
|
||||
|
||||
private:
|
||||
VadInst* handle_;
|
||||
Aggressiveness aggressiveness_;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
rtc::scoped_ptr<Vad> CreateVad(Vad::Aggressiveness aggressiveness) {
|
||||
return rtc::scoped_ptr<Vad>(new VadImpl(aggressiveness));
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
676
webrtc/common_audio/vad/vad_core.c
Normal file
676
webrtc/common_audio/vad/vad_core.c
Normal file
@ -0,0 +1,676 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/common_audio/vad/vad_core.h"
|
||||
|
||||
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "webrtc/common_audio/vad/vad_filterbank.h"
|
||||
#include "webrtc/common_audio/vad/vad_gmm.h"
|
||||
#include "webrtc/common_audio/vad/vad_sp.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
// Spectrum Weighting
|
||||
static const int16_t kSpectrumWeight[kNumChannels] = { 6, 8, 10, 12, 14, 16 };
|
||||
static const int16_t kNoiseUpdateConst = 655; // Q15
|
||||
static const int16_t kSpeechUpdateConst = 6554; // Q15
|
||||
static const int16_t kBackEta = 154; // Q8
|
||||
// Minimum difference between the two models, Q5
|
||||
static const int16_t kMinimumDifference[kNumChannels] = {
|
||||
544, 544, 576, 576, 576, 576 };
|
||||
// Upper limit of mean value for speech model, Q7
|
||||
static const int16_t kMaximumSpeech[kNumChannels] = {
|
||||
11392, 11392, 11520, 11520, 11520, 11520 };
|
||||
// Minimum value for mean value
|
||||
static const int16_t kMinimumMean[kNumGaussians] = { 640, 768 };
|
||||
// Upper limit of mean value for noise model, Q7
|
||||
static const int16_t kMaximumNoise[kNumChannels] = {
|
||||
9216, 9088, 8960, 8832, 8704, 8576 };
|
||||
// Start values for the Gaussian models, Q7
|
||||
// Weights for the two Gaussians for the six channels (noise)
|
||||
static const int16_t kNoiseDataWeights[kTableSize] = {
|
||||
34, 62, 72, 66, 53, 25, 94, 66, 56, 62, 75, 103 };
|
||||
// Weights for the two Gaussians for the six channels (speech)
|
||||
static const int16_t kSpeechDataWeights[kTableSize] = {
|
||||
48, 82, 45, 87, 50, 47, 80, 46, 83, 41, 78, 81 };
|
||||
// Means for the two Gaussians for the six channels (noise)
|
||||
static const int16_t kNoiseDataMeans[kTableSize] = {
|
||||
6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362 };
|
||||
// Means for the two Gaussians for the six channels (speech)
|
||||
static const int16_t kSpeechDataMeans[kTableSize] = {
|
||||
8306, 10085, 10078, 11823, 11843, 6309, 9473, 9571, 10879, 7581, 8180, 7483
|
||||
};
|
||||
// Stds for the two Gaussians for the six channels (noise)
|
||||
static const int16_t kNoiseDataStds[kTableSize] = {
|
||||
378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455 };
|
||||
// Stds for the two Gaussians for the six channels (speech)
|
||||
static const int16_t kSpeechDataStds[kTableSize] = {
|
||||
555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850 };
|
||||
|
||||
// Constants used in GmmProbability().
|
||||
//
|
||||
// Maximum number of counted speech (VAD = 1) frames in a row.
|
||||
static const int16_t kMaxSpeechFrames = 6;
|
||||
// Minimum standard deviation for both speech and noise.
|
||||
static const int16_t kMinStd = 384;
|
||||
|
||||
// Constants in WebRtcVad_InitCore().
|
||||
// Default aggressiveness mode.
|
||||
static const short kDefaultMode = 0;
|
||||
static const int kInitCheck = 42;
|
||||
|
||||
// Constants used in WebRtcVad_set_mode_core().
|
||||
//
|
||||
// Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
|
||||
//
|
||||
// Mode 0, Quality.
|
||||
static const int16_t kOverHangMax1Q[3] = { 8, 4, 3 };
|
||||
static const int16_t kOverHangMax2Q[3] = { 14, 7, 5 };
|
||||
static const int16_t kLocalThresholdQ[3] = { 24, 21, 24 };
|
||||
static const int16_t kGlobalThresholdQ[3] = { 57, 48, 57 };
|
||||
// Mode 1, Low bitrate.
|
||||
static const int16_t kOverHangMax1LBR[3] = { 8, 4, 3 };
|
||||
static const int16_t kOverHangMax2LBR[3] = { 14, 7, 5 };
|
||||
static const int16_t kLocalThresholdLBR[3] = { 37, 32, 37 };
|
||||
static const int16_t kGlobalThresholdLBR[3] = { 100, 80, 100 };
|
||||
// Mode 2, Aggressive.
|
||||
static const int16_t kOverHangMax1AGG[3] = { 6, 3, 2 };
|
||||
static const int16_t kOverHangMax2AGG[3] = { 9, 5, 3 };
|
||||
static const int16_t kLocalThresholdAGG[3] = { 82, 78, 82 };
|
||||
static const int16_t kGlobalThresholdAGG[3] = { 285, 260, 285 };
|
||||
// Mode 3, Very aggressive.
|
||||
static const int16_t kOverHangMax1VAG[3] = { 6, 3, 2 };
|
||||
static const int16_t kOverHangMax2VAG[3] = { 9, 5, 3 };
|
||||
static const int16_t kLocalThresholdVAG[3] = { 94, 94, 94 };
|
||||
static const int16_t kGlobalThresholdVAG[3] = { 1100, 1050, 1100 };
|
||||
|
||||
// Calculates the weighted average w.r.t. number of Gaussians. The |data| are
|
||||
// updated with an |offset| before averaging.
|
||||
//
|
||||
// - data [i/o] : Data to average.
|
||||
// - offset [i] : An offset added to |data|.
|
||||
// - weights [i] : Weights used for averaging.
|
||||
//
|
||||
// returns : The weighted average.
|
||||
static int32_t WeightedAverage(int16_t* data, int16_t offset,
|
||||
const int16_t* weights) {
|
||||
int k;
|
||||
int32_t weighted_average = 0;
|
||||
|
||||
for (k = 0; k < kNumGaussians; k++) {
|
||||
data[k * kNumChannels] += offset;
|
||||
weighted_average += data[k * kNumChannels] * weights[k * kNumChannels];
|
||||
}
|
||||
return weighted_average;
|
||||
}
|
||||
|
||||
// Calculates the probabilities for both speech and background noise using
|
||||
// Gaussian Mixture Models (GMM). A hypothesis-test is performed to decide which
|
||||
// type of signal is most probable.
|
||||
//
|
||||
// - self [i/o] : Pointer to VAD instance
|
||||
// - features [i] : Feature vector of length |kNumChannels|
|
||||
// = log10(energy in frequency band)
|
||||
// - total_power [i] : Total power in audio frame.
|
||||
// - frame_length [i] : Number of input samples
|
||||
//
|
||||
// - returns : the VAD decision (0 - noise, 1 - speech).
|
||||
static int16_t GmmProbability(VadInstT* self, int16_t* features,
|
||||
int16_t total_power, size_t frame_length) {
|
||||
int channel, k;
|
||||
int16_t feature_minimum;
|
||||
int16_t h0, h1;
|
||||
int16_t log_likelihood_ratio;
|
||||
int16_t vadflag = 0;
|
||||
int16_t shifts_h0, shifts_h1;
|
||||
int16_t tmp_s16, tmp1_s16, tmp2_s16;
|
||||
int16_t diff;
|
||||
int gaussian;
|
||||
int16_t nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
|
||||
int16_t delt, ndelt;
|
||||
int16_t maxspe, maxmu;
|
||||
int16_t deltaN[kTableSize], deltaS[kTableSize];
|
||||
int16_t ngprvec[kTableSize] = { 0 }; // Conditional probability = 0.
|
||||
int16_t sgprvec[kTableSize] = { 0 }; // Conditional probability = 0.
|
||||
int32_t h0_test, h1_test;
|
||||
int32_t tmp1_s32, tmp2_s32;
|
||||
int32_t sum_log_likelihood_ratios = 0;
|
||||
int32_t noise_global_mean, speech_global_mean;
|
||||
int32_t noise_probability[kNumGaussians], speech_probability[kNumGaussians];
|
||||
int16_t overhead1, overhead2, individualTest, totalTest;
|
||||
|
||||
// Set various thresholds based on frame lengths (80, 160 or 240 samples).
|
||||
if (frame_length == 80) {
|
||||
overhead1 = self->over_hang_max_1[0];
|
||||
overhead2 = self->over_hang_max_2[0];
|
||||
individualTest = self->individual[0];
|
||||
totalTest = self->total[0];
|
||||
} else if (frame_length == 160) {
|
||||
overhead1 = self->over_hang_max_1[1];
|
||||
overhead2 = self->over_hang_max_2[1];
|
||||
individualTest = self->individual[1];
|
||||
totalTest = self->total[1];
|
||||
} else {
|
||||
overhead1 = self->over_hang_max_1[2];
|
||||
overhead2 = self->over_hang_max_2[2];
|
||||
individualTest = self->individual[2];
|
||||
totalTest = self->total[2];
|
||||
}
|
||||
|
||||
if (total_power > kMinEnergy) {
|
||||
// The signal power of current frame is large enough for processing. The
|
||||
// processing consists of two parts:
|
||||
// 1) Calculating the likelihood of speech and thereby a VAD decision.
|
||||
// 2) Updating the underlying model, w.r.t., the decision made.
|
||||
|
||||
// The detection scheme is an LRT with hypothesis
|
||||
// H0: Noise
|
||||
// H1: Speech
|
||||
//
|
||||
// We combine a global LRT with local tests, for each frequency sub-band,
|
||||
// here defined as |channel|.
