Bump to WebRTC M120 release
Some API deprecation -- ExperimentalAgc and ExperimentalNs are gone. We're continuing to carry iSAC even though it's gone upstream, but maybe we'll want to drop that soon.
This commit is contained in:
@ -21,45 +21,46 @@
|
||||
#include "modules/audio_processing/aec3/subband_nearend_detector.h"
|
||||
#include "modules/audio_processing/aec3/vector_math.h"
|
||||
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
||||
#include "rtc_base/atomic_ops.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "system_wrappers/include/field_trial.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
void PostprocessGains(std::array<float, kFftLengthBy2Plus1>* gain) {
|
||||
// TODO(gustaf): Investigate if this can be relaxed to achieve higher
|
||||
// transparency above 2 kHz.
|
||||
|
||||
void LimitLowFrequencyGains(std::array<float, kFftLengthBy2Plus1>* gain) {
|
||||
// Limit the low frequency gains to avoid the impact of the high-pass filter
|
||||
// on the lower-frequency gain influencing the overall achieved gain.
|
||||
(*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
|
||||
}
|
||||
|
||||
// Limit the high frequency gains to avoid the impact of the anti-aliasing
|
||||
// filter on the upper-frequency gains influencing the overall achieved
|
||||
// gain. TODO(peah): Update this when new anti-aliasing filters are
|
||||
// implemented.
|
||||
constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
|
||||
const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit];
|
||||
void LimitHighFrequencyGains(bool conservative_hf_suppression,
|
||||
std::array<float, kFftLengthBy2Plus1>* gain) {
|
||||
// Limit the high frequency gains to avoid echo leakage due to an imperfect
|
||||
// filter.
|
||||
constexpr size_t kFirstBandToLimit = (64 * 2000) / 8000;
|
||||
const float min_upper_gain = (*gain)[kFirstBandToLimit];
|
||||
std::for_each(
|
||||
gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1,
|
||||
gain->begin() + kFirstBandToLimit + 1, gain->end(),
|
||||
[min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
|
||||
(*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
|
||||
|
||||
// Limits the gain in the frequencies for which the adaptive filter has not
|
||||
// converged.
|
||||
// TODO(peah): Make adaptive to take the actual filter error into account.
|
||||
constexpr size_t kUpperAccurateBandPlus1 = 29;
|
||||
if (conservative_hf_suppression) {
|
||||
// Limits the gain in the frequencies for which the adaptive filter has not
|
||||
// converged.
|
||||
// TODO(peah): Make adaptive to take the actual filter error into account.
|
||||
constexpr size_t kUpperAccurateBandPlus1 = 29;
|
||||
|
||||
constexpr float oneByBandsInSum =
|
||||
1 / static_cast<float>(kUpperAccurateBandPlus1 - 20);
|
||||
const float hf_gain_bound =
|
||||
std::accumulate(gain->begin() + 20,
|
||||
gain->begin() + kUpperAccurateBandPlus1, 0.f) *
|
||||
oneByBandsInSum;
|
||||
constexpr float oneByBandsInSum =
|
||||
1 / static_cast<float>(kUpperAccurateBandPlus1 - 20);
|
||||
const float hf_gain_bound =
|
||||
std::accumulate(gain->begin() + 20,
|
||||
gain->begin() + kUpperAccurateBandPlus1, 0.f) *
|
||||
oneByBandsInSum;
|
||||
|
||||
std::for_each(gain->begin() + kUpperAccurateBandPlus1, gain->end(),
|
||||
[hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); });
|
||||
std::for_each(
|
||||
gain->begin() + kUpperAccurateBandPlus1, gain->end(),
|
||||
[hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); });
|
||||
}
|
||||
}
|
||||
|
||||
// Scales the echo according to assessed audibility at the other end.
