/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * Contains the API functions for the AEC. */ #include "echo_cancellation.h" #include #ifdef AEC_DEBUG #include #endif #include #include #include "aec_core.h" #include "resampler.h" #include "ring_buffer.h" #define BUF_SIZE_FRAMES 50 // buffer size (frames) // Maximum length of resampled signal. Must be an integer multiple of frames // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN // The factor of 2 handles wb, and the + 1 is as a safety margin #define MAX_RESAMP_LEN (5 * FRAME_LEN) static const int bufSizeSamp = BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples) static const int sampMsNb = 8; // samples per ms in nb // Target suppression levels for nlp modes // log{0.001, 0.00001, 0.00000001} static const float targetSupp[3] = {-6.9f, -11.5f, -18.4f}; static const float minOverDrive[3] = {1.0f, 2.0f, 5.0f}; static const int initCheck = 42; typedef struct { int delayCtr; int sampFreq; int splitSampFreq; int scSampFreq; float sampFactor; // scSampRate / sampFreq short nlpMode; short autoOnOff; short activity; short skewMode; short bufSizeStart; //short bufResetCtr; // counts number of noncausal frames int knownDelay; // Stores the last frame added to the farend buffer short farendOld[2][FRAME_LEN]; short initFlag; // indicates if AEC has been initialized // Variables used for averaging far end buffer size short counter; short sum; short firstVal; short checkBufSizeCtr; // Variables used for delay shifts short msInSndCardBuf; short filtDelay; int timeForDelayChange; int ECstartup; int checkBuffSize; int delayChange; short lastDelayDiff; #ifdef AEC_DEBUG FILE *bufFile; FILE *delayFile; FILE *skewFile; FILE *preCompFile; FILE *postCompFile; #endif // AEC_DEBUG // Structures void *farendBuf; void *resampler; int skewFrCtr; int resample; // if the skew is small enough we don't resample int highSkewCtr; float skew; int lastError; aec_t *aec; } aecpc_t; // Estimates delay to set the position of the farend buffer read pointer // (controlled by knownDelay) static int EstBufDelay(aecpc_t *aecInst, short msInSndCardBuf); // Stuffs the farend buffer if the estimated delay is too large static int DelayComp(aecpc_t *aecInst); WebRtc_Word32 WebRtcAec_Create(void **aecInst) { aecpc_t *aecpc; if (aecInst == NULL) { return -1; } aecpc = malloc(sizeof(aecpc_t)); *aecInst = aecpc; if (aecpc == NULL) { return -1; } if (WebRtcAec_CreateAec(&aecpc->aec) == -1) { WebRtcAec_Free(aecpc); aecpc = NULL; return -1; } if (WebRtcApm_CreateBuffer(&aecpc->farendBuf, bufSizeSamp) == -1) { WebRtcAec_Free(aecpc); aecpc = NULL; return -1; } if (WebRtcAec_CreateResampler(&aecpc->resampler) == -1) { WebRtcAec_Free(aecpc); aecpc = NULL; return -1; } aecpc->initFlag = 0; aecpc->lastError = 0; #ifdef AEC_DEBUG aecpc->aec->farFile = fopen("aecFar.pcm","wb"); aecpc->aec->nearFile = fopen("aecNear.pcm","wb"); aecpc->aec->outFile = fopen("aecOut.pcm","wb"); aecpc->aec->outLpFile = fopen("aecOutLp.pcm","wb"); aecpc->bufFile = fopen("aecBuf.dat", "wb"); aecpc->skewFile = fopen("aecSkew.dat", "wb"); aecpc->delayFile = fopen("aecDelay.dat", "wb"); aecpc->preCompFile = fopen("preComp.pcm", "wb"); aecpc->postCompFile = fopen("postComp.pcm", "wb"); #endif // AEC_DEBUG return 0; } WebRtc_Word32 WebRtcAec_Free(void *aecInst) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } #ifdef AEC_DEBUG fclose(aecpc->aec->farFile); fclose(aecpc->aec->nearFile); fclose(aecpc->aec->outFile); fclose(aecpc->aec->outLpFile); fclose(aecpc->bufFile); fclose(aecpc->skewFile); fclose(aecpc->delayFile); fclose(aecpc->preCompFile); fclose(aecpc->postCompFile); #endif // AEC_DEBUG WebRtcAec_FreeAec(aecpc->aec); WebRtcApm_FreeBuffer(aecpc->farendBuf); WebRtcAec_FreeResampler(aecpc->resampler); free(aecpc); return 0; } WebRtc_Word32 WebRtcAec_Init(void *aecInst, WebRtc_Word32 