|
||||
for (channel = 0; channel < kNumChannels; channel++) {
|
||||
// For each channel we model the probability with a GMM consisting of
|
||||
// |kNumGaussians|, with different means and standard deviations depending
|
||||
// on H0 or H1.
|
||||
h0_test = 0;
|
||||
h1_test = 0;
|
||||
for (k = 0; k < kNumGaussians; k++) {
|
||||
gaussian = channel + k * kNumChannels;
|
||||
// Probability under H0, that is, probability of frame being noise.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
|
||||
self->noise_means[gaussian],
|
||||
self->noise_stds[gaussian],
|
||||
&deltaN[gaussian]);
|
||||
noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
|
||||
h0_test += noise_probability[k]; // Q27
|
||||
|
||||
// Probability under H1, that is, probability of frame being speech.
|
||||
// Value given in Q27 = Q7 * Q20.
|
||||
tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
|
||||
self->speech_means[gaussian],
|
||||
self->speech_stds[gaussian],
|
||||
&deltaS[gaussian]);
|
||||
speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
|
||||
h1_test += speech_probability[k]; // Q27
|
||||
}
|
||||
|
||||
// Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
|
||||
// Approximation:
|
||||
// log2(Pr{X|H1} / Pr{X|H1}) = log2(Pr{X|H1}*2^Q) - log2(Pr{X|H1}*2^Q)
|
||||
// = log2(h1_test) - log2(h0_test)
|
||||
// = log2(2^(31-shifts_h1)*(1+b1))
|
||||
// - log2(2^(31-shifts_h0)*(1+b0))
|
||||
// = shifts_h0 - shifts_h1
|
||||
// + log2(1+b1) - log2(1+b0)
|
||||
// ~= shifts_h0 - shifts_h1
|
||||
//
|
||||
// Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
|
||||
// Further, b0 and b1 are independent and on the average the two terms
|
||||
// cancel.
|
||||
shifts_h0 = WebRtcSpl_NormW32(h0_test);
|
||||
shifts_h1 = WebRtcSpl_NormW32(h1_test);
|
||||
if (h0_test == 0) {
|
||||
shifts_h0 = 31;
|
||||
}
|
||||
if (h1_test == 0) {
|
||||
shifts_h1 = 31;
|
||||
}
|
||||
log_likelihood_ratio = shifts_h0 - shifts_h1;
|
||||
|
||||
// Update |sum_log_likelihood_ratios| with spectrum weighting. This is
|
||||
// used for the global VAD decision.
|
||||
sum_log_likelihood_ratios +=
|
||||
(int32_t) (log_likelihood_ratio * kSpectrumWeight[channel]);
|
||||
|
||||
// Local VAD decision.
|
||||
if ((log_likelihood_ratio << 2) > individualTest) {
|
||||
vadflag = 1;
|
||||
}
|
||||
|
||||
// TODO(bjornv): The conditional probabilities below are applied on the
|
||||
// hard coded number of Gaussians set to two. Find a way to generalize.
|
||||
// Calculate local noise probabilities used later when updating the GMM.
|
||||
h0 = (int16_t) (h0_test >> 12); // Q15
|
||||
if (h0 > 0) {
|
||||
// High probability of noise. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM.
|
||||
tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2; // Q29
|
||||
ngprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h0); // Q14
|
||||
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
|
||||
} else {
|
||||
// Low noise probability. Assign conditional probability 1 to the first
|
||||
// Gaussian and 0 to the rest (which is already set at initialization).
|
||||
ngprvec[channel] = 16384;
|
||||
}
|
||||
|
||||
// Calculate local speech probabilities used later when updating the GMM.
|
||||
h1 = (int16_t) (h1_test >> 12); // Q15
|
||||
if (h1 > 0) {
|
||||
// High probability of speech. Assign conditional probabilities for each
|
||||
// Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
|
||||
tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2; // Q29
|
||||
sgprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h1); // Q14
|
||||
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
|
||||
}
|
||||
}
|
||||
|
||||
// Make a global VAD decision.
|
||||
vadflag |= (sum_log_likelihood_ratios >= totalTest);
|
||||
|
||||
// Update the model parameters.
|
||||
maxspe = 12800;
|
||||
for (channel = 0; channel < kNumChannels; channel++) {
|
||||
|
||||
// Get minimum value in past which is used for long term correction in Q4.
|
||||
feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);
|
||||
|
||||
// Compute the "global" mean, that is the sum of the two means weighted.
|
||||
noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
|
||||
&kNoiseDataWeights[channel]);
|
||||
tmp1_s16 = (int16_t) (noise_global_mean >> 6); // Q8
|
||||
|
||||
for (k = 0; k < kNumGaussians; k++) {
|
||||
gaussian = channel + k * kNumChannels;
|
||||
|
||||
nmk = self->noise_means[gaussian];
|
||||
smk = self->speech_means[gaussian];
|
||||
nsk = self->noise_stds[gaussian];
|
||||
ssk = self->speech_stds[gaussian];
|
||||
|
||||
// Update noise mean vector if the frame consists of noise only.
|
||||
nmk2 = nmk;
|
||||
if (!vadflag) {
|
||||
// deltaN = (x-mu)/sigma^2
|
||||
// ngprvec[k] = |noise_probability[k]| /
|
||||
// (|noise_probability[0]| + |noise_probability[1]|)
|
||||
|
||||
// (Q14 * Q11 >> 11) = Q14.
|
||||
delt = (int16_t)((ngprvec[gaussian] * deltaN[gaussian]) >> 11);
|
||||
// Q7 + (Q14 * Q15 >> 22) = Q7.
|
||||
nmk2 = nmk + (int16_t)((delt * kNoiseUpdateConst) >> 22);
|
||||
}
|
||||
|
||||
// Long term correction of the noise mean.
|
||||
// Q8 - Q8 = Q8.
|
||||
ndelt = (feature_minimum << 4) - tmp1_s16;
|
||||
// Q7 + (Q8 * Q8) >> 9 = Q7.
|
||||
nmk3 = nmk2 + (int16_t)((ndelt * kBackEta) >> 9);
|
||||
|
||||
// Control that the noise mean does not drift to much.
|
||||
tmp_s16 = (int16_t) ((k + 5) << 7);
|
||||
if (nmk3 < tmp_s16) {
|
||||
nmk3 = tmp_s16;
|
||||
}
|
||||
tmp_s16 = (int16_t) ((72 + k - channel) << 7);
|
||||
if (nmk3 > tmp_s16) {
|
||||
nmk3 = tmp_s16;
|
||||
}
|
||||
self->noise_means[gaussian] = nmk3;
|
||||
|
||||
if (vadflag) {
|
||||
// Update speech mean vector:
|
||||
// |deltaS| = (x-mu)/sigma^2
|
||||
// sgprvec[k] = |speech_probability[k]| /
|
||||
// (|speech_probability[0]| + |speech_probability[1]|)
|
||||
|
||||
// (Q14 * Q11) >> 11 = Q14.
|
||||
delt = (int16_t)((sgprvec[gaussian] * deltaS[gaussian]) >> 11);
|
||||
// Q14 * Q15 >> 21 = Q8.
|
||||
tmp_s16 = (int16_t)((delt * kSpeechUpdateConst) >> 21);
|
||||
// Q7 + (Q8 >> 1) = Q7. With rounding.
|
||||
smk2 = smk + ((tmp_s16 + 1) >> 1);
|
||||
|
||||
// Control that the speech mean does not drift to much.
|
||||
maxmu = maxspe + 640;
|
||||
if (smk2 < kMinimumMean[k]) {
|
||||
smk2 = kMinimumMean[k];
|
||||
}
|
||||
if (smk2 > maxmu) {
|
||||
smk2 = maxmu;
|
||||
}
|
||||
self->speech_means[gaussian] = smk2; // Q7.
|
||||
|
||||
// (Q7 >> 3) = Q4. With rounding.
|
||||
tmp_s16 = ((smk + 4) >> 3);
|
||||
|
||||
tmp_s16 = features[channel] - tmp_s16; // Q4
|
||||
// (Q11 * Q4 >> 3) = Q12.
|
||||
tmp1_s32 = (deltaS[gaussian] * tmp_s16) >> 3;
|
||||
tmp2_s32 = tmp1_s32 - 4096;
|
||||
tmp_s16 = sgprvec[gaussian] >> 2;
|
||||
// (Q14 >> 2) * Q12 = Q24.
|
||||
tmp1_s32 = tmp_s16 * tmp2_s32;
|
||||
|
||||
tmp2_s32 = tmp1_s32 >> 4; // Q20
|
||||
|
||||
// 0.1 * Q20 / Q7 = Q13.
|
||||
if (tmp2_s32 > 0) {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
|
||||
} else {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
|
||||
tmp_s16 = -tmp_s16;
|
||||
}
|
||||
// Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
|
||||
// Note that division by 4 equals shift by 2, hence,
|
||||
// (Q13 >> 8) = (Q13 >> 6) / 4 = Q7.
|
||||
tmp_s16 += 128; // Rounding.
|
||||
ssk += (tmp_s16 >> 8);
|
||||
if (ssk < kMinStd) {
|
||||
ssk = kMinStd;
|
||||
}
|
||||
self->speech_stds[gaussian] = ssk;
|
||||
} else {
|
||||
// Update GMM variance vectors.
|
||||
// deltaN * (features[channel] - nmk) - 1
|
||||
// Q4 - (Q7 >> 3) = Q4.
|
||||
tmp_s16 = features[channel] - (nmk >> 3);
|
||||
// (Q11 * Q4 >> 3) = Q12.
|
||||
tmp1_s32 = (deltaN[gaussian] * tmp_s16) >> 3;
|
||||
tmp1_s32 -= 4096;
|
||||
|
||||
// (Q14 >> 2) * Q12 = Q24.