|
||||
@ -100,7 +101,7 @@ void WeightEchoForAudibility(const EchoCanceller3Config& config,
|
||||
|
||||
} // namespace
|
||||
|
||||
int SuppressionGain::instance_count_ = 0;
|
||||
std::atomic<int> SuppressionGain::instance_count_(0);
|
||||
|
||||
float SuppressionGain::UpperBandsGain(
|
||||
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum,
|
||||
@ -108,13 +109,13 @@ float SuppressionGain::UpperBandsGain(
|
||||
comfort_noise_spectrum,
|
||||
const absl::optional<int>& narrow_peak_band,
|
||||
bool saturated_echo,
|
||||
const std::vector<std::vector<std::vector<float>>>& render,
|
||||
const Block& render,
|
||||
const std::array<float, kFftLengthBy2Plus1>& low_band_gain) const {
|
||||
RTC_DCHECK_LT(0, render.size());
|
||||
if (render.size() == 1) {
|
||||
RTC_DCHECK_LT(0, render.NumBands());
|
||||
if (render.NumBands() == 1) {
|
||||
return 1.f;
|
||||
}
|
||||
const size_t num_render_channels = render[0].size();
|
||||
const int num_render_channels = render.NumChannels();
|
||||
|
||||
if (narrow_peak_band &&
|
||||
(*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) {
|
||||
@ -133,16 +134,17 @@ float SuppressionGain::UpperBandsGain(
|
||||
// Compute the upper and lower band energies.
|
||||
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
|
||||
float low_band_energy = 0.f;
|
||||
for (size_t ch = 0; ch < num_render_channels; ++ch) {
|
||||
const float channel_energy = std::accumulate(
|
||||
render[0][0].begin(), render[0][0].end(), 0.f, sum_of_squares);
|
||||
for (int ch = 0; ch < num_render_channels; ++ch) {
|
||||
const float channel_energy =
|
||||
std::accumulate(render.begin(/*band=*/0, ch),
|
||||
render.end(/*band=*/0, ch), 0.0f, sum_of_squares);
|
||||
low_band_energy = std::max(low_band_energy, channel_energy);
|
||||
}
|
||||
float high_band_energy = 0.f;
|
||||
for (size_t k = 1; k < render.size(); ++k) {
|
||||
for (size_t ch = 0; ch < num_render_channels; ++ch) {
|
||||
for (int k = 1; k < render.NumBands(); ++k) {
|
||||
for (int ch = 0; ch < num_render_channels; ++ch) {
|
||||
const float energy = std::accumulate(
|
||||
render[k][ch].begin(), render[k][ch].end(), 0.f, sum_of_squares);
|
||||
render.begin(k, ch), render.end(k, ch), 0.f, sum_of_squares);
|
||||
high_band_energy = std::max(high_band_energy, energy);
|
||||
}
|
||||
}
|
||||
@ -229,16 +231,20 @@ void SuppressionGain::GetMinGain(
|
||||
min_gain[k] = std::min(min_gain[k], 1.f);
|
||||
}
|
||||
|
||||
const bool is_nearend_state = dominant_nearend_detector_->IsNearendState();
|
||||
for (size_t k = 0; k < 6; ++k) {
|
||||
const auto& dec = is_nearend_state ? nearend_params_.max_dec_factor_lf
|
||||
: normal_params_.max_dec_factor_lf;
|
||||
if (!initial_state_ ||
|
||||
config_.suppressor.lf_smoothing_during_initial_phase) {
|
||||
const float& dec = dominant_nearend_detector_->IsNearendState()
|
||||
? nearend_params_.max_dec_factor_lf
|
||||
: normal_params_.max_dec_factor_lf;
|
||||
|
||||
// Make sure the gains of the low frequencies do not decrease too
|
||||
// quickly after strong nearend.
|
||||
if (last_nearend[k] > last_echo[k]) {
|
||||
min_gain[k] = std::max(min_gain[k], last_gain_[k] * dec);
|
||||
min_gain[k] = std::min(min_gain[k], 1.f);
|
||||
for (int k = 0; k <= config_.suppressor.last_lf_smoothing_band; ++k) {
|
||||
// Make sure the gains of the low frequencies do not decrease too
|
||||
// quickly after strong nearend.
