Arun Raghavan b5c48b97f6 Bump to WebRTC M131 release
Ongoing fixes and improvements, transient suppressor is gone. Also,
dropping isac because it doesn't seem to be useful, and is just build
system deadweight now.

Upstream references:

  Version: 131.0.6778.200
  WebRTC: 79aff54b0fa9238ce3518dd9eaf9610cd6f22e82
  Chromium: 2a19506ad24af755f2a215a4c61f775393e0db42
2024-12-26 12:55:16 -05:00

270 lines
9.1 KiB
C++

/*
* Copyright (c) 2024 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_AUDIO_AUDIO_VIEW_H_
#define API_AUDIO_AUDIO_VIEW_H_
#include "api/array_view.h"
#include "api/audio/channel_layout.h"
#include "rtc_base/checks.h"
namespace webrtc {
// This file contains 3 types of view classes:
//
// * MonoView<>: A single channel contiguous buffer of samples.
//
// * InterleavedView<>: Channel samples are interleaved (side-by-side) in
// the buffer. A single channel InterleavedView<> is the same thing as a
// MonoView<>
//
// * DeinterleavedView<>: Each channel's samples are contiguous within the
// buffer. Channels can be enumerated and accessing the individual channel
// data is done via MonoView<>.
//
// The views are comparable to and built on rtc::ArrayView<> but add
// audio specific properties for the dimensions of the buffer and the above
// specialized [de]interleaved support.
//
// There are also a few generic utility functions that can simplify
// generic code for supporting more than one type of view.
// MonoView<> represents a view over a single contiguous, audio buffer. This
// can be either an single channel (mono) interleaved buffer (e.g. AudioFrame),
// or a de-interleaved channel (e.g. from AudioBuffer).
template <typename T>
using MonoView = rtc::ArrayView<T>;
// InterleavedView<> is a view over an interleaved audio buffer (e.g. from
// AudioFrame).
template <typename T>
class InterleavedView {
public:
using value_type = T;
InterleavedView() = default;
template <typename U>
InterleavedView(U* data, size_t samples_per_channel, size_t num_channels)
: num_channels_(num_channels),
samples_per_channel_(samples_per_channel),
data_(data, num_channels * samples_per_channel) {
RTC_DCHECK_LE(num_channels_, kMaxConcurrentChannels);
RTC_DCHECK(num_channels_ == 0u || samples_per_channel_ != 0u);
}
// Construct an InterleavedView from a C-style array. Samples per channels
// is calculated based on the array size / num_channels.
template <typename U, size_t N>
InterleavedView(U (&array)[N], // NOLINT
size_t num_channels)
: InterleavedView(array, N / num_channels, num_channels) {
RTC_DCHECK_EQ(N % num_channels, 0u);
}
template <typename U>
InterleavedView(const InterleavedView<U>& other)
: num_channels_(other.num_channels()),
samples_per_channel_(other.samples_per_channel()),
data_(other.data()) {}
size_t num_channels() const { return num_channels_; }
size_t samples_per_channel() const { return samples_per_channel_; }
rtc::ArrayView<T> data() const { return data_; }
bool empty() const { return data_.empty(); }
size_t size() const { return data_.size(); }
MonoView<T> AsMono() const {
RTC_DCHECK_EQ(num_channels(), 1u);
RTC_DCHECK_EQ(data_.size(), samples_per_channel_);
return data_;
}
// A simple wrapper around memcpy that includes checks for properties.
// TODO(tommi): Consider if this can be utility function for both interleaved
// and deinterleaved views.
template <typename U>
void CopyFrom(const InterleavedView<U>& source) {
static_assert(sizeof(T) == sizeof(U), "");
RTC_DCHECK_EQ(num_channels(), source.num_channels());
RTC_DCHECK_EQ(samples_per_channel(), source.samples_per_channel());
RTC_DCHECK_GE(data_.size(), source.data().size());
const auto data = source.data();
memcpy(&data_[0], &data[0], data.size() * sizeof(U));
}
T& operator[](size_t idx) const { return data_[idx]; }
T* begin() const { return data_.begin(); }
T* end() const { return data_.end(); }
const T* cbegin() const { return data_.cbegin(); }
const T* cend() const { return data_.cend(); }
std::reverse_iterator<T*> rbegin() const { return data_.rbegin(); }
std::reverse_iterator<T*> rend() const { return data_.rend(); }
std::reverse_iterator<const T*> crbegin() const { return data_.crbegin(); }
std::reverse_iterator<const T*> crend() const { return data_.crend(); }
private:
// TODO(tommi): Consider having these both be stored as uint16_t to
// save a few bytes per view. Use `dchecked_cast` to support size_t during
// construction.
size_t num_channels_ = 0u;
size_t samples_per_channel_ = 0u;