|
||||
tmp_s16 = (ngprvec[gaussian] + 2) >> 2;
|
||||
tmp2_s32 = tmp_s16 * tmp1_s32;
|
||||
// Q20 * approx 0.001 (2^-10=0.0009766), hence,
|
||||
// (Q24 >> 14) = (Q24 >> 4) / 2^10 = Q20.
|
||||
tmp1_s32 = tmp2_s32 >> 14;
|
||||
|
||||
// Q20 / Q7 = Q13.
|
||||
if (tmp1_s32 > 0) {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, nsk);
|
||||
} else {
|
||||
tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
|
||||
tmp_s16 = -tmp_s16;
|
||||
}
|
||||
tmp_s16 += 32; // Rounding
|
||||
nsk += tmp_s16 >> 6; // Q13 >> 6 = Q7.
|
||||
if (nsk < kMinStd) {
|
||||
nsk = kMinStd;
|
||||
}
|
||||
self->noise_stds[gaussian] = nsk;
|
||||
}
|
||||
}
|
||||
|
||||
// Separate models if they are too close.
|
||||
// |noise_global_mean| in Q14 (= Q7 * Q7).
|
||||
noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
|
||||
&kNoiseDataWeights[channel]);
|
||||
|
||||
// |speech_global_mean| in Q14 (= Q7 * Q7).
|
||||
speech_global_mean = WeightedAverage(&self->speech_means[channel], 0,
|
||||
&kSpeechDataWeights[channel]);
|
||||
|
||||
// |diff| = "global" speech mean - "global" noise mean.
|
||||
// (Q14 >> 9) - (Q14 >> 9) = Q5.
|
||||
diff = (int16_t) (speech_global_mean >> 9) -
|
||||
(int16_t) (noise_global_mean >> 9);
|
||||
if (diff < kMinimumDifference[channel]) {
|
||||
tmp_s16 = kMinimumDifference[channel] - diff;
|
||||
|
||||
// |tmp1_s16| = ~0.8 * (kMinimumDifference - diff) in Q7.
|
||||
// |tmp2_s16| = ~0.2 * (kMinimumDifference - diff) in Q7.
|
||||
tmp1_s16 = (int16_t)((13 * tmp_s16) >> 2);
|
||||
tmp2_s16 = (int16_t)((3 * tmp_s16) >> 2);
|
||||
|
||||
// Move Gaussian means for speech model by |tmp1_s16| and update
|
||||
// |speech_global_mean|. Note that |self->speech_means[channel]| is
|
||||
// changed after the call.
|
||||
speech_global_mean = WeightedAverage(&self->speech_means[channel],
|
||||
tmp1_s16,
|
||||
&kSpeechDataWeights[channel]);
|
||||
|
||||
// Move Gaussian means for noise model by -|tmp2_s16| and update
|
||||
// |noise_global_mean|. Note that |self->noise_means[channel]| is
|
||||
// changed after the call.
|
||||
noise_global_mean = WeightedAverage(&self->noise_means[channel],
|
||||
-tmp2_s16,
|
||||
&kNoiseDataWeights[channel]);
|
||||
}
|
||||
|
||||
// Control that the speech & noise means do not drift to much.
|
||||
maxspe = kMaximumSpeech[channel];
|
||||
tmp2_s16 = (int16_t) (speech_global_mean >> 7);
|
||||
if (tmp2_s16 > maxspe) {
|
||||
// Upper limit of speech model.
|
||||
tmp2_s16 -= maxspe;
|
||||
|
||||
for (k = 0; k < kNumGaussians; k++) {
|
||||
self->speech_means[channel + k * kNumChannels] -= tmp2_s16;
|
||||
}
|
||||
}
|
||||
|
||||
tmp2_s16 = (int16_t) (noise_global_mean >> 7);
|
||||
if (tmp2_s16 > kMaximumNoise[channel]) {
|
||||
tmp2_s16 -= kMaximumNoise[channel];
|
||||
|
||||
for (k = 0; k < kNumGaussians; k++) {
|
||||
self->noise_means[channel + k * kNumChannels] -= tmp2_s16;
|
||||
}
|
||||
}
|
||||
}
|
||||
self->frame_counter++;
|
||||
}
|
||||
|
||||
// Smooth with respect to transition hysteresis.
|
||||
if (!vadflag) {
|
||||
if (self->over_hang > 0) {
|
||||
vadflag = 2 + self->over_hang;
|
||||
self->over_hang--;
|
||||
}
|
||||
self->num_of_speech = 0;
|
||||
} else {
|
||||
self->num_of_speech++;
|
||||
if (self->num_of_speech > kMaxSpeechFrames) {
|
||||
self->num_of_speech = kMaxSpeechFrames;
|
||||
self->over_hang = overhead2;
|
||||
} else {
|
||||
self->over_hang = overhead1;
|
||||
}
|
||||
}
|
||||
return vadflag;
|
||||
}
|
||||
|
||||
// Initialize the VAD. Set aggressiveness mode to default value.
|
||||
int WebRtcVad_InitCore(VadInstT* self) {
|
||||
int i;
|
||||
|
||||
if (self == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Initialization of general struct variables.
|
||||
self->vad = 1; // Speech active (=1).
|
||||
self->frame_counter = 0;
|
||||
self->over_hang = 0;
|
||||
self->num_of_speech = 0;
|
||||
|
||||
// Initialization of downsampling filter state.
|
||||
memset(self->downsampling_filter_states, 0,
|
||||
sizeof(self->downsampling_filter_states));
|
||||
|
||||
// Initialization of 48 to 8 kHz downsampling.
|
||||
WebRtcSpl_ResetResample48khzTo8khz(&self->state_48_to_8);
|
||||
|
||||
// Read initial PDF parameters.
|
||||
for (i = 0; i < kTableSize; i++) {
|
||||
self->noise_means[i] = kNoiseDataMeans[i];
|
||||
self->speech_means[i] = kSpeechDataMeans[i];
|
||||
self->noise_stds[i] = kNoiseDataStds[i];
|
||||
self->speech_stds[i] = kSpeechDataStds[i];
|
||||
}
|
||||
|
||||
// Initialize Index and Minimum value vectors.
|
||||
for (i = 0; i < 16 * kNumChannels; i++) {
|
||||
self->low_value_vector[i] = 10000;
|
||||
self->index_vector[i] = 0;
|
||||
}
|
||||
|
||||
// Initialize splitting filter states.
|
||||
memset(self->upper_state, 0, sizeof(self->upper_state));
|
||||
memset(self->lower_state, 0, sizeof(self->lower_state));
|
||||
|
||||
// Initialize high pass filter states.
|
||||
memset(self->hp_filter_state, 0, sizeof(self->hp_filter_state));
|
||||
|
||||
// Initialize mean value memory, for WebRtcVad_FindMinimum().
|
||||
for (i = 0; i < kNumChannels; i++) {
|
||||
self->mean_value[i] = 1600;
|
||||
}
|
||||
|
||||
// Set aggressiveness mode to default (=|kDefaultMode|).
|
||||
if (WebRtcVad_set_mode_core(self, kDefaultMode) != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
self->init_flag = kInitCheck;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Set aggressiveness mode
|
||||
int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
|
||||
int return_value = 0;
|
||||
|
||||
switch (mode) {
|
||||
case 0:
|
||||
// Quality mode.
|
||||
memcpy(self->over_hang_max_1, kOverHangMax1Q,
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2Q,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdQ,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdQ,
|
||||
sizeof(self->total));
|
||||
break;
|
||||
case 1:
|
||||
// Low bitrate mode.
|
||||
memcpy(self->over_hang_max_1, kOverHangMax1LBR,
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2LBR,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdLBR,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdLBR,
|
||||
sizeof(self->total));
|
||||
break;
|
||||
case 2:
|
||||
// Aggressive mode.
|
||||
memcpy(self->over_hang_max_1, kOverHangMax1AGG,
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2AGG,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdAGG,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdAGG,
|
||||
sizeof(self->total));
|
||||
break;
|
||||
case 3:
|
||||
// Very aggressive mode.
|
||||
memcpy(self->over_hang_max_1, kOverHangMax1VAG,
|
||||
sizeof(self->over_hang_max_1));
|
||||
memcpy(self->over_hang_max_2, kOverHangMax2VAG,
|
||||
sizeof(self->over_hang_max_2));
|
||||
memcpy(self->individual, kLocalThresholdVAG,
|
||||
sizeof(self->individual));
|
||||
memcpy(self->total, kGlobalThresholdVAG,
|
||||
sizeof(self->total));
|
||||
break;
|
||||
default:
|
||||
return_value = -1;
|
||||
break;
|
||||
}
|
||||
|
||||
return return_value;
|
||||
}
|
||||
|
||||
// Calculate VAD decision by first extracting feature values and then calculate
|
||||
// probability for both speech and background noise.
|
||||
|
||||
int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length) {
|
||||
int vad;
|
||||
size_t i;
|
||||
int16_t speech_nb[240]; // 30 ms in 8 kHz.
|
||||
// |tmp_mem| is a temporary memory used by resample function, length is
|
||||
// frame length in 10 ms (480 samples) + 256 extra.