|
||||
if (last_nearend[k] > last_echo[k] ||
|
||||
k <= config_.suppressor.last_permanent_lf_smoothing_band) {
|
||||
min_gain[k] = std::max(min_gain[k], last_gain_[k] * dec);
|
||||
min_gain[k] = std::min(min_gain[k], 1.f);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -265,6 +271,7 @@ void SuppressionGain::LowerBandGain(
|
||||
suppressor_input,
|
||||
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> residual_echo,
|
||||
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> comfort_noise,
|
||||
bool clock_drift,
|
||||
std::array<float, kFftLengthBy2Plus1>* gain) {
|
||||
gain->fill(1.f);
|
||||
const bool saturated_echo = aec_state.SaturatedEcho();
|
||||
@ -298,8 +305,14 @@ void SuppressionGain::LowerBandGain(
|
||||
last_echo_[ch].begin());
|
||||
}
|
||||
|
||||
// Limit high-frequency gains.
|
||||
PostprocessGains(gain);
|
||||
LimitLowFrequencyGains(gain);
|
||||
// Use conservative high-frequency gains during clock-drift or when not in
|
||||
// dominant nearend.
|
||||
if (!dominant_nearend_detector_->IsNearendState() || clock_drift ||
|
||||
config_.suppressor.conservative_hf_suppression) {
|
||||
LimitHighFrequencyGains(config_.suppressor.conservative_hf_suppression,
|
||||
gain);
|
||||
}
|
||||
|
||||
// Store computed gains.
|
||||
std::copy(gain->begin(), gain->end(), last_gain_.begin());
|
||||
@ -312,8 +325,7 @@ SuppressionGain::SuppressionGain(const EchoCanceller3Config& config,
|
||||
Aec3Optimization optimization,
|
||||
int sample_rate_hz,
|
||||
size_t num_capture_channels)
|
||||
: data_dumper_(
|
||||
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
||||
: data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)),
|
||||
optimization_(optimization),
|
||||
config_(config),
|
||||
num_capture_channels_(num_capture_channels),
|
||||
@ -325,8 +337,14 @@ SuppressionGain::SuppressionGain(const EchoCanceller3Config& config,
|
||||
num_capture_channels_,
|
||||
aec3::MovingAverage(kFftLengthBy2Plus1,
|
||||
config.suppressor.nearend_average_blocks)),
|
||||
nearend_params_(config_.suppressor.nearend_tuning),
|
||||
normal_params_(config_.suppressor.normal_tuning) {
|
||||
nearend_params_(config_.suppressor.last_lf_band,
|
||||
config_.suppressor.first_hf_band,
|
||||
config_.suppressor.nearend_tuning),
|
||||
normal_params_(config_.suppressor.last_lf_band,
|
||||
config_.suppressor.first_hf_band,
|
||||
config_.suppressor.normal_tuning),
|
||||
use_unbounded_echo_spectrum_(config.suppressor.dominant_nearend_detection
|
||||
.use_unbounded_echo_spectrum) {
|
||||
RTC_DCHECK_LT(0, state_change_duration_blocks_);
|
||||
last_gain_.fill(1.f);
|
||||
if (config_.suppressor.use_subband_nearend_detection) {
|
||||
@ -347,24 +365,33 @@ void SuppressionGain::GetGain(
|
||||
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum,
|
||||
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
||||
residual_echo_spectrum,
|
||||
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
||||
residual_echo_spectrum_unbounded,
|
||||
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
||||
comfort_noise_spectrum,
|
||||
const RenderSignalAnalyzer& render_signal_analyzer,
|
||||
const AecState& aec_state,
|
||||
const std::vector<std::vector<std::vector<float>>>& render,
|
||||
const Block& render,
|
||||
bool clock_drift,
|
||||
float* high_bands_gain,
|
||||
std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
|
||||
RTC_DCHECK(high_bands_gain);
|
||||
RTC_DCHECK(low_band_gain);
|
||||
|
||||
// Choose residual echo spectrum for dominant nearend detection.
|
||||
const auto echo = use_unbounded_echo_spectrum_
|
||||
? residual_echo_spectrum_unbounded
|
||||
: residual_echo_spectrum;
|
||||
|
||||
// Update the nearend state selection.
|
||||
dominant_nearend_detector_->Update(nearend_spectrum, residual_echo_spectrum,
|
||||
dominant_nearend_detector_->Update(nearend_spectrum, echo,
|
||||
comfort_noise_spectrum, initial_state_);
|
||||
|
||||
// Compute gain for the lower band.
