Update common_audio

Corresponds to upstream commit 524e9b043e7e86fd72353b987c9d5f6a1ebf83e1

Update notes:

 * Moved src/ to webrtc/ to easily diff against the third_party/webrtc
   in the chromium tree

 * ARM/NEON/MIPS support is not yet hooked up

 * Tests have not been copied
This commit is contained in:
Arun Raghavan
2015-10-13 12:16:16 +05:30
parent 9413986e79
commit c4fb4e38de
230 changed files with 11201 additions and 8656 deletions

View File

@ -0,0 +1,16 @@
noinst_LTLIBRARIES = libaec.la
libaec_la_SOURCES = interface/echo_cancellation.h \
echo_cancellation.c \
aec_core.h \
aec_core.c \
aec_core_sse2.c \
aec_rdft.h \
aec_rdft.c \
aec_rdft_sse2.c \
resampler.h \
resampler.c
libaec_la_CFLAGS = $(AM_CFLAGS) $(COMMON_CFLAGS) \
-I$(top_srcdir)/src/common_audio/signal_processing_library/main/interface \
-I$(top_srcdir)/src/system_wrappers/interface \
-I$(top_srcdir)/src/modules/audio_processing/utility

View File

@ -0,0 +1,40 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'targets': [
{
'target_name': 'aec',
'type': '<(library)',
'dependencies': [
'<(webrtc_root)/common_audio/common_audio.gyp:spl',
'apm_util'
],
'include_dirs': [
'interface',
],
'direct_dependent_settings': {
'include_dirs': [
'interface',
],
},
'sources': [
'interface/echo_cancellation.h',
'echo_cancellation.c',
'aec_core.h',
'aec_core.c',
'aec_core_sse2.c',
'aec_rdft.h',
'aec_rdft.c',
'aec_rdft_sse2.c',
'resampler.h',
'resampler.c',
],
},
],
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,181 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Specifies the interface for the AEC core.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_CORE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_CORE_H_
#include <stdio.h>
#include "signal_processing_library.h"
#include "typedefs.h"
//#define AEC_DEBUG // for recording files
#define FRAME_LEN 80
#define PART_LEN 64 // Length of partition
#define PART_LEN1 (PART_LEN + 1) // Unique fft coefficients
#define PART_LEN2 (PART_LEN * 2) // Length of partition * 2
#define NR_PART 12 // Number of partitions
#define FILT_LEN (PART_LEN * NR_PART) // Filter length
#define FILT_LEN2 (FILT_LEN * 2) // Double filter length
#define FAR_BUF_LEN (FILT_LEN2 * 2)
#define PREF_BAND_SIZE 24
#define BLOCKL_MAX FRAME_LEN
// Maximum delay in fixed point delay estimator, used for logging
enum {kMaxDelay = 100};
typedef float complex_t[2];
// For performance reasons, some arrays of complex numbers are replaced by twice
// as long arrays of float, all the real parts followed by all the imaginary
// ones (complex_t[SIZE] -> float[2][SIZE]). This allows SIMD optimizations and
// is better than two arrays (one for the real parts and one for the imaginary
// parts) as this other way would require two pointers instead of one and cause
// extra register spilling. This also allows the offsets to be calculated at
// compile time.
// Metrics
enum {offsetLevel = -100};
typedef struct {
float sfrsum;
int sfrcounter;
float framelevel;
float frsum;
int frcounter;
float minlevel;
float averagelevel;
} power_level_t;
typedef struct {
float instant;
float average;
float min;
float max;
float sum;
float hisum;
float himean;
int counter;
int hicounter;
} stats_t;
typedef struct {
int farBufWritePos, farBufReadPos;
int knownDelay;
int inSamples, outSamples;
int delayEstCtr;
void *farFrBuf, *nearFrBuf, *outFrBuf;
void *nearFrBufH;
void *outFrBufH;
float xBuf[PART_LEN2]; // farend
float dBuf[PART_LEN2]; // nearend
float eBuf[PART_LEN2]; // error
float dBufH[PART_LEN2]; // nearend
float xPow[PART_LEN1];
float dPow[PART_LEN1];
float dMinPow[PART_LEN1];
float dInitMinPow[PART_LEN1];
float *noisePow;
float xfBuf[2][NR_PART * PART_LEN1]; // farend fft buffer
float wfBuf[2][NR_PART * PART_LEN1]; // filter fft
complex_t sde[PART_LEN1]; // cross-psd of nearend and error
complex_t sxd[PART_LEN1]; // cross-psd of farend and nearend
complex_t xfwBuf[NR_PART * PART_LEN1]; // farend windowed fft buffer
float sx[PART_LEN1], sd[PART_LEN1], se[PART_LEN1]; // far, near and error psd
float hNs[PART_LEN1];
float hNlFbMin, hNlFbLocalMin;
float hNlXdAvgMin;
int hNlNewMin, hNlMinCtr;
float overDrive, overDriveSm;
float targetSupp, minOverDrive;
float outBuf[PART_LEN];
int delayIdx;
short stNearState, echoState;
short divergeState;
int xfBufBlockPos;
short farBuf[FILT_LEN2 * 2];
short mult; // sampling frequency multiple
int sampFreq;
WebRtc_UWord32 seed;
float mu; // stepsize
float errThresh; // error threshold
int noiseEstCtr;
power_level_t farlevel;
power_level_t nearlevel;
power_level_t linoutlevel;
power_level_t nlpoutlevel;
int metricsMode;
int stateCounter;
stats_t erl;
stats_t erle;
stats_t aNlp;
stats_t rerl;
// Quantities to control H band scaling for SWB input
int freq_avg_ic; //initial bin for averaging nlp gain
int flag_Hband_cn; //for comfort noise
float cn_scale_Hband; //scale for comfort noise in H band
int delay_histogram[kMaxDelay];
int delay_logging_enabled;
void* delay_estimator;
#ifdef AEC_DEBUG
FILE *farFile;
FILE *nearFile;
FILE *outFile;
FILE *outLpFile;
#endif
} aec_t;
typedef void (*WebRtcAec_FilterFar_t)(aec_t *aec, float yf[2][PART_LEN1]);
extern WebRtcAec_FilterFar_t WebRtcAec_FilterFar;
typedef void (*WebRtcAec_ScaleErrorSignal_t)(aec_t *aec, float ef[2][PART_LEN1]);
extern WebRtcAec_ScaleErrorSignal_t WebRtcAec_ScaleErrorSignal;
typedef void (*WebRtcAec_FilterAdaptation_t)
(aec_t *aec, float *fft, float ef[2][PART_LEN1]);
extern WebRtcAec_FilterAdaptation_t WebRtcAec_FilterAdaptation;
typedef void (*WebRtcAec_OverdriveAndSuppress_t)
(aec_t *aec, float hNl[PART_LEN1], const float hNlFb, float efw[2][PART_LEN1]);
extern WebRtcAec_OverdriveAndSuppress_t WebRtcAec_OverdriveAndSuppress;
int WebRtcAec_CreateAec(aec_t **aec);
int WebRtcAec_FreeAec(aec_t *aec);
int WebRtcAec_InitAec(aec_t *aec, int sampFreq);
void WebRtcAec_InitAec_SSE2(void);
void WebRtcAec_InitMetrics(aec_t *aec);
void WebRtcAec_ProcessFrame(aec_t *aec, const short *farend,
const short *nearend, const short *nearendH,
short *out, short *outH,
int knownDelay);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_CORE_H_