|
||||
int32_t tmp_mem[480 + 256] = { 0 };
|
||||
const size_t kFrameLen10ms48khz = 480;
|
||||
const size_t kFrameLen10ms8khz = 80;
|
||||
size_t num_10ms_frames = frame_length / kFrameLen10ms48khz;
|
||||
|
||||
for (i = 0; i < num_10ms_frames; i++) {
|
||||
WebRtcSpl_Resample48khzTo8khz(speech_frame,
|
||||
&speech_nb[i * kFrameLen10ms8khz],
|
||||
&inst->state_48_to_8,
|
||||
tmp_mem);
|
||||
}
|
||||
|
||||
// Do VAD on an 8 kHz signal
|
||||
vad = WebRtcVad_CalcVad8khz(inst, speech_nb, frame_length / 6);
|
||||
|
||||
return vad;
|
||||
}
|
||||
|
||||
int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length)
|
||||
{
|
||||
size_t len;
|
||||
int vad;
|
||||
int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
|
||||
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
|
||||
|
||||
|
||||
// Downsample signal 32->16->8 before doing VAD
|
||||
WebRtcVad_Downsampling(speech_frame, speechWB, &(inst->downsampling_filter_states[2]),
|
||||
frame_length);
|
||||
len = frame_length / 2;
|
||||
|
||||
WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states, len);
|
||||
len /= 2;
|
||||
|
||||
// Do VAD on an 8 kHz signal
|
||||
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
|
||||
|
||||
return vad;
|
||||
}
|
||||
|
||||
int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length)
|
||||
{
|
||||
size_t len;
|
||||
int vad;
|
||||
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
|
||||
|
||||
// Wideband: Downsample signal before doing VAD
|
||||
WebRtcVad_Downsampling(speech_frame, speechNB, inst->downsampling_filter_states,
|
||||
frame_length);
|
||||
|
||||
len = frame_length / 2;
|
||||
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
|
||||
|
||||
return vad;
|
||||
}
|
||||
|
||||
int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length)
|
||||
{
|
||||
int16_t feature_vector[kNumChannels], total_power;
|
||||
|
||||
// Get power in the bands
|
||||
total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
|
||||
feature_vector);
|
||||
|
||||
// Make a VAD
|
||||
inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
|
||||
|
||||
return inst->vad;
|
||||
}
|
115
webrtc/common_audio/vad/vad_core.h
Normal file
115
webrtc/common_audio/vad/vad_core.h
Normal file
@ -0,0 +1,115 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This header file includes the descriptions of the core VAD calls.
|
||||
*/
|
||||
|
||||
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_CORE_H_
|
||||
#define WEBRTC_COMMON_AUDIO_VAD_VAD_CORE_H_
|
||||
|
||||
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
enum { kNumChannels = 6 }; // Number of frequency bands (named channels).
|
||||
enum { kNumGaussians = 2 }; // Number of Gaussians per channel in the GMM.
|
||||
enum { kTableSize = kNumChannels * kNumGaussians };
|
||||
enum { kMinEnergy = 10 }; // Minimum energy required to trigger audio signal.
|
||||
|
||||
typedef struct VadInstT_
|
||||
{
|
||||
|
||||
int vad;
|
||||
int32_t downsampling_filter_states[4];
|
||||
WebRtcSpl_State48khzTo8khz state_48_to_8;
|
||||
int16_t noise_means[kTableSize];
|
||||
int16_t speech_means[kTableSize];
|
||||
int16_t noise_stds[kTableSize];
|
||||
int16_t speech_stds[kTableSize];
|
||||
// TODO(bjornv): Change to |frame_count|.
|
||||
int32_t frame_counter;
|
||||
int16_t over_hang; // Over Hang
|
||||
int16_t num_of_speech;
|
||||
// TODO(bjornv): Change to |age_vector|.
|
||||
int16_t index_vector[16 * kNumChannels];
|
||||
int16_t low_value_vector[16 * kNumChannels];
|
||||
// TODO(bjornv): Change to |median|.
|
||||
int16_t mean_value[kNumChannels];
|
||||
int16_t upper_state[5];
|
||||
int16_t lower_state[5];
|
||||
int16_t hp_filter_state[4];
|
||||
int16_t over_hang_max_1[3];
|
||||
int16_t over_hang_max_2[3];
|
||||
int16_t individual[3];
|
||||
int16_t total[3];
|
||||
|
||||
int init_flag;
|
||||
|
||||
} VadInstT;
|
||||
|
||||
// Initializes the core VAD component. The default aggressiveness mode is
|
||||
// controlled by |kDefaultMode| in vad_core.c.
|
||||
//
|
||||
// - self [i/o] : Instance that should be initialized
|
||||
//
|
||||
// returns : 0 (OK), -1 (NULL pointer in or if the default mode can't be
|
||||
// set)
|
||||
int WebRtcVad_InitCore(VadInstT* self);
|
||||
|
||||
/****************************************************************************
|
||||
* WebRtcVad_set_mode_core(...)
|
||||
*
|
||||
* This function changes the VAD settings
|
||||
*
|
||||
* Input:
|
||||
* - inst : VAD instance
|
||||
* - mode : Aggressiveness degree
|
||||
* 0 (High quality) - 3 (Highly aggressive)
|
||||
*
|
||||
* Output:
|
||||
* - inst : Changed instance
|
||||
*
|
||||
* Return value : 0 - Ok
|
||||
* -1 - Error
|
||||
*/
|
||||
|
||||
int WebRtcVad_set_mode_core(VadInstT* self, int mode);
|
||||
|
||||
/****************************************************************************
|
||||
* WebRtcVad_CalcVad48khz(...)
|
||||
* WebRtcVad_CalcVad32khz(...)
|
||||
* WebRtcVad_CalcVad16khz(...)
|
||||
* WebRtcVad_CalcVad8khz(...)
|
||||
*
|
||||
* Calculate probability for active speech and make VAD decision.
|
||||
*
|
||||
* Input:
|
||||
* - inst : Instance that should be initialized
|
||||
* - speech_frame : Input speech frame
|
||||
* - frame_length : Number of input samples
|
||||
*
|
||||
* Output:
|
||||
* - inst : Updated filter states etc.
|
||||
*
|
||||
* Return value : VAD decision
|
||||
* 0 - No active speech
|
||||
* 1-6 - Active speech
|
||||
*/
|
||||
int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length);
|
||||
int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length);
|
||||
int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length);
|
||||
int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
|
||||
size_t frame_length);
|
||||
|
||||
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_CORE_H_
|
95
webrtc/common_audio/vad/vad_defines.h
Normal file
95
webrtc/common_audio/vad/vad_defines.h
Normal file
@ -0,0 +1,95 @@
|
||||
/*
|
||||
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This header file includes the macros used in VAD.
|
||||
*/
|
||||
|
||||
#ifndef WEBRTC_VAD_DEFINES_H_
|
||||
#define WEBRTC_VAD_DEFINES_H_
|
||||
|
||||
#define NUM_CHANNELS 6 // Eight frequency bands
|
||||
#define NUM_MODELS 2 // Number of Gaussian models
|
||||
#define NUM_TABLE_VALUES NUM_CHANNELS * NUM_MODELS
|
||||
|
||||
#define MIN_ENERGY 10
|
||||
#define ALPHA1 6553 // 0.2 in Q15
|
||||
#define ALPHA2 32439 // 0.99 in Q15
|
||||
#define NSP_MAX 6 // Maximum number of VAD=1 frames in a row counted
|
||||
#define MIN_STD 384 // Minimum standard deviation
|
||||
// Mode 0, Quality thresholds - Different thresholds for the different frame lengths
|
||||
#define INDIVIDUAL_10MS_Q 24
|
||||
#define INDIVIDUAL_20MS_Q 21 // (log10(2)*66)<<2 ~=16
|
||||
#define INDIVIDUAL_30MS_Q 24
|
||||
|
||||
#define TOTAL_10MS_Q 57
|
||||
#define TOTAL_20MS_Q 48
|
||||
#define TOTAL_30MS_Q 57
|
||||
|
||||
#define OHMAX1_10MS_Q 8 // Max Overhang 1
|
||||
#define OHMAX2_10MS_Q 14 // Max Overhang 2
|
||||
#define OHMAX1_20MS_Q 4 // Max Overhang 1
|
||||
#define OHMAX2_20MS_Q 7 // Max Overhang 2
|
||||
#define OHMAX1_30MS_Q 3
|
||||
#define OHMAX2_30MS_Q 5
|
||||
|
||||
// Mode 1, Low bitrate thresholds - Different thresholds for the different frame lengths
|
||||
#define INDIVIDUAL_10MS_LBR 37
|
||||
#define INDIVIDUAL_20MS_LBR 32
|
||||
#define INDIVIDUAL_30MS_LBR 37
|
||||
|
||||
#define TOTAL_10MS_LBR 100
|
||||
#define TOTAL_20MS_LBR 80
|
||||
#define TOTAL_30MS_LBR 100
|
||||
|
||||
#define OHMAX1_10MS_LBR 8 // Max Overhang 1
|
||||
#define OHMAX2_10MS_LBR 14 // Max Overhang 2
|
||||
#define OHMAX1_20MS_LBR 4
|
||||
#define OHMAX2_20MS_LBR 7
|
||||
|
||||
#define OHMAX1_30MS_LBR 3
|
||||
#define OHMAX2_30MS_LBR 5
|
||||
|
||||
// Mode 2, Very aggressive thresholds - Different thresholds for the different frame lengths
|
||||
#define INDIVIDUAL_10MS_AGG 82
|
||||
#define INDIVIDUAL_20MS_AGG 78
|
||||
#define INDIVIDUAL_30MS_AGG 82
|
||||
|
||||
#define TOTAL_10MS_AGG 285 //580
|
||||
#define TOTAL_20MS_AGG 260
|
||||
#define TOTAL_30MS_AGG 285
|
||||
|
||||
#define OHMAX1_10MS_AGG 6 // Max Overhang 1
|
||||
#define OHMAX2_10MS_AGG 9 // Max Overhang 2
|
||||
#define OHMAX1_20MS_AGG 3
|
||||
#define OHMAX2_20MS_AGG 5
|
||||
|
||||
#define OHMAX1_30MS_AGG 2
|
||||
#define OHMAX2_30MS_AGG 3
|
||||
|
||||
// Mode 3, Super aggressive thresholds - Different thresholds for the different frame lengths
|
||||
#define INDIVIDUAL_10MS_VAG 94
|
||||
#define INDIVIDUAL_20MS_VAG 94
|
||||
#define INDIVIDUAL_30MS_VAG 94
|
||||
|
||||
#define TOTAL_10MS_VAG 1100 //1700
|
||||
#define TOTAL_20MS_VAG 1050
|
||||
#define TOTAL_30MS_VAG 1100
|
||||
|
||||
#define OHMAX1_10MS_VAG 6 // Max Overhang 1
|
||||
#define OHMAX2_10MS_VAG 9 // Max Overhang 2
|
||||
#define OHMAX1_20MS_VAG 3
|
||||
#define OHMAX2_20MS_VAG 5
|
||||
|
||||
#define OHMAX1_30MS_VAG 2
|
||||
#define OHMAX2_30MS_VAG 3
|
||||
|
||||
#endif // WEBRTC_VAD_DEFINES_H_
|
331
webrtc/common_audio/vad/vad_filterbank.c
Normal file
331
webrtc/common_audio/vad/vad_filterbank.c
Normal file
@ -0,0 +1,331 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/common_audio/vad/vad_filterbank.h"
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
// Constants used in LogOfEnergy().