rtc::ArrayView<T> data_;
};
template <typename T>
class DeinterleavedView {
public:
using value_type = T;
DeinterleavedView() = default;
template <typename U>
DeinterleavedView(U* data, size_t samples_per_channel, size_t num_channels)
: num_channels_(num_channels),
samples_per_channel_(samples_per_channel),
data_(data, num_channels * samples_per_channel_) {}
template <typename U>
DeinterleavedView(const DeinterleavedView<U>& other)
: num_channels_(other.num_channels()),
samples_per_channel_(other.samples_per_channel()),
data_(other.data()) {}
// Returns a deinterleaved channel where `idx` is the zero based index,
// in the range [0 .. num_channels()-1].
MonoView<T> operator[](size_t idx) const {
RTC_DCHECK_LT(idx, num_channels_);
return MonoView<T>(&data_[idx * samples_per_channel_],
samples_per_channel_);
}
size_t num_channels() const { return num_channels_; }
size_t samples_per_channel() const { return samples_per_channel_; }
rtc::ArrayView<T> data() const { return data_; }
bool empty() const { return data_.empty(); }
size_t size() const { return data_.size(); }
// Returns the first (and possibly only) channel.
MonoView<T> AsMono() const {
RTC_DCHECK_GE(num_channels(), 1u);
return (*this)[0];
}
private:
// TODO(tommi): Consider having these be stored as uint16_t to save a few
// bytes per view. Use `dchecked_cast` to support size_t during construction.
size_t num_channels_ = 0u;
size_t samples_per_channel_ = 0u;
rtc::ArrayView<T> data_;
};
template <typename T>
constexpr size_t NumChannels(const MonoView<T>& view) {
return 1u;
}
template <typename T>
size_t NumChannels(const InterleavedView<T>& view) {
return view.num_channels();
}
template <typename T>
size_t NumChannels(const DeinterleavedView<T>& view) {
return view.num_channels();
}
template <typename T>
constexpr bool IsMono(const MonoView<T>& view) {
return true;
}
template <typename T>
constexpr bool IsInterleavedView(const MonoView<T>& view) {
return true;
}
template <typename T>
constexpr bool IsInterleavedView(const InterleavedView<T>& view) {
return true;
}
template <typename T>
constexpr bool IsInterleavedView(const DeinterleavedView<const T>& view) {
return false;
}
template <typename T>
bool IsMono(const InterleavedView<T>& view) {
return NumChannels(view) == 1u;
}
template <typename T>
bool IsMono(const DeinterleavedView<T>& view) {
return NumChannels(view) == 1u;
}
template <typename T>
size_t SamplesPerChannel(const MonoView<T>& view) {
return view.size();
}
template <typename T>
size_t SamplesPerChannel(const InterleavedView<T>& view) {
return view.samples_per_channel();
}
template <typename T>
size_t SamplesPerChannel(const DeinterleavedView<T>& view) {
return view.samples_per_channel();
}
// A simple wrapper around memcpy that includes checks for properties.
// The parameter order is the same as for memcpy(), first destination then
// source.
template <typename D, typename S>
void CopySamples(D& destination, const S& source) {
static_assert(
sizeof(typename D::value_type) == sizeof(typename S::value_type), "");
// Here we'd really like to do
// static_assert(IsInterleavedView(destination) == IsInterleavedView(source),
// "");
// but the compiler doesn't like it inside this template function for
// some reason. The following check is an approximation but unfortunately
// means that copying between a MonoView and single channel interleaved or
// deinterleaved views wouldn't work.
// static_assert(sizeof(destination) == sizeof(source),
// "Incompatible view types");
RTC_DCHECK_EQ(NumChannels(destination), NumChannels(source));
RTC_DCHECK_EQ(SamplesPerChannel(destination), SamplesPerChannel(source));
RTC_DCHECK_GE(destination.size(), source.size());
memcpy(&destination[0], &source[0],
source.size() * sizeof(typename S::value_type));
}
// Sets all the samples in a view to 0. This template function is a simple
// wrapper around `memset()` but adds the benefit of automatically calculating
// the byte size from the number of samples and sample type.
template <typename T>
void ClearSamples(T& view) {
memset(&view[0], 0, view.size() * sizeof(typename T::value_type));
}
// Same as `ClearSamples()` above but allows for clearing only the first
// `sample_count` number of samples.
template <typename T>
void ClearSamples(T& view, size_t sample_count) {
RTC_DCHECK_LE(sample_count, view.size());
memset(&view[0], 0, sample_count * sizeof(typename T::value_type));
}
} // namespace webrtc
#endif // API_AUDIO_AUDIO_VIEW_H_