View File

@ -0,0 +1,417 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, SSE2 version of speed-critical functions.
*/
#include "typedefs.h"
#if defined(WEBRTC_USE_SSE2)
#include <emmintrin.h>
#include <math.h>
#include "aec_core.h"
#include "aec_rdft.h"
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm)
{
return aRe * bRe - aIm * bIm;
}
__inline static float MulIm(float aRe, float aIm, float bRe, float bIm)
{
return aRe * bIm + aIm * bRe;
}
static void FilterFarSSE2(aec_t *aec, float yf[2][PART_LEN1])
{
int i;
for (i = 0; i < NR_PART; i++) {
int j;
int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + aec->xfBufBlockPos >= NR_PART) {
xPos -= NR_PART*(PART_LEN1);
}
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
const __m128 yf_re = _mm_loadu_ps(&yf[0][j]);
const __m128 yf_im = _mm_loadu_ps(&yf[1][j]);
const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re);
const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im);
const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im);
const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re);
const __m128 e = _mm_sub_ps(a, b);
const __m128 f = _mm_add_ps(c, d);
const __m128 g = _mm_add_ps(yf_re, e);
const __m128 h = _mm_add_ps(yf_im, f);
_mm_storeu_ps(&yf[0][j], g);
_mm_storeu_ps(&yf[1][j], h);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
}
}
}
static void ScaleErrorSignalSSE2(aec_t *aec, float ef[2][PART_LEN1])
{
const __m128 k1e_10f = _mm_set1_ps(1e-10f);
const __m128 kThresh = _mm_set1_ps(aec->errThresh);
const __m128 kMu = _mm_set1_ps(aec->mu);
int i;
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 xPow = _mm_loadu_ps(&aec->xPow[i]);
const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
const __m128 xPowPlus = _mm_add_ps(xPow, k1e_10f);
__m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
__m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
const __m128 absEf = _mm_sqrt_ps(ef_sum2);
const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
__m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
__m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
__m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
ef_re_if = _mm_and_ps(bigger, ef_re_if);
ef_im_if = _mm_and_ps(bigger, ef_im_if);
ef_re = _mm_andnot_ps(bigger, ef_re);
ef_im = _mm_andnot_ps(bigger, ef_im);
ef_re = _mm_or_ps(ef_re, ef_re_if);
ef_im = _mm_or_ps(ef_im, ef_im_if);
ef_re = _mm_mul_ps(ef_re, kMu);
ef_im = _mm_mul_ps(ef_im, kMu);
_mm_storeu_ps(&ef[0][i], ef_re);
_mm_storeu_ps(&ef[1][i], ef_im);
}
// scalar code for the remaining items.
for (; i < (PART_LEN1); i++) {
float absEf;
ef[0][i] /= (aec->xPow[i] + 1e-10f);
ef[1][i] /= (aec->xPow[i] + 1e-10f);
absEf = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
if (absEf > aec->errThresh) {
absEf = aec->errThresh / (absEf + 1e-10f);
ef[0][i] *= absEf;
ef[1][i] *= absEf;
}
// Stepsize factor
ef[0][i] *= aec->mu;
ef[1][i] *= aec->mu;
}
}
static void FilterAdaptationSSE2(aec_t *aec, float *fft, float ef[2][PART_LEN1]) {
int i, j;
for (i = 0; i < NR_PART; i++) {
int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1);
int pos = i * PART_LEN1;
// Check for wrap
if (i + aec->xfBufBlockPos >= NR_PART) {
xPos -= NR_PART * PART_LEN1;
}
// Process the whole array...
for (j = 0; j < PART_LEN; j+= 4) {
// Load xfBuf and ef.
const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
const __m128 ef_re = _mm_loadu_ps(&ef[0][j]);
const __m128 ef_im = _mm_loadu_ps(&ef[1][j]);
// Calculate the product of conjugate(xfBuf) by ef.
// re(conjugate(a) * b) = aRe * bRe + aIm * bIm
// im(conjugate(a) * b)= aRe * bIm - aIm * bRe
const __m128 a = _mm_mul_ps(xfBuf_re, ef_re);
const __m128 b = _mm_mul_ps(xfBuf_im, ef_im);
const __m128 c = _mm_mul_ps(xfBuf_re, ef_im);
const __m128 d = _mm_mul_ps(xfBuf_im, ef_re);
const __m128 e = _mm_add_ps(a, b);
const __m128 f = _mm_sub_ps(c, d);
// Interleave real and imaginary parts.
const __m128 g = _mm_unpacklo_ps(e, f);
const __m128 h = _mm_unpackhi_ps(e, f);
// Store
_mm_storeu_ps(&fft[2*j + 0], g);
_mm_storeu_ps(&fft[2*j + 4], h);
}
// ... and fixup the first imaginary entry.
fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
-aec->xfBuf[1][xPos + PART_LEN],
ef[0][PART_LEN], ef[1][PART_LEN]);
aec_rdft_inverse_128(fft);
memset(fft + PART_LEN, 0, sizeof(float)*PART_LEN);
// fft scaling
{
float scale = 2.0f / PART_LEN2;
const __m128 scale_ps = _mm_load_ps1(&scale);
for (j = 0; j < PART_LEN; j+=4) {
const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
_mm_storeu_ps(&fft[j], fft_scale);
}
}
aec_rdft_forward_128(fft);
{
float wt1 = aec->wfBuf[1][pos];
aec->wfBuf[0][pos + PART_LEN] += fft[1];
for (j = 0; j < PART_LEN; j+= 4) {
__m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
__m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2 ,0));
const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3 ,1));
wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
_mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re);
_mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im);
}
aec->wfBuf[1][pos] = wt1;
}
}
}
static __m128 mm_pow_ps(__m128 a, __m128 b)
{
// a^b = exp2(b * log2(a))
// exp2(x) and log2(x) are calculated using polynomial approximations.
__m128 log2_a, b_log2_a, a_exp_b;
// Calculate log2(x), x = a.
{
// To calculate log2(x), we decompose x like this:
// x = y * 2^n
// n is an integer
// y is in the [1.0, 2.0) range
//
// log2(x) = log2(y) + n
// n can be evaluated by playing with float representation.
// log2(y) in a small range can be approximated, this code uses an order
// five polynomial approximation. The coefficients have been
// estimated with the Remez algorithm and the resulting
// polynomial has a maximum relative error of 0.00086%.
// Compute n.
// This is done by masking the exponent, shifting it into the top bit of
// the mantissa, putting eight into the biased exponent (to shift/
// compensate the fact that the exponent has been shifted in the top/
// fractional part and finally getting rid of the implicit leading one
// from the mantissa by substracting it out.
static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END =
{0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END =
{0x43800000, 0x43800000, 0x43800000, 0x43800000};
static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END =
{0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
static const int shift_exponent_into_top_mantissa = 8;
const __m128 two_n = _mm_and_ps(a, *((__m128 *)float_exponent_mask));
const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(_mm_castps_si128(two_n),
shift_exponent_into_top_mantissa));
const __m128 n_0 = _mm_or_ps(n_1, *((__m128 *)eight_biased_exponent));
const __m128 n = _mm_sub_ps(n_0, *((__m128 *)implicit_leading_one));
// Compute y.
static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END =
{0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END =
{0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
const __m128 mantissa = _mm_and_ps(a, *((__m128 *)mantissa_mask));
const __m128 y = _mm_or_ps(
mantissa, *((__m128 *)zero_biased_exponent_is_one));
// Approximate log2(y) ~= (y - 1) * pol5(y).
// pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
static const ALIGN16_BEG float ALIGN16_END C5[4] =
{-3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
static const ALIGN16_BEG float ALIGN16_END C4[4] =
{3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
static const ALIGN16_BEG float ALIGN16_END C3[4] =
{-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
static const ALIGN16_BEG float ALIGN16_END C2[4] =
{2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f};
static const ALIGN16_BEG float ALIGN16_END C1[4] =
{-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
static const ALIGN16_BEG float ALIGN16_END C0[4] =
{3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f};
const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128 *)C5));
const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128 *)C4));
const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128 *)C3));
const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128 *)C2));
const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128 *)C1));
const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128 *)C0));
const __m128 y_minus_one = _mm_sub_ps(
y, *((__m128 *)zero_biased_exponent_is_one));
const __m128 log2_y = _mm_mul_ps(y_minus_one , pol5_y);
// Combine parts.
log2_a = _mm_add_ps(n, log2_y);
}
// b * log2(a)
b_log2_a = _mm_mul_ps(b, log2_a);
// Calculate exp2(x), x = b * log2(a).
{
// To calculate 2^x, we decompose x like this:
// x = n + y
// n is an integer, the value of x - 0.5 rounded down, therefore
// y is in the [0.5, 1.5) range
//
// 2^x = 2^n * 2^y
// 2^n can be evaluated by playing with float representation.
// 2^y in a small range can be approximated, this code uses an order two
// polynomial approximation. The coefficients have been estimated
// with the Remez algorithm and the resulting polynomial has a
// maximum relative error of 0.17%.
// To avoid over/underflow, we reduce the range of input to ]-127, 129].
static const ALIGN16_BEG float max_input[4] ALIGN16_END =
{129.f, 129.f, 129.f, 129.f};
static const ALIGN16_BEG float min_input[4] ALIGN16_END =
{-126.99999f, -126.99999f, -126.99999f, -126.99999f};
const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128 *)max_input));
const __m128 x_max = _mm_max_ps(x_min, *((__m128 *)min_input));
// Compute n.
static const ALIGN16_BEG float half[4] ALIGN16_END =
{0.5f, 0.5f, 0.5f, 0.5f};
const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128 *)half));
const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
// Compute 2^n.
static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END =
{127, 127, 127, 127};
static const int float_exponent_shift = 23;
const __m128i two_n_exponent = _mm_add_epi32(
x_minus_half_floor, *((__m128i *)float_exponent_bias));
const __m128 two_n = _mm_castsi128_ps(_mm_slli_epi32(
two_n_exponent, float_exponent_shift));
// Compute y.
const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
// Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
static const ALIGN16_BEG float C2[4] ALIGN16_END =
{3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
static const ALIGN16_BEG float C1[4] ALIGN16_END =
{6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
static const ALIGN16_BEG float C0[4] ALIGN16_END =
{1.0017247f, 1.0017247f, 1.0017247f, 1.0017247f};
const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128 *)C2));
const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128 *)C1));
const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128 *)C0));
// Combine parts.
a_exp_b = _mm_mul_ps(exp2_y, two_n);
}
return a_exp_b;
}
extern const float WebRtcAec_weightCurve[65];
extern const float WebRtcAec_overDriveCurve[65];
static void OverdriveAndSuppressSSE2(aec_t *aec, float hNl[PART_LEN1],
const float hNlFb,
float efw[2][PART_LEN1]) {
int i;
const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
const __m128 vec_one = _mm_set1_ps(1.0f);
const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i+=4) {
// Weight subbands
__m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(
vec_weightCurve, vec_hNlFb);
const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
const __m128 vec_one_weightCurve_hNl = _mm_mul_ps(
vec_one_weightCurve, vec_hNl);
const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
const __m128 vec_if1 = _mm_and_ps(
bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
vec_hNl = _mm_or_ps(vec_if0, vec_if1);
{
const __m128 vec_overDriveCurve = _mm_loadu_ps(
&WebRtcAec_overDriveCurve[i]);
const __m128 vec_overDriveSm_overDriveCurve = _mm_mul_ps(
vec_overDriveSm, vec_overDriveCurve);
vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
_mm_storeu_ps(&hNl[i], vec_hNl);
}
// Suppress error signal
{
__m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
__m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
_mm_storeu_ps(&efw[0][i], vec_efw_re);
_mm_storeu_ps(&efw[1][i], vec_efw_im);
}
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
// Weight subbands
if (hNl[i] > hNlFb) {
hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
(1 - WebRtcAec_weightCurve[i]) * hNl[i];
}
hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
// Suppress error signal
efw[0][i] *= hNl[i];
efw[1][i] *= hNl[i];
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
efw[1][i] *= -1;
}
}
void WebRtcAec_InitAec_SSE2(void) {
WebRtcAec_FilterFar = FilterFarSSE2;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
}
#endif // WEBRTC_USE_SSE2