|
||||
static const int16_t kLogConst = 24660; // 160*log10(2) in Q9.
|
||||
static const int16_t kLogEnergyIntPart = 14336; // 14 in Q10
|
||||
|
||||
// Coefficients used by HighPassFilter, Q14.
|
||||
static const int16_t kHpZeroCoefs[3] = { 6631, -13262, 6631 };
|
||||
static const int16_t kHpPoleCoefs[3] = { 16384, -7756, 5620 };
|
||||
|
||||
// Allpass filter coefficients, upper and lower, in Q15.
|
||||
// Upper: 0.64, Lower: 0.17
|
||||
static const int16_t kAllPassCoefsQ15[2] = { 20972, 5571 };
|
||||
|
||||
// Adjustment for division with two in SplitFilter.
|
||||
static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 };
|
||||
|
||||
// High pass filtering, with a cut-off frequency at 80 Hz, if the |data_in| is
|
||||
// sampled at 500 Hz.
|
||||
//
|
||||
// - data_in [i] : Input audio data sampled at 500 Hz.
|
||||
// - data_length [i] : Length of input and output data.
|
||||
// - filter_state [i/o] : State of the filter.
|
||||
// - data_out [o] : Output audio data in the frequency interval
|
||||
// 80 - 250 Hz.
|
||||
static void HighPassFilter(const int16_t* data_in, size_t data_length,
|
||||
int16_t* filter_state, int16_t* data_out) {
|
||||
size_t i;
|
||||
const int16_t* in_ptr = data_in;
|
||||
int16_t* out_ptr = data_out;
|
||||
int32_t tmp32 = 0;
|
||||
|
||||
|
||||
// The sum of the absolute values of the impulse response:
|
||||
// The zero/pole-filter has a max amplification of a single sample of: 1.4546
|
||||
// Impulse response: 0.4047 -0.6179 -0.0266 0.1993 0.1035 -0.0194
|
||||
// The all-zero section has a max amplification of a single sample of: 1.6189
|
||||
// Impulse response: 0.4047 -0.8094 0.4047 0 0 0
|
||||
// The all-pole section has a max amplification of a single sample of: 1.9931
|
||||
// Impulse response: 1.0000 0.4734 -0.1189 -0.2187 -0.0627 0.04532
|
||||
|
||||
for (i = 0; i < data_length; i++) {
|
||||
// All-zero section (filter coefficients in Q14).
|
||||
tmp32 = kHpZeroCoefs[0] * *in_ptr;
|
||||
tmp32 += kHpZeroCoefs[1] * filter_state[0];
|
||||
tmp32 += kHpZeroCoefs[2] * filter_state[1];
|
||||
filter_state[1] = filter_state[0];
|
||||
filter_state[0] = *in_ptr++;
|
||||
|
||||
// All-pole section (filter coefficients in Q14).
|
||||
tmp32 -= kHpPoleCoefs[1] * filter_state[2];
|
||||
tmp32 -= kHpPoleCoefs[2] * filter_state[3];
|
||||
filter_state[3] = filter_state[2];
|
||||
filter_state[2] = (int16_t) (tmp32 >> 14);
|
||||
*out_ptr++ = filter_state[2];
|
||||
}
|
||||
}
|
||||
|
||||
// All pass filtering of |data_in|, used before splitting the signal into two
|
||||
// frequency bands (low pass vs high pass).
|
||||
// Note that |data_in| and |data_out| can NOT correspond to the same address.
|
||||
//
|
||||
// - data_in [i] : Input audio signal given in Q0.
|
||||
// - data_length [i] : Length of input and output data.
|
||||
// - filter_coefficient [i] : Given in Q15.
|
||||
// - filter_state [i/o] : State of the filter given in Q(-1).
|
||||
// - data_out [o] : Output audio signal given in Q(-1).
|
||||
static void AllPassFilter(const int16_t* data_in, size_t data_length,
|
||||
int16_t filter_coefficient, int16_t* filter_state,
|
||||
int16_t* data_out) {
|
||||
// The filter can only cause overflow (in the w16 output variable)
|
||||
// if more than 4 consecutive input numbers are of maximum value and
|
||||
// has the the same sign as the impulse responses first taps.
|
||||
// First 6 taps of the impulse response:
|
||||
// 0.6399 0.5905 -0.3779 0.2418 -0.1547 0.0990
|
||||
|
||||
size_t i;
|
||||
int16_t tmp16 = 0;
|
||||
int32_t tmp32 = 0;
|
||||
int32_t state32 = ((int32_t) (*filter_state) << 16); // Q15
|
||||
|
||||
for (i = 0; i < data_length; i++) {
|
||||
tmp32 = state32 + filter_coefficient * *data_in;
|
||||
tmp16 = (int16_t) (tmp32 >> 16); // Q(-1)
|
||||
*data_out++ = tmp16;
|
||||
state32 = (*data_in << 14) - filter_coefficient * tmp16; // Q14
|
||||
state32 <<= 1; // Q15.
|
||||
data_in += 2;
|
||||
}
|
||||
|
||||
*filter_state = (int16_t) (state32 >> 16); // Q(-1)
|
||||
}
|
||||
|
||||
// Splits |data_in| into |hp_data_out| and |lp_data_out| corresponding to
|
||||
// an upper (high pass) part and a lower (low pass) part respectively.
|
||||
//
|
||||
// - data_in [i] : Input audio data to be split into two frequency bands.
|
||||
// - data_length [i] : Length of |data_in|.
|
||||
// - upper_state [i/o] : State of the upper filter, given in Q(-1).
|
||||
// - lower_state [i/o] : State of the lower filter, given in Q(-1).
|
||||
// - hp_data_out [o] : Output audio data of the upper half of the spectrum.
|
||||
// The length is |data_length| / 2.
|
||||
// - lp_data_out [o] : Output audio data of the lower half of the spectrum.
|
||||
// The length is |data_length| / 2.
|
||||
static void SplitFilter(const int16_t* data_in, size_t data_length,
|
||||
int16_t* upper_state, int16_t* lower_state,
|
||||
int16_t* hp_data_out, int16_t* lp_data_out) {
|
||||
size_t i;
|
||||
size_t half_length = data_length >> 1; // Downsampling by 2.
|
||||
int16_t tmp_out;
|
||||
|
||||
// All-pass filtering upper branch.
|
||||
AllPassFilter(&data_in[0], half_length, kAllPassCoefsQ15[0], upper_state,
|
||||
hp_data_out);
|
||||
|
||||
// All-pass filtering lower branch.
|
||||
AllPassFilter(&data_in[1], half_length, kAllPassCoefsQ15[1], lower_state,
|
||||
lp_data_out);
|
||||
|
||||
// Make LP and HP signals.
|
||||
for (i = 0; i < half_length; i++) {
|
||||
tmp_out = *hp_data_out;
|
||||
*hp_data_out++ -= *lp_data_out;
|
||||
*lp_data_out++ += tmp_out;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculates the energy of |data_in| in dB, and also updates an overall
|
||||
// |total_energy| if necessary.
|
||||
//
|
||||
// - data_in [i] : Input audio data for energy calculation.
|
||||
// - data_length [i] : Length of input data.
|
||||
// - offset [i] : Offset value added to |log_energy|.
|
||||
// - total_energy [i/o] : An external energy updated with the energy of
|
||||
// |data_in|.
|
||||
// NOTE: |total_energy| is only updated if
|
||||
// |total_energy| <= |kMinEnergy|.
|
||||
// - log_energy [o] : 10 * log10("energy of |data_in|") given in Q4.
|
||||
static void LogOfEnergy(const int16_t* data_in, size_t data_length,
|
||||
int16_t offset, int16_t* total_energy,
|
||||
int16_t* log_energy) {
|
||||
// |tot_rshifts| accumulates the number of right shifts performed on |energy|.
|
||||
int tot_rshifts = 0;
|
||||
// The |energy| will be normalized to 15 bits. We use unsigned integer because
|
||||
// we eventually will mask out the fractional part.
|
||||
uint32_t energy = 0;
|
||||
|
||||
assert(data_in != NULL);
|
||||
assert(data_length > 0);
|
||||
|
||||
energy = (uint32_t) WebRtcSpl_Energy((int16_t*) data_in, data_length,
|
||||
&tot_rshifts);
|
||||
|
||||
if (energy != 0) {
|
||||
// By construction, normalizing to 15 bits is equivalent with 17 leading
|
||||
// zeros of an unsigned 32 bit value.
|
||||
int normalizing_rshifts = 17 - WebRtcSpl_NormU32(energy);
|
||||
// In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
|
||||
// (14 << 10), which is what we initialize |log2_energy| with. For a more
|
||||
// detailed derivations, see below.