sampFreq, WebRtc_Word32 scSampFreq) { aecpc_t *aecpc = aecInst; AecConfig aecConfig; if (aecpc == NULL) { return -1; } if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->sampFreq = sampFreq; if (scSampFreq < 1 || scSampFreq > 96000) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->scSampFreq = scSampFreq; // Initialize echo canceller core if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } // Initialize farend buffer if (WebRtcApm_InitBuffer(aecpc->farendBuf) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } aecpc->initFlag = initCheck; // indicates that initialization has been done if (aecpc->sampFreq == 32000) { aecpc->splitSampFreq = 16000; } else { aecpc->splitSampFreq = sampFreq; } aecpc->skewFrCtr = 0; aecpc->activity = 0; aecpc->delayChange = 1; aecpc->delayCtr = 0; aecpc->sum = 0; aecpc->counter = 0; aecpc->checkBuffSize = 1; aecpc->firstVal = 0; aecpc->ECstartup = 1; aecpc->bufSizeStart = 0; aecpc->checkBufSizeCtr = 0; aecpc->filtDelay = 0; aecpc->timeForDelayChange =0; aecpc->knownDelay = 0; aecpc->lastDelayDiff = 0; aecpc->skew = 0; aecpc->resample = kAecFalse; aecpc->highSkewCtr = 0; aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq; memset(&aecpc->farendOld[0][0], 0, 160); // Default settings. aecConfig.nlpMode = kAecNlpModerate; aecConfig.skewMode = kAecFalse; aecConfig.metricsMode = kAecFalse; aecConfig.delay_logging = kAecFalse; if (WebRtcAec_set_config(aecpc, aecConfig) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } return 0; } // only buffer L band for farend WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst, const WebRtc_Word16 *farend, WebRtc_Word16 nrOfSamples) { aecpc_t *aecpc = aecInst; WebRtc_Word32 retVal = 0; short newNrOfSamples; short newFarend[MAX_RESAMP_LEN]; float skew; if (aecpc == NULL) { return -1; } if (farend == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } skew = aecpc->skew; // TODO: Is this really a good idea? if (!aecpc->ECstartup) { DelayComp(aecpc); } if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { // Resample and get a new number of samples newNrOfSamples = WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, skew, newFarend); WebRtcApm_WriteBuffer(aecpc->farendBuf, newFarend, newNrOfSamples); #ifdef AEC_DEBUG fwrite(farend, 2, nrOfSamples, aecpc->preCompFile); fwrite(newFarend, 2, newNrOfSamples, aecpc->postCompFile); #endif } else { WebRtcApm_WriteBuffer(aecpc->farendBuf, farend, nrOfSamples); } return retVal; } WebRtc_Word32 WebRtcAec_Process(void *aecInst, const WebRtc_Word16 *nearend, const WebRtc_Word16 *nearendH, WebRtc_Word16 *out, WebRtc_Word16 *outH, WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf, WebRtc_Word32 skew) { aecpc_t *aecpc = aecInst; WebRtc_Word32 retVal = 0; short i; short farend[FRAME_LEN]; short nmbrOfFilledBuffers; short nBlocks10ms; short nFrames; #ifdef AEC_DEBUG short msInAECBuf; #endif // Limit resampling to doubling/halving of signal const float minSkewEst = -0.5f; const float maxSkewEst = 1.0f; if (aecpc == NULL) { return -1; } if (nearend == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (out == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } // Check for valid pointers based on sampling rate if (aecpc->sampFreq == 32000 && nearendH == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (msInSndCardBuf < 0) { msInSndCardBuf = 0; aecpc->lastError = AEC_BAD_PARAMETER_WARNING; retVal = -1; } else if (msInSndCardBuf > 500) { msInSndCardBuf = 500; aecpc->lastError = AEC_BAD_PARAMETER_WARNING; retVal = -1; } msInSndCardBuf += 10; aecpc->msInSndCardBuf = msInSndCardBuf; if (aecpc->skewMode == kAecTrue) { if (aecpc->skewFrCtr < 25) { aecpc->skewFrCtr++; } else { retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew); if (retVal == -1) { aecpc->skew = 0; aecpc->lastError = AEC_BAD_PARAMETER_WARNING; } aecpc->skew /= aecpc->sampFactor*nrOfSamples; if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) { aecpc->resample = kAecFalse; } else { aecpc->resample = kAecTrue; } if (aecpc->skew < minSkewEst) { aecpc->skew = minSkewEst; } else if (aecpc->skew > maxSkewEst) { aecpc->skew = maxSkewEst; } #ifdef AEC_DEBUG fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile); #endif } } nFrames = nrOfSamples / FRAME_LEN; nBlocks10ms = nFrames / aecpc->aec->mult; if (aecpc->ECstartup) { if (nearend != out) { // Only needed if they don't already point to the same place. memcpy(out, nearend, sizeof(short) * nrOfSamples); } nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecpc->farendBuf) / FRAME_LEN; // The AEC is in the start up mode // AEC is disabled until the soundcard buffer and farend buffers are OK // Mechanism to ensure that the soundcard buffer is reasonably stable. if (aecpc->checkBuffSize) { aecpc->checkBufSizeCtr++; // Before we fill up the far end buffer we require the amount of data on the // sound card to be stable (+/-8 ms) compared to the first value. This // comparison is made during the following 4 consecutive frames. If it seems // to be stable then we start to fill up the far end buffer. if (aecpc->counter == 0) { aecpc->firstVal = aecpc->msInSndCardBuf; aecpc->sum = 0; } if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) < WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) { aecpc->sum += aecpc->msInSndCardBuf; aecpc->counter++; } else { aecpc->counter = 0; } if (aecpc->counter*nBlocks10ms >= 6) { // The farend buffer size is determined in blocks of 80 samples // Use 75% of the average value of the soundcard buffer aecpc->bufSizeStart = WEBRTC_SPL_MIN((int) (0.75 * (aecpc->sum * aecpc->aec->mult) / (aecpc->counter * 10)), BUF_SIZE_FRAMES); // buffersize has now been determined aecpc->checkBuffSize = 0; } if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) { // for really bad sound cards, don't disable echocanceller for more than 0.5 sec aecpc->bufSizeStart = WEBRTC_SPL_MIN((int) (0.75 * (aecpc->msInSndCardBuf * aecpc->aec->mult) / 10), BUF_SIZE_FRAMES); aecpc->checkBuffSize = 0; } } // if checkBuffSize changed in the if-statement above if (!aecpc->checkBuffSize) { // soundcard buffer is now reasonably stable // When the far end buffer is filled with approximately the same amount of // data as the amount on the sound card we end the start up phase and start // to cancel echoes. if (nmbrOfFilledBuffers == aecpc->bufSizeStart) { aecpc->ECstartup = 0; // Enable the AEC } else if (nmbrOfFilledBuffers > aecpc->bufSizeStart) { WebRtcApm_FlushBuffer(aecpc->farendBuf, WebRtcApm_get_buffer_size(aecpc->farendBuf) - aecpc->bufSizeStart * FRAME_LEN); aecpc->ECstartup = 0; } } } else { // AEC is enabled // Note only 1 block supported for nb and 2 blocks for wb for (i = 0; i < nFrames; i++) { nmbrOfFilledBuffers = WebRtcApm_get_buffer_size(aecpc->farendBuf) / FRAME_LEN; // Check that there is data in the far end buffer if (nmbrOfFilledBuffers > 0) { // Get the next 80 samples from the farend buffer WebRtcApm_ReadBuffer(aecpc->farendBuf, farend, FRAME_LEN); // Always store the last frame for use when we run out of data memcpy(&(aecpc->farendOld[i][0]), farend, FRAME_LEN * sizeof(short)); } else { // We have no data so we use the last played frame memcpy(farend, &(aecpc->farendOld[i][0]), FRAME_LEN * sizeof(short)); } // Call buffer delay estimator when all data is extracted, // i.e. i = 0 for NB and i = 1 for WB or SWB if ((i == 0 && aecpc->splitSampFreq == 8000) || (i == 1 && (aecpc->splitSampFreq == 16000))) { EstBufDelay(aecpc, aecpc->msInSndCardBuf); } // Call the AEC WebRtcAec_ProcessFrame(aecpc->aec, farend, &nearend[FRAME_LEN * i], &nearendH[FRAME_LEN * i], &out[FRAME_LEN * i], &outH[FRAME_LEN * i], aecpc->knownDelay); } } #ifdef AEC_DEBUG msInAECBuf = WebRtcApm_get_buffer_size(aecpc->farendBuf) / (sampMsNb*aecpc->aec->mult); fwrite(&msInAECBuf, 2, 1, aecpc->bufFile); fwrite(&(aecpc->knownDelay), sizeof(aecpc->knownDelay), 1, aecpc->delayFile); #endif return retVal; } WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->skewMode = config.skewMode; if (config.nlpMode != kAecNlpConservative && config.nlpMode != kAecNlpModerate && config.nlpMode != kAecNlpAggressive) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->nlpMode = config.nlpMode; aecpc->aec->targetSupp = targetSupp[aecpc->nlpMode]; aecpc->aec->minOverDrive = minOverDrive[aecpc->nlpMode]; if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->aec->metricsMode = config.metricsMode; if (aecpc->aec->metricsMode == kAecTrue) { WebRtcAec_InitMetrics(aecpc->aec); } if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->aec->delay_logging_enabled = config.delay_logging; if (aecpc->aec->delay_logging_enabled == kAecTrue) { memset(aecpc->aec->delay_histogram, 0, sizeof(aecpc->aec->delay_histogram)); } return 0; } WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (config == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } config->nlpMode = aecpc->nlpMode; config->skewMode = aecpc->skewMode; config->metricsMode = aecpc->aec->metricsMode; config->delay_logging = aecpc->aec->delay_logging_enabled; return 0; } WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (status == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } *status = aecpc->aec->echoState; return 0; } WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics) { const float upweight = 0.7f; float dtmp; short stmp; aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (metrics == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // ERL metrics->erl.instant = (short) aecpc->aec->erl.instant; if ((aecpc->aec->erl.himean > offsetLevel) && (aecpc->aec->erl.average > offsetLevel)) { // Use a mix between regular average and upper part average dtmp = upweight * aecpc->aec->erl.himean + (1 - upweight) * aecpc->aec->erl.average; metrics->erl.average = (short) dtmp; } else { metrics->erl.average = offsetLevel; } metrics->erl.max = (short) aecpc->aec->erl.max; if (aecpc->aec->erl.min < (offsetLevel * (-1))) { metrics->erl.min = (short) aecpc->aec->erl.min; } else { metrics->erl.min = offsetLevel; } // ERLE metrics->erle.instant = (short) aecpc->aec->erle.instant; if ((aecpc->aec->erle.himean > offsetLevel) && (aecpc->aec->erle.average > offsetLevel)) { // Use a mix between regular average and upper part average dtmp = upweight * aecpc->aec->erle.himean + (1 - upweight) * aecpc->aec->erle.average; metrics->erle.average = (short) dtmp; } else { metrics->erle.average = offsetLevel; } metrics->erle.max = (short) aecpc->aec->erle.max; if (aecpc->aec->erle.min < (offsetLevel * (-1))) { metrics->erle.min = (short) aecpc->aec->erle.min; } else { metrics->erle.min = offsetLevel; } // RERL if ((metrics->erl.average > offsetLevel) && (metrics->erle.average > offsetLevel)) { stmp = metrics->erl.average + metrics->erle.average; } else { stmp = offsetLevel; } metrics->rerl.average = stmp; // No other statistics needed, but returned for completeness metrics->rerl.instant = stmp; metrics->rerl.max = stmp; metrics->rerl.min = stmp; // A_NLP metrics->aNlp.instant = (short) aecpc->aec->aNlp.instant; if ((aecpc->aec->aNlp.himean > offsetLevel) && (aecpc->aec->aNlp.average > offsetLevel)) { // Use a mix between regular average and upper part average dtmp = upweight * aecpc->aec->aNlp.himean + (1 - upweight) * aecpc->aec->aNlp.average; metrics->aNlp.average = (short) dtmp; } else { metrics->aNlp.average = offsetLevel; } metrics->aNlp.max = (short) aecpc->aec->aNlp.max; if (aecpc->aec->aNlp.min < (offsetLevel * (-1))) { metrics->aNlp.min = (short) aecpc->aec->aNlp.min; } else { metrics->aNlp.min = offsetLevel; } return 