View File

@ -0,0 +1,587 @@
/*
* http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
* Copyright Takuya OOURA, 1996-2001
*
* You may use, copy, modify and distribute this code for any purpose (include
* commercial use) and without fee. Please refer to this package when you modify
* this code.
*
* Changes by the WebRTC authors:
* - Trivial type modifications.
* - Minimal code subset to do rdft of length 128.
* - Optimizations because of known length.
*
* All changes are covered by the WebRTC license and IP grant:
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "aec_rdft.h"
#include <math.h>
#include "system_wrappers/interface/cpu_features_wrapper.h"
#include "typedefs.h"
// constants shared by all paths (C, SSE2).
float rdft_w[64];
// constants used by the C path.
float rdft_wk3ri_first[32];
float rdft_wk3ri_second[32];
// constants used by SSE2 but initialized in C path.
ALIGN16_BEG float ALIGN16_END rdft_wk1r[32];
ALIGN16_BEG float ALIGN16_END rdft_wk2r[32];
ALIGN16_BEG float ALIGN16_END rdft_wk3r[32];
ALIGN16_BEG float ALIGN16_END rdft_wk1i[32];
ALIGN16_BEG float ALIGN16_END rdft_wk2i[32];
ALIGN16_BEG float ALIGN16_END rdft_wk3i[32];
ALIGN16_BEG float ALIGN16_END cftmdl_wk1r[4];
static int ip[16];
static void bitrv2_32or128(int n, int *ip, float *a) {
// n is 32 or 128
int j, j1, k, k1, m, m2;
float xr, xi, yr, yi;
ip[0] = 0;
{
int l = n;
m = 1;
while ((m << 3) < l) {
l >>= 1;
for (j = 0; j < m; j++) {
ip[m + j] = ip[j] + l;
}
m <<= 1;
}
}
m2 = 2 * m;
for (k = 0; k < m; k++) {
for (j = 0; j < k; j++) {
j1 = 2 * j + ip[k];
k1 = 2 * k + ip[j];
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
j1 += m2;
k1 += 2 * m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
j1 += m2;
k1 -= m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
j1 += m2;
k1 += 2 * m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
}
j1 = 2 * k + m2 + ip[k];
k1 = j1 + m2;
xr = a[j1];
xi = a[j1 + 1];
yr = a[k1];
yi = a[k1 + 1];
a[j1] = yr;
a[j1 + 1] = yi;
a[k1] = xr;
a[k1 + 1] = xi;
}
}
static void makewt_32(void) {
const int nw = 32;
int j, nwh;
float delta, x, y;
ip[0] = nw;
ip[1] = 1;
nwh = nw >> 1;
delta = atanf(1.0f) / nwh;
rdft_w[0] = 1;
rdft_w[1] = 0;
rdft_w[nwh] = cosf(delta * nwh);
rdft_w[nwh + 1] = rdft_w[nwh];
for (j = 2; j < nwh; j += 2) {
x = cosf(delta * j);
y = sinf(delta * j);
rdft_w[j] = x;
rdft_w[j + 1] = y;
rdft_w[nw - j] = y;
rdft_w[nw - j + 1] = x;
}
bitrv2_32or128(nw, ip + 2, rdft_w);
// pre-calculate constants used by cft1st_128 and cftmdl_128...
cftmdl_wk1r[0] = rdft_w[2];
cftmdl_wk1r[1] = rdft_w[2];
cftmdl_wk1r[2] = rdft_w[2];
cftmdl_wk1r[3] = -rdft_w[2];
{
int k1;
for (k1 = 0, j = 0; j < 128; j += 16, k1 += 2) {
const int k2 = 2 * k1;
const float wk2r = rdft_w[k1 + 0];
const float wk2i = rdft_w[k1 + 1];
float wk1r, wk1i;
// ... scalar version.
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
rdft_wk3ri_first[k1 + 0] = wk1r - 2 * wk2i * wk1i;
rdft_wk3ri_first[k1 + 1] = 2 * wk2i * wk1r - wk1i;
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
rdft_wk3ri_second[k1 + 0] = wk1r - 2 * wk2r * wk1i;
rdft_wk3ri_second[k1 + 1] = 2 * wk2r * wk1r - wk1i;
// ... vector version.
rdft_wk1r[k2 + 0] = rdft_w[k2 + 0];
rdft_wk1r[k2 + 1] = rdft_w[k2 + 0];
rdft_wk1r[k2 + 2] = rdft_w[k2 + 2];
rdft_wk1r[k2 + 3] = rdft_w[k2 + 2];
rdft_wk2r[k2 + 0] = rdft_w[k1 + 0];
rdft_wk2r[k2 + 1] = rdft_w[k1 + 0];
rdft_wk2r[k2 + 2] = -rdft_w[k1 + 1];
rdft_wk2r[k2 + 3] = -rdft_w[k1 + 1];
rdft_wk3r[k2 + 0] = rdft_wk3ri_first[k1 + 0];
rdft_wk3r[k2 + 1] = rdft_wk3ri_first[k1 + 0];
rdft_wk3r[k2 + 2] = rdft_wk3ri_second[k1 + 0];
rdft_wk3r[k2 + 3] = rdft_wk3ri_second[k1 + 0];
rdft_wk1i[k2 + 0] = -rdft_w[k2 + 1];
rdft_wk1i[k2 + 1] = rdft_w[k2 + 1];
rdft_wk1i[k2 + 2] = -rdft_w[k2 + 3];
rdft_wk1i[k2 + 3] = rdft_w[k2 + 3];
rdft_wk2i[k2 + 0] = -rdft_w[k1 + 1];
rdft_wk2i[k2 + 1] = rdft_w[k1 + 1];
rdft_wk2i[k2 + 2] = -rdft_w[k1 + 0];
rdft_wk2i[k2 + 3] = rdft_w[k1 + 0];
rdft_wk3i[k2 + 0] = -rdft_wk3ri_first[k1 + 1];
rdft_wk3i[k2 + 1] = rdft_wk3ri_first[k1 + 1];
rdft_wk3i[k2 + 2] = -rdft_wk3ri_second[k1 + 1];
rdft_wk3i[k2 + 3] = rdft_wk3ri_second[k1 + 1];
}
}
}
static void makect_32(void) {
float *c = rdft_w + 32;
const int nc = 32;
int j, nch;
float delta;
ip[1] = nc;
nch = nc >> 1;
delta = atanf(1.0f) / nch;
c[0] = cosf(delta * nch);
c[nch] = 0.5f * c[0];
for (j = 1; j < nch; j++) {
c[j] = 0.5f * cosf(delta * j);
c[nc - j] = 0.5f * sinf(delta * j);
}
}
static void cft1st_128_C(float *a) {
const int n = 128;
int j, k1, k2;
float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
x0r = a[0] + a[2];
x0i = a[1] + a[3];
x1r = a[0] - a[2];
x1i = a[1] - a[3];
x2r = a[4] + a[6];
x2i = a[5] + a[7];
x3r = a[4] - a[6];
x3i = a[5] - a[7];
a[0] = x0r + x2r;
a[1] = x0i + x2i;
a[4] = x0r - x2r;
a[5] = x0i - x2i;
a[2] = x1r - x3i;
a[3] = x1i + x3r;
a[6] = x1r + x3i;
a[7] = x1i - x3r;
wk1r = rdft_w[2];
x0r = a[8] + a[10];
x0i = a[9] + a[11];
x1r = a[8] - a[10];
x1i = a[9] - a[11];
x2r = a[12] + a[14];
x2i = a[13] + a[15];
x3r = a[12] - a[14];
x3i = a[13] - a[15];
a[8] = x0r + x2r;
a[9] = x0i + x2i;
a[12] = x2i - x0i;
a[13] = x0r - x2r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[10] = wk1r * (x0r - x0i);
a[11] = wk1r * (x0r + x0i);
x0r = x3i + x1r;
x0i = x3r - x1i;
a[14] = wk1r * (x0i - x0r);
a[15] = wk1r * (x0i + x0r);
k1 = 0;
for (j = 16; j < n; j += 16) {
k1 += 2;
k2 = 2 * k1;
wk2r = rdft_w[k1 + 0];
wk2i = rdft_w[k1 + 1];
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
wk3r = rdft_wk3ri_first[k1 + 0];
wk3i = rdft_wk3ri_first[k1 + 1];
x0r = a[j + 0] + a[j + 2];
x0i = a[j + 1] + a[j + 3];
x1r = a[j + 0] - a[j + 2];
x1i = a[j + 1] - a[j + 3];
x2r = a[j + 4] + a[j + 6];
x2i = a[j + 5] + a[j + 7];
x3r = a[j + 4] - a[j + 6];
x3i = a[j + 5] - a[j + 7];
a[j + 0] = x0r + x2r;
a[j + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j + 4] = wk2r * x0r - wk2i * x0i;
a[j + 5] = wk2r * x0i + wk2i * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j + 2] = wk1r * x0r - wk1i * x0i;
a[j + 3] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j + 6] = wk3r * x0r - wk3i * x0i;
a[j + 7] = wk3r * x0i + wk3i * x0r;
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
wk3r = rdft_wk3ri_second[k1 + 0];
wk3i = rdft_wk3ri_second[k1 + 1];
x0r = a[j + 8] + a[j + 10];
x0i = a[j + 9] + a[j + 11];
x1r = a[j + 8] - a[j + 10];
x1i = a[j + 9] - a[j + 11];
x2r = a[j + 12] + a[j + 14];
x2i = a[j + 13] + a[j + 15];
x3r = a[j + 12] - a[j + 14];
x3i = a[j + 13] - a[j + 15];
a[j + 8] = x0r + x2r;
a[j + 9] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j + 12] = -wk2i * x0r - wk2r * x0i;
a[j + 13] = -wk2i * x0i + wk2r * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j + 10] = wk1r * x0r - wk1i * x0i;
a[j + 11] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j + 14] = wk3r * x0r - wk3i * x0i;
a[j + 15] = wk3r * x0i + wk3i * x0r;
}
}
static void cftmdl_128_C(float *a) {
const int l = 8;
const int n = 128;
const int m = 32;
int j0, j1, j2, j3, k, k1, k2, m2;
float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
for (j0 = 0; j0 < l; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
a[j2 + 0] = x0r - x2r;
a[j2 + 1] = x0i - x2i;
a[j1 + 0] = x1r - x3i;
a[j1 + 1] = x1i + x3r;
a[j3 + 0] = x1r + x3i;
a[j3 + 1] = x1i - x3r;
}
wk1r = rdft_w[2];
for (j0 = m; j0 < l + m; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
a[j2 + 0] = x2i - x0i;
a[j2 + 1] = x0r - x2r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * (x0r - x0i);
a[j1 + 1] = wk1r * (x0r + x0i);
x0r = x3i + x1r;
x0i = x3r - x1i;
a[j3 + 0] = wk1r * (x0i - x0r);
a[j3 + 1] = wk1r * (x0i + x0r);
}
k1 = 0;
m2 = 2 * m;
for (k = m2; k < n; k += m2) {
k1 += 2;
k2 = 2 * k1;
wk2r = rdft_w[k1 + 0];
wk2i = rdft_w[k1 + 1];
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
wk3r = rdft_wk3ri_first[k1 + 0];
wk3i = rdft_wk3ri_first[k1 + 1];
for (j0 = k; j0 < l + k; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j2 + 0] = wk2r * x0r - wk2i * x0i;
a[j2 + 1] = wk2r * x0i + wk2i * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * x0r - wk1i * x0i;
a[j1 + 1] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j3 + 0] = wk3r * x0r - wk3i * x0i;
a[j3 + 1] = wk3r * x0i + wk3i * x0r;
}
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
wk3r = rdft_wk3ri_second[k1 + 0];
wk3i = rdft_wk3ri_second[k1 + 1];
for (j0 = k + m; j0 < l + (k + m); j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j2 + 0] = -wk2i * x0r - wk2r * x0i;
a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * x0r - wk1i * x0i;
a[j1 + 1] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j3 + 0] = wk3r * x0r - wk3i * x0i;
a[j3 + 1] = wk3r * x0i + wk3i * x0r;
}
}
}
static void cftfsub_128(float *a) {
int j, j1, j2, j3, l;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
cft1st_128(a);
cftmdl_128(a);
l = 32;
for (j = 0; j < l; j += 2) {
j1 = j + l;
j2 = j1 + l;
j3 = j2 + l;
x0r = a[j] + a[j1];
x0i = a[j + 1] + a[j1 + 1];
x1r = a[j] - a[j1];
x1i = a[j + 1] - a[j1 + 1];
x2r = a[j2] + a[j3];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2] - a[j3];
x3i = a[j2 + 1] - a[j3 + 1];
a[j] = x0r + x2r;
a[j + 1] = x0i + x2i;
a[j2] = x0r - x2r;
a[j2 + 1] = x0i - x2i;
a[j1] = x1r - x3i;
a[j1 + 1] = x1i + x3r;
a[j3] = x1r + x3i;
a[j3 + 1] = x1i - x3r;
}
}
static void cftbsub_128(float *a) {
int j, j1, j2, j3, l;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
cft1st_128(a);
cftmdl_128(a);
l = 32;
for (j = 0; j < l; j += 2) {
j1 = j + l;
j2 = j1 + l;
j3 = j2 + l;
x0r = a[j] + a[j1];
x0i = -a[j + 1] - a[j1 + 1];
x1r = a[j] - a[j1];
x1i = -a[j + 1] + a[j1 + 1];
x2r = a[j2] + a[j3];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2] - a[j3];
x3i = a[j2 + 1] - a[j3 + 1];
a[j] = x0r + x2r;
a[j + 1] = x0i - x2i;
a[j2] = x0r - x2r;
a[j2 + 1] = x0i + x2i;
a[j1] = x1r - x3i;
a[j1 + 1] = x1i - x3r;
a[j3] = x1r + x3i;
a[j3 + 1] = x1i + x3r;
}
}
static void rftfsub_128_C(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
for (j1 = 1, j2 = 2; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr - wki * xi;
yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
static void rftbsub_128_C(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
a[1] = -a[1];
for (j1 = 1, j2 = 2; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr + wki * xi;
yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
void aec_rdft_forward_128(float *a) {
const int n = 128;
float xi;
bitrv2_32or128(n, ip + 2, a);
cftfsub_128(a);
rftfsub_128(a);
xi = a[0] - a[1];
a[0] += a[1];
a[1] = xi;
}
void aec_rdft_inverse_128(float *a) {
const int n = 128;
a[1] = 0.5f * (a[0] - a[1]);
a[0] -= a[1];
rftbsub_128(a);
bitrv2_32or128(n, ip + 2, a);
cftbsub_128(a);
}
// code path selection
rft_sub_128_t cft1st_128;
rft_sub_128_t cftmdl_128;
rft_sub_128_t rftfsub_128;
rft_sub_128_t rftbsub_128;
void aec_rdft_init(void) {
cft1st_128 = cft1st_128_C;
cftmdl_128 = cftmdl_128_C;
rftfsub_128 = rftfsub_128_C;
rftbsub_128 = rftbsub_128_C;
if (WebRtc_GetCPUInfo(kSSE2)) {
#if defined(WEBRTC_USE_SSE2)
aec_rdft_init_sse2();
#endif
}
// init library constants.
makewt_32();
makect_32();
}