|
||||
int16_t log2_energy = kLogEnergyIntPart;
|
||||
|
||||
tot_rshifts += normalizing_rshifts;
|
||||
// Normalize |energy| to 15 bits.
|
||||
// |tot_rshifts| is now the total number of right shifts performed on
|
||||
// |energy| after normalization. This means that |energy| is in
|
||||
// Q(-tot_rshifts).
|
||||
if (normalizing_rshifts < 0) {
|
||||
energy <<= -normalizing_rshifts;
|
||||
} else {
|
||||
energy >>= normalizing_rshifts;
|
||||
}
|
||||
|
||||
// Calculate the energy of |data_in| in dB, in Q4.
|
||||
//
|
||||
// 10 * log10("true energy") in Q4 = 2^4 * 10 * log10("true energy") =
|
||||
// 160 * log10(|energy| * 2^|tot_rshifts|) =
|
||||
// 160 * log10(2) * log2(|energy| * 2^|tot_rshifts|) =
|
||||
// 160 * log10(2) * (log2(|energy|) + log2(2^|tot_rshifts|)) =
|
||||
// (160 * log10(2)) * (log2(|energy|) + |tot_rshifts|) =
|
||||
// |kLogConst| * (|log2_energy| + |tot_rshifts|)
|
||||
//
|
||||
// We know by construction that |energy| is normalized to 15 bits. Hence,
|
||||
// |energy| = 2^14 + frac_Q15, where frac_Q15 is a fractional part in Q15.
|
||||
// Further, we'd like |log2_energy| in Q10
|
||||
// log2(|energy|) in Q10 = 2^10 * log2(2^14 + frac_Q15) =
|
||||
// 2^10 * log2(2^14 * (1 + frac_Q15 * 2^-14)) =
|
||||
// 2^10 * (14 + log2(1 + frac_Q15 * 2^-14)) ~=
|
||||
// (14 << 10) + 2^10 * (frac_Q15 * 2^-14) =
|
||||
// (14 << 10) + (frac_Q15 * 2^-4) = (14 << 10) + (frac_Q15 >> 4)
|
||||
//
|
||||
// Note that frac_Q15 = (|energy| & 0x00003FFF)
|
||||
|
||||
// Calculate and add the fractional part to |log2_energy|.
|
||||
log2_energy += (int16_t) ((energy & 0x00003FFF) >> 4);
|
||||
|
||||
// |kLogConst| is in Q9, |log2_energy| in Q10 and |tot_rshifts| in Q0.
|
||||
// Note that we in our derivation above have accounted for an output in Q4.
|
||||
*log_energy = (int16_t)(((kLogConst * log2_energy) >> 19) +
|
||||
((tot_rshifts * kLogConst) >> 9));
|
||||
|
||||
if (*log_energy < 0) {
|
||||
*log_energy = 0;
|
||||
}
|
||||
} else {
|
||||
*log_energy = offset;
|
||||
return;
|
||||
}
|
||||
|
||||
*log_energy += offset;
|
||||
|
||||
// Update the approximate |total_energy| with the energy of |data_in|, if
|
||||
// |total_energy| has not exceeded |kMinEnergy|. |total_energy| is used as an
|
||||
// energy indicator in WebRtcVad_GmmProbability() in vad_core.c.
|
||||
if (*total_energy <= kMinEnergy) {
|
||||
if (tot_rshifts >= 0) {
|
||||
// We know by construction that the |energy| > |kMinEnergy| in Q0, so add
|
||||
// an arbitrary value such that |total_energy| exceeds |kMinEnergy|.
|
||||
*total_energy += kMinEnergy + 1;
|
||||
} else {
|
||||
// By construction |energy| is represented by 15 bits, hence any number of
|
||||
// right shifted |energy| will fit in an int16_t. In addition, adding the
|
||||
// value to |total_energy| is wrap around safe as long as
|
||||
// |kMinEnergy| < 8192.
|
||||
*total_energy += (int16_t) (energy >> -tot_rshifts); // Q0.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
size_t data_length, int16_t* features) {
|
||||
int16_t total_energy = 0;
|
||||
// We expect |data_length| to be 80, 160 or 240 samples, which corresponds to
|
||||
// 10, 20 or 30 ms in 8 kHz. Therefore, the intermediate downsampled data will
|
||||
// have at most 120 samples after the first split and at most 60 samples after
|
||||
// the second split.
|
||||
int16_t hp_120[120], lp_120[120];
|
||||
int16_t hp_60[60], lp_60[60];
|
||||
const size_t half_data_length = data_length >> 1;
|
||||
size_t length = half_data_length; // |data_length| / 2, corresponds to
|
||||
// bandwidth = 2000 Hz after downsampling.
|
||||
|
||||
// Initialize variables for the first SplitFilter().
|
||||
int frequency_band = 0;
|
||||
const int16_t* in_ptr = data_in; // [0 - 4000] Hz.
|
||||
int16_t* hp_out_ptr = hp_120; // [2000 - 4000] Hz.
|
||||
int16_t* lp_out_ptr = lp_120; // [0 - 2000] Hz.
|
||||
|
||||
assert(data_length <= 240);
|
||||
assert(4 < kNumChannels - 1); // Checking maximum |frequency_band|.
|
||||
|
||||
// Split at 2000 Hz and downsample.
|
||||
SplitFilter(in_ptr, data_length, &self->upper_state[frequency_band],
|
||||
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
|
||||
|
||||
// For the upper band (2000 Hz - 4000 Hz) split at 3000 Hz and downsample.
|
||||
frequency_band = 1;
|
||||
in_ptr = hp_120; // [2000 - 4000] Hz.
|
||||
hp_out_ptr = hp_60; // [3000 - 4000] Hz.
|
||||
lp_out_ptr = lp_60; // [2000 - 3000] Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
|
||||
|
||||
// Energy in 3000 Hz - 4000 Hz.
|
||||
length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz.
|
||||
|
||||
LogOfEnergy(hp_60, length, kOffsetVector[5], &total_energy, &features[5]);
|
||||
|
||||
// Energy in 2000 Hz - 3000 Hz.
|
||||
LogOfEnergy(lp_60, length, kOffsetVector[4], &total_energy, &features[4]);
|
||||
|
||||
// For the lower band (0 Hz - 2000 Hz) split at 1000 Hz and downsample.
|
||||
frequency_band = 2;
|
||||
in_ptr = lp_120; // [0 - 2000] Hz.
|
||||
hp_out_ptr = hp_60; // [1000 - 2000] Hz.
|
||||
lp_out_ptr = lp_60; // [0 - 1000] Hz.
|
||||
length = half_data_length; // |data_length| / 2 <=> bandwidth = 2000 Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
|
||||
|
||||
// Energy in 1000 Hz - 2000 Hz.
|
||||
length >>= 1; // |data_length| / 4 <=> bandwidth = 1000 Hz.
|
||||
LogOfEnergy(hp_60, length, kOffsetVector[3], &total_energy, &features[3]);
|
||||
|
||||
// For the lower band (0 Hz - 1000 Hz) split at 500 Hz and downsample.
|
||||
frequency_band = 3;
|
||||
in_ptr = lp_60; // [0 - 1000] Hz.
|
||||
hp_out_ptr = hp_120; // [500 - 1000] Hz.
|
||||
lp_out_ptr = lp_120; // [0 - 500] Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
|
||||
|
||||
// Energy in 500 Hz - 1000 Hz.
|
||||
length >>= 1; // |data_length| / 8 <=> bandwidth = 500 Hz.
|
||||
LogOfEnergy(hp_120, length, kOffsetVector[2], &total_energy, &features[2]);
|
||||
|
||||
// For the lower band (0 Hz - 500 Hz) split at 250 Hz and downsample.
|
||||
frequency_band = 4;
|
||||
in_ptr = lp_120; // [0 - 500] Hz.
|
||||
hp_out_ptr = hp_60; // [250 - 500] Hz.
|
||||
lp_out_ptr = lp_60; // [0 - 250] Hz.
|
||||
SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
|
||||
&self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
|
||||
|
||||
// Energy in 250 Hz - 500 Hz.
|
||||
length >>= 1; // |data_length| / 16 <=> bandwidth = 250 Hz.
|
||||
LogOfEnergy(hp_60, length, kOffsetVector[1], &total_energy, &features[1]);
|
||||
|
||||
// Remove 0 Hz - 80 Hz, by high pass filtering the lower band.
|
||||
HighPassFilter(lp_60, length, self->hp_filter_state, hp_120);
|
||||
|
||||
// Energy in 80 Hz - 250 Hz.
|
||||
LogOfEnergy(hp_120, length, kOffsetVector[0], &total_energy, &features[0]);
|
||||
|
||||
return total_energy;
|
||||
}
|
44
webrtc/common_audio/vad/vad_filterbank.h
Normal file
44
webrtc/common_audio/vad/vad_filterbank.h
Normal file
@ -0,0 +1,44 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This file includes feature calculating functionality used in vad_core.c.
|
||||
*/
|
||||
|
||||
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_FILTERBANK_H_
|
||||
#define WEBRTC_COMMON_AUDIO_VAD_VAD_FILTERBANK_H_
|
||||
|
||||
#include "webrtc/common_audio/vad/vad_core.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
// Takes |data_length| samples of |data_in| and calculates the logarithm of the
|
||||
// energy of each of the |kNumChannels| = 6 frequency bands used by the VAD:
|
||||
// 80 Hz - 250 Hz
|
||||
// 250 Hz - 500 Hz
|
||||
// 500 Hz - 1000 Hz
|
||||
// 1000 Hz - 2000 Hz
|
||||
// 2000 Hz - 3000 Hz
|
||||
// 3000 Hz - 4000 Hz
|
||||
//
|
||||
// The values are given in Q4 and written to |features|. Further, an approximate
|
||||
// overall energy is returned. The return value is used in
|
||||
// WebRtcVad_GmmProbability() as a signal indicator, hence it is arbitrary above
|
||||
// the threshold |kMinEnergy|.
