Arun Raghavan b5c48b97f6 Bump to WebRTC M131 release
Ongoing fixes and improvements, transient suppressor is gone. Also,
dropping isac because it doesn't seem to be useful, and is just build
system deadweight now.

Upstream references:

  Version: 131.0.6778.200
  WebRTC: 79aff54b0fa9238ce3518dd9eaf9610cd6f22e82
  Chromium: 2a19506ad24af755f2a215a4c61f775393e0db42
2024-12-26 12:55:16 -05:00

385 lines
15 KiB
C++

/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/clipping_predictor.h"
#include <algorithm>
#include <memory>
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc2/clipping_predictor_level_buffer.h"
#include "modules/audio_processing/agc2/gain_map_internal.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
constexpr int kClippingPredictorMaxGainChange = 15;
// Returns an input volume in the [`min_input_volume`, `max_input_volume`] range
// that reduces `gain_error_db`, which is a gain error estimated when
// `input_volume` was applied, according to a fixed gain map.
int ComputeVolumeUpdate(int gain_error_db,
int input_volume,
int min_input_volume,
int max_input_volume) {
RTC_DCHECK_GE(input_volume, 0);
RTC_DCHECK_LE(input_volume, max_input_volume);
if (gain_error_db == 0) {
return input_volume;
}
int new_volume = input_volume;
if (gain_error_db > 0) {
while (kGainMap[new_volume] - kGainMap[input_volume] < gain_error_db &&
new_volume < max_input_volume) {
++new_volume;
}
} else {
while (kGainMap[new_volume] - kGainMap[input_volume] > gain_error_db &&
new_volume > min_input_volume) {
--new_volume;
}
}
return new_volume;
}
float ComputeCrestFactor(const ClippingPredictorLevelBuffer::Level& level) {
const float crest_factor =
FloatS16ToDbfs(level.max) - FloatS16ToDbfs(std::sqrt(level.average));
return crest_factor;
}
// Crest factor-based clipping prediction and clipped level step estimation.
class ClippingEventPredictor : public ClippingPredictor {
public:
// ClippingEventPredictor with `num_channels` channels (limited to values
// higher than zero); window size `window_length` and reference window size
// `reference_window_length` (both referring to the number of frames in the
// respective sliding windows and limited to values higher than zero);
// reference window delay `reference_window_delay` (delay in frames, limited
// to values zero and higher with an additional requirement of
// `window_length` < `reference_window_length` + reference_window_delay`);
// and an estimation peak threshold `clipping_threshold` and a crest factor
// drop threshold `crest_factor_margin` (both in dB).
ClippingEventPredictor(int num_channels,
int window_length,
int reference_window_length,
int reference_window_delay,
float clipping_threshold,
float crest_factor_margin)
: window_length_(window_length),
reference_window_length_(reference_window_length),
reference_window_delay_(reference_window_delay),
clipping_threshold_(clipping_threshold),
crest_factor_margin_(crest_factor_margin) {
RTC_DCHECK_GT(num_channels, 0);
RTC_DCHECK_GT(window_length, 0);
RTC_DCHECK_GT(reference_window_length, 0);
RTC_DCHECK_GE(reference_window_delay, 0);
RTC_DCHECK_GT(reference_window_length + reference_window_delay,
window_length);
const int buffer_length = GetMinFramesProcessed();
RTC_DCHECK_GT(buffer_length, 0);
for (int i = 0; i < num_channels; ++i) {
ch_buffers_.push_back(
std::make_unique<ClippingPredictorLevelBuffer>(buffer_length));
}
}
ClippingEventPredictor(const ClippingEventPredictor&) = delete;
ClippingEventPredictor& operator=(const ClippingEventPredictor&) = delete;
~ClippingEventPredictor() {}
void Reset() {
const int num_channels = ch_buffers_.size();
for (int i = 0; i < num_channels; ++i) {
ch_buffers_[i]->Reset();
}
}
// Analyzes a frame of audio and stores the framewise metrics in
// `ch_buffers_`.
void Analyze(const AudioFrameView<const float>& frame) {
const int num_channels = frame.num_channels();
RTC_DCHECK_EQ(num_channels, ch_buffers_.size());
const int samples_per_channel = frame.samples_per_channel();
RTC_DCHECK_GT(samples_per_channel, 0);
for (int channel = 0; channel < num_channels; ++channel) {
float sum_squares = 0.0f;
float peak = 0.0f;
for (const auto& sample : frame.channel(channel)) {
sum_squares += sample * sample;
peak = std::max(std::fabs(sample), peak);
}
ch_buffers_[channel]->Push(
{sum_squares / static_cast<float>(samples_per_channel), peak});
}
}
// Estimates the analog gain adjustment for channel `channel` using a
// sliding window over the frame-wise metrics in `ch_buffers_`. Returns an
// estimate for the clipped level step equal to `default_clipped_level_step_`
// if at least `GetMinFramesProcessed()` frames have been processed since the
// last reset and a clipping event is predicted. `level`, `min_mic_level`, and
// `max_mic_level` are limited to [0, 255] and `default_step` to [1, 255].