View File

@ -0,0 +1,57 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_RDFT_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_RDFT_H_
// These intrinsics were unavailable before VS 2008.
// TODO(andrew): move to a common file.
#if defined(_MSC_VER) && _MSC_VER < 1500
#include <emmintrin.h>
static __inline __m128 _mm_castsi128_ps(__m128i a) { return *(__m128*)&a; }
static __inline __m128i _mm_castps_si128(__m128 a) { return *(__m128i*)&a; }
#endif
#ifdef _MSC_VER /* visual c++ */
# define ALIGN16_BEG __declspec(align(16))
# define ALIGN16_END
#else /* gcc or icc */
# define ALIGN16_BEG
# define ALIGN16_END __attribute__((aligned(16)))
#endif
// constants shared by all paths (C, SSE2).
extern float rdft_w[64];
// constants used by the C path.
extern float rdft_wk3ri_first[32];
extern float rdft_wk3ri_second[32];
// constants used by SSE2 but initialized in C path.
extern float rdft_wk1r[32];
extern float rdft_wk2r[32];
extern float rdft_wk3r[32];
extern float rdft_wk1i[32];
extern float rdft_wk2i[32];
extern float rdft_wk3i[32];
extern float cftmdl_wk1r[4];
// code path selection function pointers
typedef void (*rft_sub_128_t)(float *a);
extern rft_sub_128_t rftfsub_128;
extern rft_sub_128_t rftbsub_128;
extern rft_sub_128_t cft1st_128;
extern rft_sub_128_t cftmdl_128;
// entry points
void aec_rdft_init(void);
void aec_rdft_init_sse2(void);
void aec_rdft_forward_128(float *a);
void aec_rdft_inverse_128(float *a);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_AEC_RDFT_H_