|
||||
//
|
||||
// - self [i/o] : State information of the VAD.
|
||||
// - data_in [i] : Input audio data, for feature extraction.
|
||||
// - data_length [i] : Audio data size, in number of samples.
|
||||
// - features [o] : 10 * log10(energy in each frequency band), Q4.
|
||||
// - returns : Total energy of the signal (NOTE! This value is not
|
||||
// exact. It is only used in a comparison.)
|
||||
int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
|
||||
size_t data_length, int16_t* features);
|
||||
|
||||
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_FILTERBANK_H_
|
83
webrtc/common_audio/vad/vad_gmm.c
Normal file
83
webrtc/common_audio/vad/vad_gmm.c
Normal file
@ -0,0 +1,83 @@
|
||||
/*
|
||||
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/common_audio/vad/vad_gmm.h"
|
||||
|
||||
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
static const int32_t kCompVar = 22005;
|
||||
static const int16_t kLog2Exp = 5909; // log2(exp(1)) in Q12.
|
||||
|
||||
// For a normal distribution, the probability of |input| is calculated and
|
||||
// returned (in Q20). The formula for normal distributed probability is
|
||||
//
|
||||
// 1 / s * exp(-(x - m)^2 / (2 * s^2))
|
||||
//
|
||||
// where the parameters are given in the following Q domains:
|
||||
// m = |mean| (Q7)
|
||||
// s = |std| (Q7)
|
||||
// x = |input| (Q4)
|
||||
// in addition to the probability we output |delta| (in Q11) used when updating
|
||||
// the noise/speech model.
|
||||
int32_t WebRtcVad_GaussianProbability(int16_t input,
|
||||
int16_t mean,
|
||||
int16_t std,
|
||||
int16_t* delta) {
|
||||
int16_t tmp16, inv_std, inv_std2, exp_value = 0;
|
||||
int32_t tmp32;
|
||||
|
||||
// Calculate |inv_std| = 1 / s, in Q10.
|
||||
// 131072 = 1 in Q17, and (|std| >> 1) is for rounding instead of truncation.
|
||||
// Q-domain: Q17 / Q7 = Q10.
|
||||
tmp32 = (int32_t) 131072 + (int32_t) (std >> 1);
|
||||
inv_std = (int16_t) WebRtcSpl_DivW32W16(tmp32, std);
|
||||
|
||||
// Calculate |inv_std2| = 1 / s^2, in Q14.
|
||||
tmp16 = (inv_std >> 2); // Q10 -> Q8.
|
||||
// Q-domain: (Q8 * Q8) >> 2 = Q14.
|
||||
inv_std2 = (int16_t)((tmp16 * tmp16) >> 2);
|
||||
// TODO(bjornv): Investigate if changing to
|
||||
// inv_std2 = (int16_t)((inv_std * inv_std) >> 6);
|
||||
// gives better accuracy.
|
||||
|
||||
tmp16 = (input << 3); // Q4 -> Q7
|
||||
tmp16 = tmp16 - mean; // Q7 - Q7 = Q7
|
||||
|
||||
// To be used later, when updating noise/speech model.
|
||||
// |delta| = (x - m) / s^2, in Q11.
|
||||
// Q-domain: (Q14 * Q7) >> 10 = Q11.
|
||||
*delta = (int16_t)((inv_std2 * tmp16) >> 10);
|
||||
|
||||
// Calculate the exponent |tmp32| = (x - m)^2 / (2 * s^2), in Q10. Replacing
|
||||
// division by two with one shift.
|
||||
// Q-domain: (Q11 * Q7) >> 8 = Q10.
|
||||
tmp32 = (*delta * tmp16) >> 9;
|
||||
|
||||
// If the exponent is small enough to give a non-zero probability we calculate
|
||||
// |exp_value| ~= exp(-(x - m)^2 / (2 * s^2))
|
||||
// ~= exp2(-log2(exp(1)) * |tmp32|).
|
||||
if (tmp32 < kCompVar) {
|
||||
// Calculate |tmp16| = log2(exp(1)) * |tmp32|, in Q10.
|
||||
// Q-domain: (Q12 * Q10) >> 12 = Q10.
|
||||
tmp16 = (int16_t)((kLog2Exp * tmp32) >> 12);
|
||||
tmp16 = -tmp16;
|
||||
exp_value = (0x0400 | (tmp16 & 0x03FF));
|
||||
tmp16 ^= 0xFFFF;
|
||||
tmp16 >>= 10;
|
||||
tmp16 += 1;
|
||||
// Get |exp_value| = exp(-|tmp32|) in Q10.
|
||||
exp_value >>= tmp16;
|
||||
}
|
||||
|
||||
// Calculate and return (1 / s) * exp(-(x - m)^2 / (2 * s^2)), in Q20.
|
||||
// Q-domain: Q10 * Q10 = Q20.
|
||||
return inv_std * exp_value;
|
||||
}
|
39
webrtc/common_audio/vad/vad_gmm.h
Normal file
39
webrtc/common_audio/vad/vad_gmm.h
Normal file
@ -0,0 +1,39 @@
|
||||
/*
|
||||
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
// Gaussian probability calculations internally used in vad_core.c.
|
||||
|
||||
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_GMM_H_
|
||||
#define WEBRTC_COMMON_AUDIO_VAD_VAD_GMM_H_
|
||||
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
// Calculates the probability for |input|, given that |input| comes from a
|
||||
// normal distribution with mean and standard deviation (|mean|, |std|).
|
||||
//
|
||||
// Inputs:
|
||||
// - input : input sample in Q4.
|
||||
// - mean : mean input in the statistical model, Q7.
|
||||
// - std : standard deviation, Q7.
|
||||
//
|
||||
// Output:
|
||||
//
|
||||
// - delta : input used when updating the model, Q11.
|
||||
// |delta| = (|input| - |mean|) / |std|^2.
|
||||
//
|
||||
// Return:
|
||||
// (probability for |input|) =
|
||||
// 1 / |std| * exp(-(|input| - |mean|)^2 / (2 * |std|^2));
|
||||
int32_t WebRtcVad_GaussianProbability(int16_t input,
|
||||
int16_t mean,
|
||||
int16_t std,
|
||||
int16_t* delta);
|
||||
|
||||
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_GMM_H_
|
178
webrtc/common_audio/vad/vad_sp.c
Normal file
178
webrtc/common_audio/vad/vad_sp.c
Normal file
@ -0,0 +1,178 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/common_audio/vad/vad_sp.h"
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "webrtc/common_audio/vad/vad_core.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
// Allpass filter coefficients, upper and lower, in Q13.
|
||||
// Upper: 0.64, Lower: 0.17.
|
||||
static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 }; // Q13.
|
||||
static const int16_t kSmoothingDown = 6553; // 0.2 in Q15.
|
||||
static const int16_t kSmoothingUp = 32439; // 0.99 in Q15.
|
||||
|
||||
// TODO(bjornv): Move this function to vad_filterbank.c.
|
||||
// Downsampling filter based on splitting filter and allpass functions.
|
||||
void WebRtcVad_Downsampling(const int16_t* signal_in,
|
||||
int16_t* signal_out,
|
||||
int32_t* filter_state,
|
||||
size_t in_length) {
|
||||
int16_t tmp16_1 = 0, tmp16_2 = 0;
|
||||
int32_t tmp32_1 = filter_state[0];
|
||||
int32_t tmp32_2 = filter_state[1];
|
||||
size_t n = 0;
|
||||
// Downsampling by 2 gives half length.
|
||||
size_t half_length = (in_length >> 1);
|
||||
|
||||
// Filter coefficients in Q13, filter state in Q0.
|
||||
for (n = 0; n < half_length; n++) {
|
||||
// All-pass filtering upper branch.
|
||||
tmp16_1 = (int16_t) ((tmp32_1 >> 1) +
|
||||
((kAllPassCoefsQ13[0] * *signal_in) >> 14));
|
||||
*signal_out = tmp16_1;
|
||||
tmp32_1 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[0] * tmp16_1) >> 12);
|
||||
|
||||
// All-pass filtering lower branch.
|
||||
tmp16_2 = (int16_t) ((tmp32_2 >> 1) +
|
||||
((kAllPassCoefsQ13[1] * *signal_in) >> 14));
|
||||
*signal_out++ += tmp16_2;
|
||||
tmp32_2 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[1] * tmp16_2) >> 12);
|
||||
}
|
||||
// Store the filter states.
|
||||
filter_state[0] = tmp32_1;
|
||||
filter_state[1] = tmp32_2;
|
||||
}
|
||||
|
||||
// Inserts |feature_value| into |low_value_vector|, if it is one of the 16
|
||||
// smallest values the last 100 frames. Then calculates and returns the median
|
||||
// of the five smallest values.
|
||||
int16_t WebRtcVad_FindMinimum(VadInstT* self,
|
||||
int16_t feature_value,
|
||||
int channel) {
|
||||
int i = 0, j = 0;
|
||||
int position = -1;
|
||||
// Offset to beginning of the 16 minimum values in memory.
|
||||
const int offset = (channel << 4);
|
||||
int16_t current_median = 1600;
|
||||
int16_t alpha = 0;
|
||||
int32_t tmp32 = 0;
|
||||
// Pointer to memory for the 16 minimum values and the age of each value of
|
||||
// the |channel|.
|
||||
int16_t* age = &self->index_vector[offset];
|
||||
int16_t* smallest_values = &self->low_value_vector[offset];
|
||||
|
||||
assert(channel < kNumChannels);
|
||||
|
||||
// Each value in |smallest_values| is getting 1 loop older. Update |age|, and
|
||||
// remove old values.
|
||||
for (i = 0; i < 16; i++) {
|
||||
if (age[i] != 100) {
|
||||
age[i]++;
|
||||
} else {
|
||||
// Too old value. Remove from memory and shift larger values downwards.