std::optional<int> EstimateClippedLevelStep(int channel,
int level,
int default_step,
int min_mic_level,
int max_mic_level) const {
RTC_CHECK_GE(channel, 0);
RTC_CHECK_LT(channel, ch_buffers_.size());
RTC_DCHECK_GE(level, 0);
RTC_DCHECK_LE(level, 255);
RTC_DCHECK_GT(default_step, 0);
RTC_DCHECK_LE(default_step, 255);
RTC_DCHECK_GE(min_mic_level, 0);
RTC_DCHECK_LE(min_mic_level, 255);
RTC_DCHECK_GE(max_mic_level, 0);
RTC_DCHECK_LE(max_mic_level, 255);
if (level <= min_mic_level) {
return std::nullopt;
}
if (PredictClippingEvent(channel)) {
const int new_level =
rtc::SafeClamp(level - default_step, min_mic_level, max_mic_level);
const int step = level - new_level;
if (step > 0) {
return step;
}
}
return std::nullopt;
}
private:
int GetMinFramesProcessed() const {
return reference_window_delay_ + reference_window_length_;
}
// Predicts clipping events based on the processed audio frames. Returns
// true if a clipping event is likely.
bool PredictClippingEvent(int channel) const {
const auto metrics =
ch_buffers_[channel]->ComputePartialMetrics(0, window_length_);
if (!metrics.has_value() ||
!(FloatS16ToDbfs(metrics.value().max) > clipping_threshold_)) {
return false;
}
const auto reference_metrics = ch_buffers_[channel]->ComputePartialMetrics(
reference_window_delay_, reference_window_length_);
if (!reference_metrics.has_value()) {
return false;
}
const float crest_factor = ComputeCrestFactor(metrics.value());
const float reference_crest_factor =
ComputeCrestFactor(reference_metrics.value());
if (crest_factor < reference_crest_factor - crest_factor_margin_) {
return true;
}
return false;
}
std::vector<std::unique_ptr<ClippingPredictorLevelBuffer>> ch_buffers_;
const int window_length_;
const int reference_window_length_;
const int reference_window_delay_;
const float clipping_threshold_;
const float crest_factor_margin_;
};
// Performs crest factor-based clipping peak prediction.
class ClippingPeakPredictor : public ClippingPredictor {
public:
// Ctor. ClippingPeakPredictor with `num_channels` channels (limited to values
// higher than zero); window size `window_length` and reference window size
// `reference_window_length` (both referring to the number of frames in the
// respective sliding windows and limited to values higher than zero);
// reference window delay `reference_window_delay` (delay in frames, limited
// to values zero and higher with an additional requirement of
// `window_length` < `reference_window_length` + reference_window_delay`);
// and a clipping prediction threshold `clipping_threshold` (in dB). Adaptive
// clipped level step estimation is used if `adaptive_step_estimation` is
// true.
explicit ClippingPeakPredictor(int num_channels,
int window_length,
int reference_window_length,
int reference_window_delay,
int clipping_threshold,
bool adaptive_step_estimation)
: window_length_(window_length),
reference_window_length_(reference_window_length),
reference_window_delay_(reference_window_delay),
clipping_threshold_(clipping_threshold),
adaptive_step_estimation_(adaptive_step_estimation) {
RTC_DCHECK_GT(num_channels, 0);
RTC_DCHECK_GT(window_length, 0);
RTC_DCHECK_GT(reference_window_length, 0);
RTC_DCHECK_GE(reference_window_delay, 0);
RTC_DCHECK_GT(reference_window_length + reference_window_delay,
window_length);
const int buffer_length = GetMinFramesProcessed();
RTC_DCHECK_GT(buffer_length, 0);
for (int i = 0; i < num_channels; ++i) {
ch_buffers_.push_back(
std::make_unique<ClippingPredictorLevelBuffer>(buffer_length));
}
}
ClippingPeakPredictor(const ClippingPeakPredictor&) = delete;
ClippingPeakPredictor& operator=(const ClippingPeakPredictor&) = delete;
~ClippingPeakPredictor() {}
void Reset() {
const int num_channels = ch_buffers_.size();
for (int i = 0; i < num_channels; ++i) {
ch_buffers_[i]->Reset();
}
}
// Analyzes a frame of audio and stores the framewise metrics in
// `ch_buffers_`.