View File

@ -0,0 +1,431 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "typedefs.h"
#if defined(WEBRTC_USE_SSE2)
#include <emmintrin.h>
#include "aec_rdft.h"
static const ALIGN16_BEG float ALIGN16_END k_swap_sign[4] =
{-1.f, 1.f, -1.f, 1.f};
static void cft1st_128_SSE2(float *a) {
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j, k2;
for (k2 = 0, j = 0; j < 128; j += 16, k2 += 4) {
__m128 a00v = _mm_loadu_ps(&a[j + 0]);
__m128 a04v = _mm_loadu_ps(&a[j + 4]);
__m128 a08v = _mm_loadu_ps(&a[j + 8]);
__m128 a12v = _mm_loadu_ps(&a[j + 12]);
__m128 a01v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(1, 0, 1 ,0));
__m128 a23v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(3, 2, 3 ,2));
__m128 a45v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(1, 0, 1 ,0));
__m128 a67v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(3, 2, 3 ,2));
const __m128 wk1rv = _mm_load_ps(&rdft_wk1r[k2]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2]);
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2]);
__m128 x0v = _mm_add_ps(a01v, a23v);
const __m128 x1v = _mm_sub_ps(a01v, a23v);
const __m128 x2v = _mm_add_ps(a45v, a67v);
const __m128 x3v = _mm_sub_ps(a45v, a67v);
__m128 x0w;
a01v = _mm_add_ps(x0v, x2v);
x0v = _mm_sub_ps(x0v, x2v);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0 ,1));
{
const __m128 a45_0v = _mm_mul_ps(wk2rv, x0v);
const __m128 a45_1v = _mm_mul_ps(wk2iv, x0w);
a45v = _mm_add_ps(a45_0v, a45_1v);
}
{
__m128 a23_0v, a23_1v;
const __m128 x3w = _mm_shuffle_ps(x3v, x3v, _MM_SHUFFLE(2, 3, 0 ,1));
const __m128 x3s = _mm_mul_ps(mm_swap_sign, x3w);
x0v = _mm_add_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0 ,1));
a23_0v = _mm_mul_ps(wk1rv, x0v);
a23_1v = _mm_mul_ps(wk1iv, x0w);
a23v = _mm_add_ps(a23_0v, a23_1v);
x0v = _mm_sub_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0 ,1));
}
{
const __m128 a67_0v = _mm_mul_ps(wk3rv, x0v);
const __m128 a67_1v = _mm_mul_ps(wk3iv, x0w);
a67v = _mm_add_ps(a67_0v, a67_1v);
}
a00v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(1, 0, 1 ,0));
a04v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(1, 0, 1 ,0));
a08v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(3, 2, 3 ,2));
a12v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(3, 2, 3 ,2));
_mm_storeu_ps(&a[j + 0], a00v);
_mm_storeu_ps(&a[j + 4], a04v);
_mm_storeu_ps(&a[j + 8], a08v);
_mm_storeu_ps(&a[j + 12], a12v);
}
}
static void cftmdl_128_SSE2(float *a) {
const int l = 8;
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j0;
__m128 wk1rv = _mm_load_ps(cftmdl_wk1r);
for (j0 = 0; j0 < l; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 = _mm_shuffle_ps(_mm_castsi128_ps(a_00),
_mm_castsi128_ps(a_32),
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_08_40 = _mm_shuffle_ps(_mm_castsi128_ps(a_08),
_mm_castsi128_ps(a_40),
_MM_SHUFFLE(1, 0, 1 ,0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 = _mm_shuffle_ps(_mm_castsi128_ps(a_16),
_mm_castsi128_ps(a_48),
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_24_56 = _mm_shuffle_ps(_mm_castsi128_ps(a_24),
_mm_castsi128_ps(a_56),
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx0 = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 x3i0_3r0_3i1_x3r1 = _mm_castsi128_ps(
_mm_shuffle_epi32(_mm_castps_si128(x3r0_3i0_3r1_x3i1),
_MM_SHUFFLE(2, 3, 0, 1)));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 yy0 = _mm_shuffle_ps(x1_x3_add, x1_x3_sub,
_MM_SHUFFLE(2, 2, 2 ,2));
const __m128 yy1 = _mm_shuffle_ps(x1_x3_add, x1_x3_sub,
_MM_SHUFFLE(3, 3, 3 ,3));
const __m128 yy2 = _mm_mul_ps(mm_swap_sign, yy1);
const __m128 yy3 = _mm_add_ps(yy0, yy2);
const __m128 yy4 = _mm_mul_ps(wk1rv, yy3);
_mm_storel_epi64((__m128i*)&a[j0 + 0], _mm_castps_si128(xx0));
_mm_storel_epi64((__m128i*)&a[j0 + 32],
_mm_shuffle_epi32(_mm_castps_si128(xx0),
_MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 16], _mm_castps_si128(xx1));
_mm_storel_epi64((__m128i*)&a[j0 + 48],
_mm_shuffle_epi32(_mm_castps_si128(xx1),
_MM_SHUFFLE(2, 3, 2, 3)));
a[j0 + 48] = -a[j0 + 48];
_mm_storel_epi64((__m128i*)&a[j0 + 8], _mm_castps_si128(x1_x3_add));
_mm_storel_epi64((__m128i*)&a[j0 + 24], _mm_castps_si128(x1_x3_sub));
_mm_storel_epi64((__m128i*)&a[j0 + 40], _mm_castps_si128(yy4));
_mm_storel_epi64((__m128i*)&a[j0 + 56],
_mm_shuffle_epi32(_mm_castps_si128(yy4),
_MM_SHUFFLE(2, 3, 2, 3)));
}
{
int k = 64;
int k1 = 2;
int k2 = 2 * k1;
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2+0]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2+0]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2+0]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2+0]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2+0]);
wk1rv = _mm_load_ps(&rdft_wk1r[k2+0]);
for (j0 = k; j0 < l + k; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 = _mm_shuffle_ps(_mm_castsi128_ps(a_00),
_mm_castsi128_ps(a_32),
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_08_40 = _mm_shuffle_ps(_mm_castsi128_ps(a_08),
_mm_castsi128_ps(a_40),
_MM_SHUFFLE(1, 0, 1 ,0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 = _mm_shuffle_ps(_mm_castsi128_ps(a_16),
_mm_castsi128_ps(a_48),
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 a_24_56 = _mm_shuffle_ps(_mm_castsi128_ps(a_24),
_mm_castsi128_ps(a_56),
_MM_SHUFFLE(1, 0, 1 ,0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx2 = _mm_mul_ps(xx1 , wk2rv);
const __m128 xx3 = _mm_mul_ps(wk2iv,
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xx1),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx4 = _mm_add_ps(xx2, xx3);
const __m128 x3i0_3r0_3i1_x3r1 = _mm_castsi128_ps(
_mm_shuffle_epi32(_mm_castps_si128(x3r0_3i0_3r1_x3i1),
_MM_SHUFFLE(2, 3, 0, 1)));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 xx10 = _mm_mul_ps(x1_x3_add, wk1rv);
const __m128 xx11 = _mm_mul_ps(wk1iv,
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(x1_x3_add),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx12 = _mm_add_ps(xx10, xx11);
const __m128 xx20 = _mm_mul_ps(x1_x3_sub, wk3rv);
const __m128 xx21 = _mm_mul_ps(wk3iv,
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(x1_x3_sub),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx22 = _mm_add_ps(xx20, xx21);
_mm_storel_epi64((__m128i*)&a[j0 + 0], _mm_castps_si128(xx));
_mm_storel_epi64((__m128i*)&a[j0 + 32],
_mm_shuffle_epi32(_mm_castps_si128(xx),
_MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 16], _mm_castps_si128(xx4));
_mm_storel_epi64((__m128i*)&a[j0 + 48],
_mm_shuffle_epi32(_mm_castps_si128(xx4),
_MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 8], _mm_castps_si128(xx12));
_mm_storel_epi64((__m128i*)&a[j0 + 40],
_mm_shuffle_epi32(_mm_castps_si128(xx12),
_MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 24], _mm_castps_si128(xx22));
_mm_storel_epi64((__m128i*)&a[j0 + 56],
_mm_shuffle_epi32(_mm_castps_si128(xx22),
_MM_SHUFFLE(3, 2, 3, 2)));
}
}
}
static void rftfsub_128_SSE2(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] =
{0.5f, 0.5f, 0.5f, 0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[ j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(2, 0, 2 ,0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(3, 1, 3 ,1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(0, 2, 0 ,2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(1, 3, 1 ,3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr - wki * xi;
// yi = wkr * xi + wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_sub_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_add_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] -= yr;
// a[j2 + 1] -= yi;
// a[k2 + 0] += yr;
// a[k2 + 1] -= yi;
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(a_j2_p1, yi_); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(a_k2_p1, yi_); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(a_k2_0nt, a_k2_0nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(a_k2_4nt, a_k2_4nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr - wki * xi;
yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
static void rftbsub_128_SSE2(float *a) {
const float *c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] =
{0.5f, 0.5f, 0.5f, 0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
a[1] = -a[1];
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[ j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(2, 0, 2 ,0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(a_j2_0, a_j2_4,
_MM_SHUFFLE(3, 1, 3 ,1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(0, 2, 0 ,2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(a_k2_4, a_k2_0,
_MM_SHUFFLE(1, 3, 1 ,3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr + wki * xi;
// yi = wkr * xi - wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_add_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_sub_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] = a[j2 + 0] - yr;
// a[j2 + 1] = yi - a[j2 + 1];
// a[k2 + 0] = yr + a[k2 + 0];
// a[k2 + 1] = yi - a[k2 + 1];
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(yi_, a_j2_p1); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(yi_, a_k2_p1); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(a_k2_0nt, a_k2_0nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(a_k2_4nt, a_k2_4nt,
_MM_SHUFFLE(1, 0, 3 ,2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr + wki * xi;
yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
void aec_rdft_init_sse2(void) {
cft1st_128 = cft1st_128_SSE2;
cftmdl_128 = cftmdl_128_SSE2;
rftfsub_128 = rftfsub_128_SSE2;
rftbsub_128 = rftbsub_128_SSE2;
}
#endif // WEBRTC_USE_SS2