0; } int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std) { aecpc_t* self = handle; int i = 0; int delay_values = 0; int num_delay_values = 0; int my_median = 0; const int kMsPerBlock = (PART_LEN * 1000) / self->splitSampFreq; float l1_norm = 0; if (self == NULL) { return -1; } if (median == NULL) { self->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (std == NULL) { self->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (self->initFlag != initCheck) { self->lastError = AEC_UNINITIALIZED_ERROR; return -1; } if (self->aec->delay_logging_enabled == 0) { // Logging disabled self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR; return -1; } // Get number of delay values since last update for (i = 0; i < kMaxDelay; i++) { num_delay_values += self->aec->delay_histogram[i]; } if (num_delay_values == 0) { // We have no new delay value data *median = -1; *std = -1; return 0; } delay_values = num_delay_values >> 1; // Start value for median count down // Get median of delay values since last update for (i = 0; i < kMaxDelay; i++) { delay_values -= self->aec->delay_histogram[i]; if (delay_values < 0) { my_median = i; break; } } *median = my_median * kMsPerBlock; // Calculate the L1 norm, with median value as central moment for (i = 0; i < kMaxDelay; i++) { l1_norm += (float) (fabs(i - my_median) * self->aec->delay_histogram[i]); } *std = (int) (l1_norm / (float) num_delay_values + 0.5f) * kMsPerBlock; // Reset histogram memset(self->aec->delay_histogram, 0, sizeof(self->aec->delay_histogram)); return 0; } WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len) { const char version[] = "AEC 2.5.0"; const short versionLen = (short)strlen(version) + 1; // +1 for null-termination if (versionStr == NULL) { return -1; } if (versionLen > len) { return -1; } strncpy(versionStr, version, versionLen); return 0; } WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } return aecpc->lastError; } static int EstBufDelay(aecpc_t *aecpc, short msInSndCardBuf) { short delayNew, nSampFar, nSampSndCard; short diff; nSampFar = WebRtcApm_get_buffer_size(aecpc->farendBuf); nSampSndCard = msInSndCardBuf * sampMsNb * aecpc->aec->mult; delayNew = nSampSndCard - nSampFar; // Account for resampling frame delay if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { delayNew -= kResamplingDelay; } if (delayNew < FRAME_LEN) { WebRtcApm_FlushBuffer(aecpc->farendBuf, FRAME_LEN); delayNew += FRAME_LEN; } aecpc->filtDelay = WEBRTC_SPL_MAX(0, (short)(0.8*aecpc->filtDelay + 0.2*delayNew)); diff = aecpc->filtDelay - aecpc->knownDelay; if (diff > 224) { if (aecpc->lastDelayDiff < 96) { aecpc->timeForDelayChange = 0; } else { aecpc->timeForDelayChange++; } } else if (diff < 96 && aecpc->knownDelay > 0) { if (aecpc->lastDelayDiff > 224) { aecpc->timeForDelayChange = 0; } else { aecpc->timeForDelayChange++; } } else { aecpc->timeForDelayChange = 0; } aecpc->lastDelayDiff = diff; if (aecpc->timeForDelayChange > 25) { aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0); } return 0; } static int DelayComp(aecpc_t *aecpc) { int nSampFar, nSampSndCard, delayNew, nSampAdd; const int maxStuffSamp = 10 * FRAME_LEN; nSampFar = WebRtcApm_get_buffer_size(aecpc->farendBuf); nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->aec->mult; delayNew = nSampSndCard - nSampFar; // Account for resampling frame delay if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { delayNew -= kResamplingDelay; } if (delayNew > FAR_BUF_LEN - FRAME_LEN*aecpc->aec->mult) { // The difference of the buffersizes is larger than the maximum // allowed known delay. Compensate by stuffing the buffer. nSampAdd = (int)(WEBRTC_SPL_MAX((int)(0.5 * nSampSndCard - nSampFar), FRAME_LEN)); nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp); WebRtcApm_StuffBuffer(aecpc->farendBuf, nSampAdd); aecpc->delayChange = 1; // the delay needs to be updated } return 0; }