|
||||
for (j = i; j < 16; j++) {
|
||||
smallest_values[j] = smallest_values[j + 1];
|
||||
age[j] = age[j + 1];
|
||||
}
|
||||
age[15] = 101;
|
||||
smallest_values[15] = 10000;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if |feature_value| is smaller than any of the values in
|
||||
// |smallest_values|. If so, find the |position| where to insert the new value
|
||||
// (|feature_value|).
|
||||
if (feature_value < smallest_values[7]) {
|
||||
if (feature_value < smallest_values[3]) {
|
||||
if (feature_value < smallest_values[1]) {
|
||||
if (feature_value < smallest_values[0]) {
|
||||
position = 0;
|
||||
} else {
|
||||
position = 1;
|
||||
}
|
||||
} else if (feature_value < smallest_values[2]) {
|
||||
position = 2;
|
||||
} else {
|
||||
position = 3;
|
||||
}
|
||||
} else if (feature_value < smallest_values[5]) {
|
||||
if (feature_value < smallest_values[4]) {
|
||||
position = 4;
|
||||
} else {
|
||||
position = 5;
|
||||
}
|
||||
} else if (feature_value < smallest_values[6]) {
|
||||
position = 6;
|
||||
} else {
|
||||
position = 7;
|
||||
}
|
||||
} else if (feature_value < smallest_values[15]) {
|
||||
if (feature_value < smallest_values[11]) {
|
||||
if (feature_value < smallest_values[9]) {
|
||||
if (feature_value < smallest_values[8]) {
|
||||
position = 8;
|
||||
} else {
|
||||
position = 9;
|
||||
}
|
||||
} else if (feature_value < smallest_values[10]) {
|
||||
position = 10;
|
||||
} else {
|
||||
position = 11;
|
||||
}
|
||||
} else if (feature_value < smallest_values[13]) {
|
||||
if (feature_value < smallest_values[12]) {
|
||||
position = 12;
|
||||
} else {
|
||||
position = 13;
|
||||
}
|
||||
} else if (feature_value < smallest_values[14]) {
|
||||
position = 14;
|
||||
} else {
|
||||
position = 15;
|
||||
}
|
||||
}
|
||||
|
||||
// If we have detected a new small value, insert it at the correct position
|
||||
// and shift larger values up.
|
||||
if (position > -1) {
|
||||
for (i = 15; i > position; i--) {
|
||||
smallest_values[i] = smallest_values[i - 1];
|
||||
age[i] = age[i - 1];
|
||||
}
|
||||
smallest_values[position] = feature_value;
|
||||
age[position] = 1;
|
||||
}
|
||||
|
||||
// Get |current_median|.
|
||||
if (self->frame_counter > 2) {
|
||||
current_median = smallest_values[2];
|
||||
} else if (self->frame_counter > 0) {
|
||||
current_median = smallest_values[0];
|
||||
}
|
||||
|
||||
// Smooth the median value.
|
||||
if (self->frame_counter > 0) {
|
||||
if (current_median < self->mean_value[channel]) {
|
||||
alpha = kSmoothingDown; // 0.2 in Q15.
|
||||
} else {
|
||||
alpha = kSmoothingUp; // 0.99 in Q15.
|
||||
}
|
||||
}
|
||||
tmp32 = (alpha + 1) * self->mean_value[channel];
|
||||
tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median;
|
||||
tmp32 += 16384;
|
||||
self->mean_value[channel] = (int16_t) (tmp32 >> 15);
|
||||
|
||||
return self->mean_value[channel];
|
||||
}
|
56
webrtc/common_audio/vad/vad_sp.h
Normal file
56
webrtc/common_audio/vad/vad_sp.h
Normal file
@ -0,0 +1,56 @@
|
||||
/*
|
||||
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
|
||||
// This file includes specific signal processing tools used in vad_core.c.
|
||||
|
||||
#ifndef WEBRTC_COMMON_AUDIO_VAD_VAD_SP_H_
|
||||
#define WEBRTC_COMMON_AUDIO_VAD_VAD_SP_H_
|
||||
|
||||
#include "webrtc/common_audio/vad/vad_core.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
// Downsamples the signal by a factor 2, eg. 32->16 or 16->8.
|
||||
//
|
||||
// Inputs:
|
||||
// - signal_in : Input signal.
|
||||
// - in_length : Length of input signal in samples.
|
||||
//
|
||||
// Input & Output:
|
||||
// - filter_state : Current filter states of the two all-pass filters. The
|
||||
// |filter_state| is updated after all samples have been
|
||||
// processed.
|
||||
//
|
||||
// Output:
|
||||
// - signal_out : Downsampled signal (of length |in_length| / 2).
|
||||
void WebRtcVad_Downsampling(const int16_t* signal_in,
|
||||
int16_t* signal_out,
|
||||
int32_t* filter_state,
|
||||
size_t in_length);
|
||||
|
||||
// Updates and returns the smoothed feature minimum. As minimum we use the
|
||||
// median of the five smallest feature values in a 100 frames long window.
|
||||
// As long as |handle->frame_counter| is zero, that is, we haven't received any
|
||||
// "valid" data, FindMinimum() outputs the default value of 1600.
|
||||
//
|
||||
// Inputs:
|
||||
// - feature_value : New feature value to update with.
|
||||
// - channel : Channel number.
|
||||
//
|
||||
// Input & Output:
|
||||
// - handle : State information of the VAD.
|
||||
//
|
||||
// Returns:
|
||||
// : Smoothed minimum value for a moving window.
|
||||
int16_t WebRtcVad_FindMinimum(VadInstT* handle,
|
||||
int16_t feature_value,
|
||||
int channel);
|
||||
|
||||
#endif // WEBRTC_COMMON_AUDIO_VAD_VAD_SP_H_
|
116
webrtc/common_audio/vad/webrtc_vad.c
Normal file
116
webrtc/common_audio/vad/webrtc_vad.c
Normal file
@ -0,0 +1,116 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/common_audio/vad/include/webrtc_vad.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "webrtc/common_audio/vad/vad_core.h"
|
||||
#include "webrtc/typedefs.h"
|
||||
|
||||
static const int kInitCheck = 42;
|
||||
static const int kValidRates[] = { 8000, 16000, 32000, 48000 };
|
||||
static const size_t kRatesSize = sizeof(kValidRates) / sizeof(*kValidRates);
|
||||
static const int kMaxFrameLengthMs = 30;
|
||||
|
||||
VadInst* WebRtcVad_Create() {
|
||||
VadInstT* self = (VadInstT*)malloc(sizeof(VadInstT));
|
||||
|
||||
WebRtcSpl_Init();
|
||||
self->init_flag = 0;
|
||||
|
||||
return (VadInst*)self;
|
||||
}
|
||||
|
||||
void WebRtcVad_Free(VadInst* handle) {
|
||||
free(handle);
|
||||
}
|
||||
|
||||
// TODO(bjornv): Move WebRtcVad_InitCore() code here.
|
||||
int WebRtcVad_Init(VadInst* handle) {
|
||||
// Initialize the core VAD component.
|
||||
return WebRtcVad_InitCore((VadInstT*) handle);
|
||||
}
|
||||
|
||||
// TODO(bjornv): Move WebRtcVad_set_mode_core() code here.
|
||||
int WebRtcVad_set_mode(VadInst* handle, int mode) {
|
||||
VadInstT* self = (VadInstT*) handle;
|
||||
|
||||
if (handle == NULL) {
|
||||
return -1;
|
||||
}
|
||||
if (self->init_flag != kInitCheck) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
return WebRtcVad_set_mode_core(self, mode);
|
||||
}
|
||||
|
||||
int WebRtcVad_Process(VadInst* handle, int fs, const int16_t* audio_frame,
|
||||
size_t frame_length) {
|
||||
int vad = -1;
|
||||
VadInstT* self = (VadInstT*) handle;
|
||||
|
||||
if (handle == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (self->init_flag != kInitCheck) {
|
||||
return -1;
|
||||
}
|
||||
if (audio_frame == NULL) {
|
||||
return -1;
|
||||
}
|
||||
if (WebRtcVad_ValidRateAndFrameLength(fs, frame_length) != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (fs == 48000) {
|
||||
vad = WebRtcVad_CalcVad48khz(self, audio_frame, frame_length);
|
||||
} else if (fs == 32000) {
|
||||
vad = WebRtcVad_CalcVad32khz(self, audio_frame, frame_length);
|
||||
} else if (fs == 16000) {
|
||||
vad = WebRtcVad_CalcVad16khz(self, audio_frame, frame_length);
|
||||
} else if (fs == 8000) {
|
||||
vad = WebRtcVad_CalcVad8khz(self, audio_frame, frame_length);
|
||||
}
|
||||
|
||||
if (vad > 0) {
|
||||
vad = 1;
|
||||
}
|
||||
return vad;
|
||||
}
|
||||
|
||||
int WebRtcVad_ValidRateAndFrameLength(int rate, size_t frame_length) {
|
||||
int return_value = -1;
|
||||
size_t i;
|
||||
int valid_length_ms;
|
||||
size_t valid_length;
|
||||
|
||||
// We only allow 10, 20 or 30 ms frames. Loop through valid frame rates and
|
||||
// see if we have a matching pair.
|
||||
for (i = 0; i < kRatesSize; i++) {
|
||||
if (kValidRates[i] == rate) {
|
||||
for (valid_length_ms = 10; valid_length_ms <= kMaxFrameLengthMs;
|
||||
valid_length_ms += 10) {
|
||||
valid_length = (size_t)(kValidRates[i] / 1000 * valid_length_ms);
|
||||
if (frame_length == valid_length) {
|
||||
return_value = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return return_value;
|
||||
}
|
Reference in New Issue
Block a user