View File

@ -0,0 +1,901 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Contains the API functions for the AEC.
*/
#include "echo_cancellation.h"
#include <math.h>
#ifdef AEC_DEBUG
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
#include "aec_core.h"
#include "resampler.h"
#include "ring_buffer.h"
#define BUF_SIZE_FRAMES 50 // buffer size (frames)
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const int bufSizeSamp = BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
static const int sampMsNb = 8; // samples per ms in nb
// Target suppression levels for nlp modes
// log{0.001, 0.00001, 0.00000001}
static const float targetSupp[3] = {-6.9f, -11.5f, -18.4f};
static const float minOverDrive[3] = {1.0f, 2.0f, 5.0f};
static const int initCheck = 42;
typedef struct {
int delayCtr;
int sampFreq;
int splitSampFreq;
int scSampFreq;
float sampFactor; // scSampRate / sampFreq
short nlpMode;
short autoOnOff;
short activity;
short skewMode;
short bufSizeStart;
//short bufResetCtr; // counts number of noncausal frames
int knownDelay;
// Stores the last frame added to the farend buffer
short farendOld[2][FRAME_LEN];
short initFlag; // indicates if AEC has been initialized
// Variables used for averaging far end buffer size
short counter;
short sum;
short firstVal;
short checkBufSizeCtr;
// Variables used for delay shifts
short msInSndCardBuf;
short filtDelay;
int timeForDelayChange;
int ECstartup;
int checkBuffSize;
int delayChange;
short lastDelayDiff;
#ifdef AEC_DEBUG
FILE *bufFile;
FILE *delayFile;
FILE *skewFile;
FILE *preCompFile;
FILE *postCompFile;
#endif // AEC_DEBUG
// Structures
void *farendBuf;
void *resampler;
int skewFrCtr;
int resample; // if the skew is small enough we don't resample
int highSkewCtr;
float skew;
int lastError;
aec_t *aec;
} aecpc_t;
// Estimates delay to set the position of the farend buffer read pointer
// (controlled by knownDelay)
static int EstBufDelay(aecpc_t *aecInst, short msInSndCardBuf);
// Stuffs the farend buffer if the estimated delay is too large
static int DelayComp(aecpc_t *aecInst);
WebRtc_Word32 WebRtcAec_Create(void **aecInst)
{
aecpc_t *aecpc;
if (aecInst == NULL) {
return -1;
}
aecpc = malloc(sizeof(aecpc_t));
*aecInst = aecpc;
if (aecpc == NULL) {
return -1;
}
if (WebRtcAec_CreateAec(&aecpc->aec) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
if (WebRtcApm_CreateBuffer(&aecpc->farendBuf, bufSizeSamp) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
if (WebRtcAec_CreateResampler(&aecpc->resampler) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
aecpc->initFlag = 0;
aecpc->lastError = 0;
#ifdef AEC_DEBUG
aecpc->aec->farFile = fopen("aecFar.pcm","wb");
aecpc->aec->nearFile = fopen("aecNear.pcm","wb");
aecpc->aec->outFile = fopen("aecOut.pcm","wb");
aecpc->aec->outLpFile = fopen("aecOutLp.pcm","wb");
aecpc->bufFile = fopen("aecBuf.dat", "wb");
aecpc->skewFile = fopen("aecSkew.dat", "wb");
aecpc->delayFile = fopen("aecDelay.dat", "wb");
aecpc->preCompFile = fopen("preComp.pcm", "wb");
aecpc->postCompFile = fopen("postComp.pcm", "wb");
#endif // AEC_DEBUG
return 0;
}
WebRtc_Word32 WebRtcAec_Free(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
#ifdef AEC_DEBUG
fclose(aecpc->aec->farFile);
fclose(aecpc->aec->nearFile);
fclose(aecpc->aec->outFile);
fclose(aecpc->aec->outLpFile);
fclose(aecpc->bufFile);
fclose(aecpc->skewFile);
fclose(aecpc->delayFile);
fclose(aecpc->preCompFile);
fclose(aecpc->postCompFile);
#endif // AEC_DEBUG
WebRtcAec_FreeAec(aecpc->aec);
WebRtcApm_FreeBuffer(aecpc->farendBuf);
WebRtcAec_FreeResampler(aecpc->resampler);
free(aecpc);
return 0;
}
WebRtc_Word32 WebRtcAec_Init(void *aecInst, WebRtc_Word32 sampFreq, WebRtc_Word32 scSampFreq)
{
aecpc_t *aecpc = aecInst;
AecConfig aecConfig;
if (aecpc == NULL) {
return -1;
}
if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->sampFreq = sampFreq;
if (scSampFreq < 1 || scSampFreq > 96000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->scSampFreq = scSampFreq;
// Initialize echo canceller core
if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
// Initialize farend buffer
if (WebRtcApm_InitBuffer(aecpc->farendBuf) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
aecpc->initFlag = initCheck; // indicates that initialization has been done
if (aecpc->sampFreq == 32000) {
aecpc->splitSampFreq = 16000;
}
else {
aecpc->splitSampFreq = sampFreq;
}
aecpc->skewFrCtr = 0;
aecpc->activity = 0;
aecpc->delayChange = 1;
aecpc->delayCtr = 0;
aecpc->sum = 0;
aecpc->counter = 0;
aecpc->checkBuffSize = 1;
aecpc->firstVal = 0;
aecpc->ECstartup = 1;
aecpc->bufSizeStart = 0;
aecpc->checkBufSizeCtr = 0;
aecpc->filtDelay = 0;
aecpc->timeForDelayChange =0;
aecpc->knownDelay = 0;
aecpc->lastDelayDiff = 0;
aecpc->skew = 0;
aecpc->resample = kAecFalse;
aecpc->highSkewCtr = 0;
aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
memset(&aecpc->farendOld[0][0], 0, 160);
// Default settings.
aecConfig.nlpMode = kAecNlpModerate;
aecConfig.skewMode = kAecFalse;
aecConfig.metricsMode = kAecFalse;
aecConfig.delay_logging = kAecFalse;
if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
return 0;
}
// only buffer L band for farend
WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst, const WebRtc_Word16 *farend,
WebRtc_Word16 nrOfSamples)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
short newNrOfSamples;
short newFarend[MAX_RESAMP_LEN];
float skew;
if (aecpc == NULL) {
return -1;
}
if (farend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
skew = aecpc->skew;
// TODO: Is this really a good idea?
if (!aecpc->ECstartup) {
DelayComp(aecpc);
}
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
// Resample and get a new number of samples
newNrOfSamples = WebRtcAec_ResampleLinear(aecpc->resampler,
farend,
nrOfSamples,
skew,
newFarend);
WebRtcApm_WriteBuffer(aecpc->farendBuf, newFarend, newNrOfSamples);
#ifdef AEC_DEBUG
fwrite(farend, 2, nrOfSamples, aecpc->preCompFile);
fwrite(newFarend, 2, newNrOfSamples, aecpc->postCompFile);
#endif
}
else {
WebRtcApm_WriteBuffer(aecpc->farendBuf, farend, nrOfSamples);
}
return retVal;
}
WebRtc_Word32 WebRtcAec_Process(void *aecInst, const WebRtc_Word16 *nearend,
const WebRtc_Word16 *nearendH, WebRtc_Word16 *out, WebRtc_Word16 *outH,
WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf, WebRtc_Word32 skew)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
short i;
short farend[FRAME_LEN];
short nmbrOfFilledBuffers;
short nBlocks10ms;
short nFrames;
#ifdef AEC_DEBUG
short msInAECBuf;
#endif
// Limit resampling to doubling/halving of signal
const float minSkewEst = -0.5f;
const float maxSkewEst = 1.0f;
if (aecpc == NULL) {
return -1;
}
if (nearend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (out == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
// Check for valid pointers based on sampling rate
if (aecpc->sampFreq == 32000 && nearendH == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (msInSndCardBuf < 0) {
msInSndCardBuf = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
else if (msInSndCardBuf > 500) {
msInSndCardBuf = 500;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
msInSndCardBuf += 10;
aecpc->msInSndCardBuf = msInSndCardBuf;
if (aecpc->skewMode == kAecTrue) {
if (aecpc->skewFrCtr < 25) {
aecpc->skewFrCtr++;
}
else {
retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew);
if (retVal == -1) {
aecpc->skew = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
}
aecpc->skew /= aecpc->sampFactor*nrOfSamples;
if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) {
aecpc->resample = kAecFalse;
}
else {
aecpc->resample = kAecTrue;
}
if (aecpc->skew < minSkewEst) {
aecpc->skew = minSkewEst;
}
else if (aecpc->skew > maxSkewEst) {
aecpc->skew = maxSkewEst;
}
#ifdef AEC_DEBUG
fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile);
#endif
}
}
nFrames = nrOfSamples / FRAME_LEN;
nBlocks10ms = nFrames / aecpc->aec->mult;
if (aecpc->ECstartup) {
if (nearend != out) {
// Only needed if they don't already point to the same place.
memcpy(out, nearend, sizeof(short) * nrOfSamples);
}
nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecpc->farendBuf) / FRAME_LEN;
// The AEC is in the start up mode
// AEC is disabled until the soundcard buffer and farend buffers are OK
// Mechanism to ensure that the soundcard buffer is reasonably stable.
if (aecpc->checkBuffSize) {
aecpc->checkBufSizeCtr++;
// Before we fill up the far end buffer we require the amount of data on the
// sound card to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 4 consecutive frames. If it seems
// to be stable then we start to fill up the far end buffer.
if (aecpc->counter == 0) {
aecpc->firstVal = aecpc->msInSndCardBuf;
aecpc->sum = 0;
}
if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) <
WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) {
aecpc->sum += aecpc->msInSndCardBuf;
aecpc->counter++;
}
else {
aecpc->counter = 0;
}
if (aecpc->counter*nBlocks10ms >= 6) {
// The farend buffer size is determined in blocks of 80 samples
// Use 75% of the average value of the soundcard buffer
aecpc->bufSizeStart = WEBRTC_SPL_MIN((int) (0.75 * (aecpc->sum *
aecpc->aec->mult) / (aecpc->counter * 10)), BUF_SIZE_FRAMES);
// buffersize has now been determined
aecpc->checkBuffSize = 0;
}
if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) {
// for really bad sound cards, don't disable echocanceller for more than 0.5 sec