|
||||
bool low_noise_render = low_render_detector_.Detect(render);
|
||||
LowerBandGain(low_noise_render, aec_state, nearend_spectrum,
|
||||
residual_echo_spectrum, comfort_noise_spectrum, low_band_gain);
|
||||
residual_echo_spectrum, comfort_noise_spectrum, clock_drift,
|
||||
low_band_gain);
|
||||
|
||||
// Compute the gain for the upper bands.
|
||||
const absl::optional<int> narrow_peak_band =
|
||||
@ -373,6 +400,9 @@ void SuppressionGain::GetGain(
|
||||
*high_bands_gain =
|
||||
UpperBandsGain(echo_spectrum, comfort_noise_spectrum, narrow_peak_band,
|
||||
aec_state.SaturatedEcho(), render, *low_band_gain);
|
||||
|
||||
data_dumper_->DumpRaw("aec3_dominant_nearend",
|
||||
dominant_nearend_detector_->IsNearendState());
|
||||
}
|
||||
|
||||
void SuppressionGain::SetInitialState(bool state) {
|
||||
@ -386,20 +416,17 @@ void SuppressionGain::SetInitialState(bool state) {
|
||||
|
||||
// Detects when the render signal can be considered to have low power and
|
||||
// consist of stationary noise.
|
||||
bool SuppressionGain::LowNoiseRenderDetector::Detect(
|
||||
const std::vector<std::vector<std::vector<float>>>& render) {
|
||||
bool SuppressionGain::LowNoiseRenderDetector::Detect(const Block& render) {
|
||||
float x2_sum = 0.f;
|
||||
float x2_max = 0.f;
|
||||
for (const auto& x_ch : render[0]) {
|
||||
for (const auto& x_k : x_ch) {
|
||||
for (int ch = 0; ch < render.NumChannels(); ++ch) {
|
||||
for (float x_k : render.View(/*band=*/0, ch)) {
|
||||
const float x2 = x_k * x_k;
|
||||
x2_sum += x2;
|
||||
x2_max = std::max(x2_max, x2);
|
||||
}
|
||||
}
|
||||
const size_t num_render_channels = render[0].size();
|
||||
x2_sum = x2_sum / num_render_channels;
|
||||
;
|
||||
x2_sum = x2_sum / render.NumChannels();
|
||||
|
||||
constexpr float kThreshold = 50.f * 50.f * 64.f;
|
||||
const bool low_noise_render =
|
||||
@ -409,23 +436,23 @@ bool SuppressionGain::LowNoiseRenderDetector::Detect(
|
||||
}
|
||||
|
||||
SuppressionGain::GainParameters::GainParameters(
|
||||
int last_lf_band,
|
||||
int first_hf_band,
|
||||
const EchoCanceller3Config::Suppressor::Tuning& tuning)
|
||||
: max_inc_factor(tuning.max_inc_factor),
|
||||
max_dec_factor_lf(tuning.max_dec_factor_lf) {
|
||||
// Compute per-band masking thresholds.
|
||||
constexpr size_t kLastLfBand = 5;
|
||||
constexpr size_t kFirstHfBand = 8;
|
||||
RTC_DCHECK_LT(kLastLfBand, kFirstHfBand);
|
||||
RTC_DCHECK_LT(last_lf_band, first_hf_band);
|
||||
auto& lf = tuning.mask_lf;
|
||||
auto& hf = tuning.mask_hf;
|
||||
RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress);
|
||||
RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress);
|
||||
for (size_t k = 0; k < kFftLengthBy2Plus1; k++) {
|
||||
for (int k = 0; k < static_cast<int>(kFftLengthBy2Plus1); k++) {
|
||||
float a;
|
||||
if (k <= kLastLfBand) {
|
||||
if (k <= last_lf_band) {
|
||||
a = 0.f;
|
||||
} else if (k < kFirstHfBand) {
|
||||
a = (k - kLastLfBand) / static_cast<float>(kFirstHfBand - kLastLfBand);
|
||||
} else if (k < first_hf_band) {
|
||||
a = (k - last_lf_band) / static_cast<float>(first_hf_band - last_lf_band);
|
||||
} else {
|
||||
a = 1.f;
|
||||
}
|
||||
|
Reference in New Issue
Block a user