/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/adaptive_digital_gain_applier.h" #include #include "common_audio/include/audio_util.h" #include "modules/audio_processing/agc2/agc2_common.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_minmax.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { // This function maps input level to desired applied gain. We want to // boost the signal so that peaks are at -kHeadroomDbfs. We can't // apply more than kMaxGainDb gain. float ComputeGainDb(float input_level_dbfs) { // If the level is very low, boost it as much as we can. if (input_level_dbfs < -(kHeadroomDbfs + kMaxGainDb)) { return kMaxGainDb; } // We expect to end up here most of the time: the level is below // -headroom, but we can boost it to -headroom. if (input_level_dbfs < -kHeadroomDbfs) { return -kHeadroomDbfs - input_level_dbfs; } // Otherwise, the level is too high and we can't boost. The // LevelEstimator is responsible for not reporting bogus gain // values. RTC_DCHECK_LE(input_level_dbfs, 0.f); return 0.f; } // Returns `target_gain` if the output noise level is below // `max_output_noise_level_dbfs`; otherwise returns a capped gain so that the // output noise level equals `max_output_noise_level_dbfs`. float LimitGainByNoise(float target_gain, float input_noise_level_dbfs, float max_output_noise_level_dbfs, ApmDataDumper& apm_data_dumper) { const float noise_headroom_db = max_output_noise_level_dbfs - input_noise_level_dbfs; apm_data_dumper.DumpRaw("agc2_noise_headroom_db", noise_headroom_db); return std::min(target_gain, std::max(noise_headroom_db, 0.f)); } float LimitGainByLowConfidence(float target_gain, float last_gain, float limiter_audio_level_dbfs, bool estimate_is_confident) { if (estimate_is_confident || limiter_audio_level_dbfs <= kLimiterThresholdForAgcGainDbfs) { return target_gain; } const float limiter_level_before_gain = limiter_audio_level_dbfs - last_gain; // Compute a new gain so that limiter_level_before_gain + new_gain <= // kLimiterThreshold. const float new_target_gain = std::max( kLimiterThresholdForAgcGainDbfs - limiter_level_before_gain, 0.f); return std::min(new_target_gain, target_gain); } // Computes how the gain should change during this frame. // Return the gain difference in db to 'last_gain_db'. float ComputeGainChangeThisFrameDb(float target_gain_db, float last_gain_db, bool gain_increase_allowed, float max_gain_change_db) { float target_gain_difference_db = target_gain_db - last_gain_db; if (!gain_increase_allowed) { target_gain_difference_db = std::min(target_gain_difference_db, 0.f); } return rtc::SafeClamp(target_gain_difference_db, -max_gain_change_db, max_gain_change_db); } } // namespace AdaptiveDigitalGainApplier::AdaptiveDigitalGainApplier( ApmDataDumper* apm_data_dumper, int adjacent_speech_frames_threshold, float max_gain_change_db_per_second, float max_output_noise_level_dbfs) : apm_data_dumper_(apm_data_dumper), gain_applier_( /*hard_clip_samples=*/false, /*initial_gain_factor=*/DbToRatio(kInitialAdaptiveDigitalGainDb)), adjacent_speech_frames_threshold_(adjacent_speech_frames_threshold), max_gain_change_db_per_10ms_(max_gain_change_db_per_second * kFrameDurationMs / 1000.f), max_output_noise_level_dbfs_(max_output_noise_level_dbfs), calls_since_last_gain_log_(0), frames_to_gain_increase_allowed_(adjacent_speech_frames_threshold_), last_gain_db_(kInitialAdaptiveDigitalGainDb) { RTC_DCHECK_GT(max_gain_change_db_per_second, 0.f); RTC_DCHECK_GE(frames_to_gain_increase_allowed_, 1); RTC_DCHECK_GE(max_output_noise_level_dbfs_, -90.f); RTC_DCHECK_LE(max_output_noise_level_dbfs_, 0.f); } void AdaptiveDigitalGainApplier::Process(const FrameInfo& info, AudioFrameView frame) { RTC_DCHECK_GE(info.input_level_dbfs, -150.f); RTC_DCHECK_GE(frame.num_channels(), 1); RTC_DCHECK( frame.samples_per_channel() == 80 || frame.samples_per_channel() == 160 || frame.samples_per_channel() == 320 || frame.samples_per_channel() == 480) << "`frame` does not look like a 10 ms frame for an APM supported sample " "rate"; const float target_gain_db = LimitGainByLowConfidence( LimitGainByNoise(ComputeGainDb(std::min(info.input_level_dbfs, 0.f)), info.input_noise_level_dbfs, max_output_noise_level_dbfs_, *apm_data_dumper_), last_gain_db_, info.limiter_envelope_dbfs, info.estimate_is_confident); // Forbid increasing the gain until enough adjacent speech frames are // observed. if (info.vad_result.speech_probability < kVadConfidenceThreshold) { frames_to_gain_increase_allowed_ = adjacent_speech_frames_threshold_; } else if (frames_to_gain_increase_allowed_ > 0) { frames_to_gain_increase_allowed_--; } const float gain_change_this_frame_db = ComputeGainChangeThisFrameDb( target_gain_db, last_gain_db_, /*gain_increase_allowed=*/frames_to_gain_increase_allowed_ == 0, max_gain_change_db_per_10ms_); apm_data_dumper_->DumpRaw("agc2_want_to_change_by_db", target_gain_db - last_gain_db_); apm_data_dumper_->DumpRaw("agc2_will_change_by_db", gain_change_this_frame_db); // Optimization: avoid calling math functions if gain does not // change. if (gain_change_this_frame_db != 0.f) { gain_applier_.SetGainFactor( DbToRatio(last_gain_db_ + gain_change_this_frame_db)); } gain_applier_.ApplyGain(frame); // Remember that the gain has changed for the next iteration. last_gain_db_ = last_gain_db_ + gain_change_this_frame_db; apm_data_dumper_->DumpRaw("agc2_applied_gain_db", last_gain_db_); // Log every 10 seconds. calls_since_last_gain_log_++; if (calls_since_last_gain_log_ == 1000) { calls_since_last_gain_log_ = 0; RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc2.DigitalGainApplied", last_gain_db_, 0, kMaxGainDb, kMaxGainDb + 1); RTC_HISTOGRAM_COUNTS_LINEAR( "WebRTC.Audio.Agc2.EstimatedSpeechPlusNoiseLevel", -info.input_level_dbfs, 0, 100, 101); RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc2.EstimatedNoiseLevel", -info.input_noise_level_dbfs, 0, 100, 101); RTC_LOG(LS_INFO) << "AGC2 adaptive digital" << " | speech_plus_noise_dbfs: " << info.input_level_dbfs << " | noise_dbfs: " << info.input_noise_level_dbfs << " | gain_db: " << last_gain_db_; } } } // namespace webrtc