aecpc->bufSizeStart = WEBRTC_SPL_MIN((int) (0.75 * (aecpc->msInSndCardBuf *
aecpc->aec->mult) / 10), BUF_SIZE_FRAMES);
aecpc->checkBuffSize = 0;
}
}
// if checkBuffSize changed in the if-statement above
if (!aecpc->checkBuffSize) {
// soundcard buffer is now reasonably stable
// When the far end buffer is filled with approximately the same amount of
// data as the amount on the sound card we end the start up phase and start
// to cancel echoes.
if (nmbrOfFilledBuffers == aecpc->bufSizeStart) {
aecpc->ECstartup = 0; // Enable the AEC
}
else if (nmbrOfFilledBuffers > aecpc->bufSizeStart) {
WebRtcApm_FlushBuffer(aecpc->farendBuf, WebRtcApm_get_buffer_size(aecpc->farendBuf) -
aecpc->bufSizeStart * FRAME_LEN);
aecpc->ECstartup = 0;
}
}
}
else {
// AEC is enabled
// Note only 1 block supported for nb and 2 blocks for wb
for (i = 0; i < nFrames; i++) {
nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecpc->farendBuf) / FRAME_LEN;
// Check that there is data in the far end buffer
if (nmbrOfFilledBuffers > 0) {
// Get the next 80 samples from the farend buffer
WebRtcApm_ReadBuffer(aecpc->farendBuf, farend, FRAME_LEN);
// Always store the last frame for use when we run out of data
memcpy(&(aecpc->farendOld[i][0]), farend, FRAME_LEN * sizeof(short));
}
else {
// We have no data so we use the last played frame
memcpy(farend, &(aecpc->farendOld[i][0]), FRAME_LEN * sizeof(short));
}
// Call buffer delay estimator when all data is extracted,
// i.e. i = 0 for NB and i = 1 for WB or SWB
if ((i == 0 && aecpc->splitSampFreq == 8000) ||
(i == 1 && (aecpc->splitSampFreq == 16000))) {
EstBufDelay(aecpc, aecpc->msInSndCardBuf);
}
// Call the AEC
WebRtcAec_ProcessFrame(aecpc->aec, farend, &nearend[FRAME_LEN * i], &nearendH[FRAME_LEN * i],
&out[FRAME_LEN * i], &outH[FRAME_LEN * i], aecpc->knownDelay);
}
}
#ifdef AEC_DEBUG
msInAECBuf = WebRtcApm_get_buffer_size(aecpc->farendBuf) / (sampMsNb*aecpc->aec->mult);
fwrite(&msInAECBuf, 2, 1, aecpc->bufFile);
fwrite(&(aecpc->knownDelay), sizeof(aecpc->knownDelay), 1, aecpc->delayFile);
#endif
return retVal;
}
WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->skewMode = config.skewMode;
if (config.nlpMode != kAecNlpConservative && config.nlpMode !=
kAecNlpModerate && config.nlpMode != kAecNlpAggressive) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->nlpMode = config.nlpMode;
aecpc->aec->targetSupp = targetSupp[aecpc->nlpMode];
aecpc->aec->minOverDrive = minOverDrive[aecpc->nlpMode];
if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->aec->metricsMode = config.metricsMode;
if (aecpc->aec->metricsMode == kAecTrue) {
WebRtcAec_InitMetrics(aecpc->aec);
}
if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->aec->delay_logging_enabled = config.delay_logging;
if (aecpc->aec->delay_logging_enabled == kAecTrue) {
memset(aecpc->aec->delay_histogram, 0, sizeof(aecpc->aec->delay_histogram));
}
return 0;
}
WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (config == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
config->nlpMode = aecpc->nlpMode;
config->skewMode = aecpc->skewMode;
config->metricsMode = aecpc->aec->metricsMode;
config->delay_logging = aecpc->aec->delay_logging_enabled;
return 0;
}
WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (status == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
*status = aecpc->aec->echoState;
return 0;
}
WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics)
{
const float upweight = 0.7f;
float dtmp;
short stmp;
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (metrics == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// ERL
metrics->erl.instant = (short) aecpc->aec->erl.instant;
if ((aecpc->aec->erl.himean > offsetLevel) && (aecpc->aec->erl.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->erl.himean + (1 - upweight) * aecpc->aec->erl.average;
metrics->erl.average = (short) dtmp;
}
else {
metrics->erl.average = offsetLevel;
}
metrics->erl.max = (short) aecpc->aec->erl.max;
if (aecpc->aec->erl.min < (offsetLevel * (-1))) {
metrics->erl.min = (short) aecpc->aec->erl.min;
}
else {
metrics->erl.min = offsetLevel;
}
// ERLE
metrics->erle.instant = (short) aecpc->aec->erle.instant;
if ((aecpc->aec->erle.himean > offsetLevel) && (aecpc->aec->erle.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->erle.himean + (1 - upweight) * aecpc->aec->erle.average;
metrics->erle.average = (short) dtmp;
}
else {
metrics->erle.average = offsetLevel;
}
metrics->erle.max = (short) aecpc->aec->erle.max;
if (aecpc->aec->erle.min < (offsetLevel * (-1))) {
metrics->erle.min = (short) aecpc->aec->erle.min;
} else {
metrics->erle.min = offsetLevel;
}
// RERL
if ((metrics->erl.average > offsetLevel) && (metrics->erle.average > offsetLevel)) {
stmp = metrics->erl.average + metrics->erle.average;
}
else {
stmp = offsetLevel;
}
metrics->rerl.average = stmp;
// No other statistics needed, but returned for completeness
metrics->rerl.instant = stmp;
metrics->rerl.max = stmp;
metrics->rerl.min = stmp;
// A_NLP
metrics->aNlp.instant = (short) aecpc->aec->aNlp.instant;
if ((aecpc->aec->aNlp.himean > offsetLevel) && (aecpc->aec->aNlp.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->aNlp.himean + (1 - upweight) * aecpc->aec->aNlp.average;
metrics->aNlp.average = (short) dtmp;
}
else {
metrics->aNlp.average = offsetLevel;
}
metrics->aNlp.max = (short) aecpc->aec->aNlp.max;
if (aecpc->aec->aNlp.min < (offsetLevel * (-1))) {
metrics->aNlp.min = (short) aecpc->aec->aNlp.min;
}
else {
metrics->aNlp.min = offsetLevel;
}
return 0;
}
int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std) {
aecpc_t* self = handle;
int i = 0;
int delay_values = 0;
int num_delay_values = 0;
int my_median = 0;
const int kMsPerBlock = (PART_LEN * 1000) / self->splitSampFreq;
float l1_norm = 0;
if (self == NULL) {
return -1;
}
if (median == NULL) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (std == NULL) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (self->initFlag != initCheck) {
self->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
if (self->aec->delay_logging_enabled == 0) {
// Logging disabled
self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR;
return -1;
}
// Get number of delay values since last update
for (i = 0; i < kMaxDelay; i++) {
num_delay_values += self->aec->delay_histogram[i];
}
if (num_delay_values == 0) {
// We have no new delay value data
*median = -1;
*std = -1;
return 0;
}
delay_values = num_delay_values >> 1; // Start value for median count down
// Get median of delay values since last update
for (i = 0; i < kMaxDelay; i++) {
delay_values -= self->aec->delay_histogram[i];
if (delay_values < 0) {
my_median = i;
break;
}
}
*median = my_median * kMsPerBlock;
// Calculate the L1 norm, with median value as central moment
for (i = 0; i < kMaxDelay; i++) {
l1_norm += (float) (fabs(i - my_median) * self->aec->delay_histogram[i]);
}
*std = (int) (l1_norm / (float) num_delay_values + 0.5f) * kMsPerBlock;
// Reset histogram
memset(self->aec->delay_histogram, 0, sizeof(self->aec->delay_histogram));
return 0;
}
WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len)
{
const char version[] = "AEC 2.5.0";
const short versionLen = (short)strlen(version) + 1; // +1 for null-termination
if (versionStr == NULL) {
return -1;
}
if (versionLen > len) {
return -1;
}
strncpy(versionStr, version, versionLen);
return 0;
}
WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
return aecpc->lastError;
}
static int EstBufDelay(aecpc_t *aecpc, short msInSndCardBuf)
{
short delayNew, nSampFar, nSampSndCard;
short diff;
nSampFar = WebRtcApm_get_buffer_size(aecpc->farendBuf);
nSampSndCard = msInSndCardBuf * sampMsNb * aecpc->aec->mult;
delayNew = nSampSndCard - nSampFar;
// Account for resampling frame delay
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
delayNew -= kResamplingDelay;
}
if (delayNew < FRAME_LEN) {
WebRtcApm_FlushBuffer(aecpc->farendBuf, FRAME_LEN);
delayNew += FRAME_LEN;
}
aecpc->filtDelay = WEBRTC_SPL_MAX(0, (short)(0.8*aecpc->filtDelay + 0.2*delayNew));
diff = aecpc->filtDelay - aecpc->knownDelay;
if (diff > 224) {
if (aecpc->lastDelayDiff < 96) {
aecpc->timeForDelayChange = 0;
}
else {
aecpc->timeForDelayChange++;
}
}
else if (diff < 96 && aecpc->knownDelay > 0) {
if (aecpc->lastDelayDiff > 224) {
aecpc->timeForDelayChange = 0;
}
else {
aecpc->timeForDelayChange++;
}
}
else {
aecpc->timeForDelayChange = 0;
}
aecpc->lastDelayDiff = diff;
if (aecpc->timeForDelayChange > 25) {
aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0);
}
return 0;
}
static int DelayComp(aecpc_t *aecpc)
{
int nSampFar, nSampSndCard, delayNew, nSampAdd;
const int maxStuffSamp = 10 * FRAME_LEN;
nSampFar = WebRtcApm_get_buffer_size(aecpc->farendBuf);
nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->aec->mult;
delayNew = nSampSndCard - nSampFar;
// Account for resampling frame delay
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
delayNew -= kResamplingDelay;
}
if (delayNew > FAR_BUF_LEN - FRAME_LEN*aecpc->aec->mult) {
// The difference of the buffersizes is larger than the maximum
// allowed known delay. Compensate by stuffing the buffer.
nSampAdd = (int)(WEBRTC_SPL_MAX((int)(0.5 * nSampSndCard - nSampFar),
FRAME_LEN));
nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
WebRtcApm_StuffBuffer(aecpc->farendBuf, nSampAdd);
aecpc->delayChange = 1; // the delay needs to be updated
}
return 0;
}