void Analyze(const AudioFrameView<const float>& frame) {
const int num_channels = frame.num_channels();
RTC_DCHECK_EQ(num_channels, ch_buffers_.size());
const int samples_per_channel = frame.samples_per_channel();
RTC_DCHECK_GT(samples_per_channel, 0);
for (int channel = 0; channel < num_channels; ++channel) {
float sum_squares = 0.0f;
float peak = 0.0f;
for (const auto& sample : frame.channel(channel)) {
sum_squares += sample * sample;
peak = std::max(std::fabs(sample), peak);
}
ch_buffers_[channel]->Push(
{sum_squares / static_cast<float>(samples_per_channel), peak});
}
}
// Estimates the analog gain adjustment for channel `channel` using a
// sliding window over the frame-wise metrics in `ch_buffers_`. Returns an
// estimate for the clipped level step (equal to
// `default_clipped_level_step_` if `adaptive_estimation_` is false) if at
// least `GetMinFramesProcessed()` frames have been processed since the last
// reset and a clipping event is predicted. `level`, `min_mic_level`, and
// `max_mic_level` are limited to [0, 255] and `default_step` to [1, 255].
std::optional<int> EstimateClippedLevelStep(int channel,
int level,
int default_step,
int min_mic_level,
int max_mic_level) const {
RTC_DCHECK_GE(channel, 0);
RTC_DCHECK_LT(channel, ch_buffers_.size());
RTC_DCHECK_GE(level, 0);
RTC_DCHECK_LE(level, 255);
RTC_DCHECK_GT(default_step, 0);
RTC_DCHECK_LE(default_step, 255);
RTC_DCHECK_GE(min_mic_level, 0);
RTC_DCHECK_LE(min_mic_level, 255);
RTC_DCHECK_GE(max_mic_level, 0);
RTC_DCHECK_LE(max_mic_level, 255);
if (level <= min_mic_level) {
return std::nullopt;
}
std::optional<float> estimate_db = EstimatePeakValue(channel);
if (estimate_db.has_value() && estimate_db.value() > clipping_threshold_) {
int step = 0;
if (!adaptive_step_estimation_) {
step = default_step;
} else {
const int estimated_gain_change =
rtc::SafeClamp(-static_cast<int>(std::ceil(estimate_db.value())),
-kClippingPredictorMaxGainChange, 0);
step =
std::max(level - ComputeVolumeUpdate(estimated_gain_change, level,
min_mic_level, max_mic_level),
default_step);
}
const int new_level =
rtc::SafeClamp(level - step, min_mic_level, max_mic_level);
if (level > new_level) {
return level - new_level;
}
}
return std::nullopt;
}
private:
int GetMinFramesProcessed() {
return reference_window_delay_ + reference_window_length_;
}
// Predicts clipping sample peaks based on the processed audio frames.
// Returns the estimated peak value if clipping is predicted. Otherwise
// returns std::nullopt.
std::optional<float> EstimatePeakValue(int channel) const {
const auto reference_metrics = ch_buffers_[channel]->ComputePartialMetrics(
reference_window_delay_, reference_window_length_);
if (!reference_metrics.has_value()) {
return std::nullopt;
}
const auto metrics =
ch_buffers_[channel]->ComputePartialMetrics(0, window_length_);
if (!metrics.has_value() ||
!(FloatS16ToDbfs(metrics.value().max) > clipping_threshold_)) {
return std::nullopt;
}
const float reference_crest_factor =
ComputeCrestFactor(reference_metrics.value());
const float& mean_squares = metrics.value().average;
const float projected_peak =
reference_crest_factor + FloatS16ToDbfs(std::sqrt(mean_squares));
return projected_peak;
}
std::vector<std::unique_ptr<ClippingPredictorLevelBuffer>> ch_buffers_;
const int window_length_;
const int reference_window_length_;
const int reference_window_delay_;
const int clipping_threshold_;
const bool adaptive_step_estimation_;
};
} // namespace
std::unique_ptr<ClippingPredictor> CreateClippingPredictor(
int num_channels,
const AudioProcessing::Config::GainController1::AnalogGainController::
ClippingPredictor& config) {
if (!config.enabled) {
RTC_LOG(LS_INFO) << "[AGC2] Clipping prediction disabled.";
return nullptr;
}
RTC_LOG(LS_INFO) << "[AGC2] Clipping prediction enabled.";
using ClippingPredictorMode = AudioProcessing::Config::GainController1::
AnalogGainController::ClippingPredictor::Mode;
switch (config.mode) {
case ClippingPredictorMode::kClippingEventPrediction:
return std::make_unique<ClippingEventPredictor>(
num_channels, config.window_length, config.reference_window_length,
config.reference_window_delay, config.clipping_threshold,
config.crest_factor_margin);
case ClippingPredictorMode::kAdaptiveStepClippingPeakPrediction:
return std::make_unique<ClippingPeakPredictor>(
num_channels, config.window_length, config.reference_window_length,
config.reference_window_delay, config.clipping_threshold,
/*adaptive_step_estimation=*/true);
case ClippingPredictorMode::kFixedStepClippingPeakPrediction:
return std::make_unique<ClippingPeakPredictor>(
num_channels, config.window_length, config.reference_window_length,
config.reference_window_delay, config.clipping_threshold,
/*adaptive_step_estimation=*/false);
}
RTC_DCHECK_NOTREACHED();
}
} // namespace webrtc