View File

@ -0,0 +1,278 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_INTERFACE_ECHO_CANCELLATION_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_INTERFACE_ECHO_CANCELLATION_H_
#include "typedefs.h"
// Errors
#define AEC_UNSPECIFIED_ERROR 12000
#define AEC_UNSUPPORTED_FUNCTION_ERROR 12001
#define AEC_UNINITIALIZED_ERROR 12002
#define AEC_NULL_POINTER_ERROR 12003
#define AEC_BAD_PARAMETER_ERROR 12004
// Warnings
#define AEC_BAD_PARAMETER_WARNING 12050
enum {
kAecNlpConservative = 0,
kAecNlpModerate,
kAecNlpAggressive
};
enum {
kAecFalse = 0,
kAecTrue
};
typedef struct {
WebRtc_Word16 nlpMode; // default kAecNlpModerate
WebRtc_Word16 skewMode; // default kAecFalse
WebRtc_Word16 metricsMode; // default kAecFalse
int delay_logging; // default kAecFalse
//float realSkew;
} AecConfig;
typedef struct {
WebRtc_Word16 instant;
WebRtc_Word16 average;
WebRtc_Word16 max;
WebRtc_Word16 min;
} AecLevel;
typedef struct {
AecLevel rerl;
AecLevel erl;
AecLevel erle;
AecLevel aNlp;
} AecMetrics;
#ifdef __cplusplus
extern "C" {
#endif
/*
* Allocates the memory needed by the AEC. The memory needs to be initialized
* separately using the WebRtcAec_Init() function.
*
* Inputs Description
* -------------------------------------------------------------------
* void **aecInst Pointer to the AEC instance to be created
* and initialized
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Create(void **aecInst);
/*
* This function releases the memory allocated by WebRtcAec_Create().
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Free(void *aecInst);
/*
* Initializes an AEC instance.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* WebRtc_Word32 sampFreq Sampling frequency of data
* WebRtc_Word32 scSampFreq Soundcard sampling frequency
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Init(void *aecInst,
WebRtc_Word32 sampFreq,
WebRtc_Word32 scSampFreq);
/*
* Inserts an 80 or 160 sample block of data into the farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* WebRtc_Word16 *farend In buffer containing one frame of
* farend signal for L band
* WebRtc_Word16 nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst,
const WebRtc_Word16 *farend,
WebRtc_Word16 nrOfSamples);
/*
* Runs the echo canceller on an 80 or 160 sample blocks of data.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* WebRtc_Word16 *nearend In buffer containing one frame of
* nearend+echo signal for L band
* WebRtc_Word16 *nearendH In buffer containing one frame of
* nearend+echo signal for H band
* WebRtc_Word16 nrOfSamples Number of samples in nearend buffer
* WebRtc_Word16 msInSndCardBuf Delay estimate for sound card and
* system buffers
* WebRtc_Word16 skew Difference between number of samples played
* and recorded at the soundcard (for clock skew
* compensation)
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word16 *out Out buffer, one frame of processed nearend
* for L band
* WebRtc_Word16 *outH Out buffer, one frame of processed nearend
* for H band
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_Process(void *aecInst,
const WebRtc_Word16 *nearend,
const WebRtc_Word16 *nearendH,
WebRtc_Word16 *out,
WebRtc_Word16 *outH,
WebRtc_Word16 nrOfSamples,
WebRtc_Word16 msInSndCardBuf,
WebRtc_Word32 skew);
/*
* This function enables the user to set certain parameters on-the-fly.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
* AecConfig config Config instance that contains all
* properties to be set
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config);
/*
* Gets the on-the-fly paramters.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecConfig *config Pointer to the config instance that
* all properties will be written to
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config);
/*
* Gets the current echo status of the nearend signal.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word16 *status 0: Almost certainly nearend single-talk
* 1: Might not be neared single-talk
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status);
/*
* Gets the current echo metrics for the session.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecMetrics *metrics Struct which will be filled out with the
* current echo metrics.
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics);
/*
* Gets the current delay metrics for the session.
*
* Inputs Description
* -------------------------------------------------------------------
* void* handle Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* int* median Delay median value.
* int* std Delay standard deviation.
*
* int return 0: OK
* -1: error
*/
int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std);
/*
* Gets the last error code.
*
* Inputs Description
* -------------------------------------------------------------------
* void *aecInst Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word32 return 11000-11100: error code
*/
WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst);
/*
* Gets a version string.
*
* Inputs Description
* -------------------------------------------------------------------
* char *versionStr Pointer to a string array
* WebRtc_Word16 len The maximum length of the string
*
* Outputs Description
* -------------------------------------------------------------------
* WebRtc_Word8 *versionStr Pointer to a string array
* WebRtc_Word32 return 0: OK
* -1: error
*/
WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len);
#ifdef __cplusplus
}
#endif
#endif /* WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_INTERFACE_ECHO_CANCELLATION_H_ */

View File

@ -0,0 +1,233 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* Resamples a signal to an arbitrary rate. Used by the AEC to compensate for clock
* skew by resampling the farend signal.
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "resampler.h"
#include "aec_core.h"
enum { kFrameBufferSize = FRAME_LEN * 4 };
enum { kEstimateLengthFrames = 400 };
typedef struct {
short buffer[kFrameBufferSize];
float position;
int deviceSampleRateHz;
int skewData[kEstimateLengthFrames];
int skewDataIndex;
float skewEstimate;
} resampler_t;
static int EstimateSkew(const int* rawSkew,
int size,
int absLimit,
float *skewEst);
int WebRtcAec_CreateResampler(void **resampInst)
{
resampler_t *obj = malloc(sizeof(resampler_t));
*resampInst = obj;
if (obj == NULL) {
return -1;
}
return 0;
}
int WebRtcAec_InitResampler(void *resampInst, int deviceSampleRateHz)
{
resampler_t *obj = (resampler_t*) resampInst;
memset(obj->buffer, 0, sizeof(obj->buffer));
obj->position = 0.0;
obj->deviceSampleRateHz = deviceSampleRateHz;
memset(obj->skewData, 0, sizeof(obj->skewData));
obj->skewDataIndex = 0;
obj->skewEstimate = 0.0;
return 0;
}
int WebRtcAec_FreeResampler(void *resampInst)
{
resampler_t *obj = (resampler_t*) resampInst;
free(obj);
return 0;
}
int WebRtcAec_ResampleLinear(void *resampInst,
const short *inspeech,
int size,
float skew,
short *outspeech)
{
resampler_t *obj = (resampler_t*) resampInst;
short *y;
float be, tnew, interp;
int tn, outsize, mm;
if (size < 0 || size > 2 * FRAME_LEN) {
return -1;
}
// Add new frame data in lookahead
memcpy(&obj->buffer[FRAME_LEN + kResamplingDelay],
inspeech,
size * sizeof(short));
// Sample rate ratio
be = 1 + skew;
// Loop over input frame
mm = 0;
y = &obj->buffer[FRAME_LEN]; // Point at current frame
tnew = be * mm + obj->position;
tn = (int) tnew;
while (tn < size) {
// Interpolation
interp = y[tn] + (tnew - tn) * (y[tn+1] - y[tn]);
if (interp > 32767) {
interp = 32767;
}
else if (interp < -32768) {
interp = -32768;
}
outspeech[mm] = (short) interp;
mm++;
tnew = be * mm + obj->position;
tn = (int) tnew;
}
outsize = mm;
obj->position += outsize * be - size;
// Shift buffer
memmove(obj->buffer,
&obj->buffer[size],
(kFrameBufferSize - size) * sizeof(short));
return outsize;
}
int WebRtcAec_GetSkew(void *resampInst, int rawSkew, float *skewEst)
{
resampler_t *obj = (resampler_t*)resampInst;
int err = 0;
if (obj->skewDataIndex < kEstimateLengthFrames) {
obj->skewData[obj->skewDataIndex] = rawSkew;
obj->skewDataIndex++;
}
else if (obj->skewDataIndex == kEstimateLengthFrames) {
err = EstimateSkew(obj->skewData,
kEstimateLengthFrames,
obj->deviceSampleRateHz,
skewEst);
obj->skewEstimate = *skewEst;
obj->skewDataIndex++;
}
else {
*skewEst = obj->skewEstimate;
}
return err;
}
int EstimateSkew(const int* rawSkew,
int size,
int deviceSampleRateHz,
float *skewEst)
{
const int absLimitOuter = (int)(0.04f * deviceSampleRateHz);
const int absLimitInner = (int)(0.0025f * deviceSampleRateHz);
int i = 0;
int n = 0;
float rawAvg = 0;
float err = 0;
float rawAbsDev = 0;
int upperLimit = 0;
int lowerLimit = 0;
float cumSum = 0;
float x = 0;
float x2 = 0;
float y = 0;
float xy = 0;
float xAvg = 0;
float denom = 0;
float skew = 0;
*skewEst = 0; // Set in case of error below.
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) {
n++;
rawAvg += rawSkew[i];
}
}
if (n == 0) {
return -1;
}
assert(n > 0);
rawAvg /= n;
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) {
err = rawSkew[i] - rawAvg;
rawAbsDev += err >= 0 ? err : -err;
}
}
assert(n > 0);
rawAbsDev /= n;
upperLimit = (int)(rawAvg + 5 * rawAbsDev + 1); // +1 for ceiling.
lowerLimit = (int)(rawAvg - 5 * rawAbsDev - 1); // -1 for floor.
n = 0;
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitInner && rawSkew[i] > -absLimitInner) ||
(rawSkew[i] < upperLimit && rawSkew[i] > lowerLimit)) {
n++;
cumSum += rawSkew[i];
x += n;
x2 += n*n;
y += cumSum;
xy += n * cumSum;
}
}
if (n == 0) {
return -1;
}
assert(n > 0);
xAvg = x / n;
denom = x2 - xAvg*x;
if (denom != 0) {
skew = (xy - xAvg*y) / denom;
}
*skewEst = skew;
return 0;
}

View File

@ -0,0 +1,32 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_RESAMPLER_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_RESAMPLER_H_
enum { kResamplingDelay = 1 };
// Unless otherwise specified, functions return 0 on success and -1 on error
int WebRtcAec_CreateResampler(void **resampInst);
int WebRtcAec_InitResampler(void *resampInst, int deviceSampleRateHz);
int WebRtcAec_FreeResampler(void *resampInst);
// Estimates skew from raw measurement.
int WebRtcAec_GetSkew(void *resampInst, int rawSkew, float *skewEst);
// Resamples input using linear interpolation.
// Returns size of resampled array.
int WebRtcAec_ResampleLinear(void *resampInst,
const short *inspeech,
int size,
float skew,
short *outspeech);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_MAIN_SOURCE_RESAMPLER_H_