Arun Raghavan b5c48b97f6 Bump to WebRTC M131 release
Ongoing fixes and improvements, transient suppressor is gone. Also,
dropping isac because it doesn't seem to be useful, and is just build
system deadweight now.

Upstream references:

  Version: 131.0.6778.200
  WebRTC: 79aff54b0fa9238ce3518dd9eaf9610cd6f22e82
  Chromium: 2a19506ad24af755f2a215a4c61f775393e0db42
2024-12-26 12:55:16 -05:00

311 lines
11 KiB
C++

/*
* Copyright 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_UNITS_UNIT_BASE_H_
#define RTC_BASE_UNITS_UNIT_BASE_H_
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <type_traits>
#include "rtc_base/checks.h"
#include "rtc_base/numerics/divide_round.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace rtc_units_impl {
// UnitBase is a base class for implementing custom value types with a specific
// unit. It provides type safety and commonly useful operations. The underlying
// storage is always an int64_t, it's up to the unit implementation to choose
// what scale it represents.
//
// It's used like:
// class MyUnit: public UnitBase<MyUnit> {...};
//
// Unit_T is the subclass representing the specific unit.
template <class Unit_T>
class UnitBase {
public:
UnitBase() = delete;
static constexpr Unit_T Zero() { return Unit_T(0); }
static constexpr Unit_T PlusInfinity() { return Unit_T(PlusInfinityVal()); }
static constexpr Unit_T MinusInfinity() { return Unit_T(MinusInfinityVal()); }
constexpr bool IsZero() const { return value_ == 0; }
constexpr bool IsFinite() const { return !IsInfinite(); }
constexpr bool IsInfinite() const {
return value_ == PlusInfinityVal() || value_ == MinusInfinityVal();
}
constexpr bool IsPlusInfinity() const { return value_ == PlusInfinityVal(); }
constexpr bool IsMinusInfinity() const {
return value_ == MinusInfinityVal();
}
constexpr bool operator==(const UnitBase<Unit_T>& other) const {
return value_ == other.value_;
}
constexpr bool operator!=(const UnitBase<Unit_T>& other) const {
return value_ != other.value_;
}
constexpr bool operator<=(const UnitBase<Unit_T>& other) const {
return value_ <= other.value_;
}
constexpr bool operator>=(const UnitBase<Unit_T>& other) const {
return value_ >= other.value_;
}
constexpr bool operator>(const UnitBase<Unit_T>& other) const {
return value_ > other.value_;
}
constexpr bool operator<(const UnitBase<Unit_T>& other) const {
return value_ < other.value_;
}
constexpr Unit_T RoundTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) *
resolution.value_;
}
constexpr Unit_T RoundUpTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) *
resolution.value_;
}
constexpr Unit_T RoundDownTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T(value_ / resolution.value_) * resolution.value_;
}
protected:
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static constexpr Unit_T FromValue(T value) {
if (Unit_T::one_sided)
RTC_DCHECK_GE(value, 0);
RTC_DCHECK_GT(value, MinusInfinityVal());
RTC_DCHECK_LT(value, PlusInfinityVal());
return Unit_T(rtc::dchecked_cast<int64_t>(value));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static constexpr Unit_T FromValue(T value) {
if (value == std::numeric_limits<T>::infinity()) {
return PlusInfinity();
} else if (value == -std::numeric_limits<T>::infinity()) {
return MinusInfinity();
} else {
return FromValue(rtc::dchecked_cast<int64_t>(value));
}
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
static constexpr Unit_T FromFraction(int64_t denominator, T value) {
if (Unit_T::one_sided)
RTC_DCHECK_GE(value, 0);
RTC_DCHECK_GT(value, MinusInfinityVal() / denominator);
RTC_DCHECK_LT(value, PlusInfinityVal() / denominator);
return Unit_T(rtc::dchecked_cast<int64_t>(value * denominator));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static constexpr Unit_T FromFraction(int64_t denominator, T value) {
return FromValue(value * denominator);
}
template <typename T = int64_t>
constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
ToValue() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(value_);
}
template <typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
ToValue() const {
return IsPlusInfinity() ? std::numeric_limits<T>::infinity()
: IsMinusInfinity() ? -std::numeric_limits<T>::infinity()
: value_;
}
template <typename T>
constexpr T ToValueOr(T fallback_value) const {
return IsFinite() ? value_ : fallback_value;
}
template <int64_t Denominator, typename T = int64_t>
constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
ToFraction() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(DivideRoundToNearest(value_, Denominator));
}
template <int64_t Denominator, typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
ToFraction() const {
return ToValue<T>() * (1 / static_cast<T>(Denominator));
}
template <int64_t Denominator>
constexpr int64_t ToFractionOr(int64_t fallback_value) const {
return IsFinite() ? DivideRoundToNearest(value_, Denominator)
: fallback_value;
}
template <int64_t Factor, typename T = int64_t>
constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
ToMultiple() const {
RTC_DCHECK_GE(ToValue(), std::numeric_limits<T>::min() / Factor);
RTC_DCHECK_LE(ToValue(), std::numeric_limits<T>::max() / Factor);
return rtc::dchecked_cast<T>(ToValue() * Factor);
}
template <int64_t Factor, typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
ToMultiple() const {
return ToValue<T>() * Factor;
}
explicit constexpr UnitBase(int64_t value) : value_(value) {}
private:
template <class RelativeUnit_T>
friend class RelativeUnit;
static inline constexpr int64_t PlusInfinityVal() {
return std::numeric_limits<int64_t>::max();
}
static inline constexpr int64_t MinusInfinityVal() {
return std::numeric_limits<int64_t>::min();
}
constexpr Unit_T& AsSubClassRef() { return static_cast<Unit_T&>(*this); }
constexpr const Unit_T& AsSubClassRef() const {
return static_cast<const Unit_T&>(*this);
}
int64_t value_;
};
// Extends UnitBase to provide operations for relative units, that is, units
// that have a meaningful relation between values such that a += b is a
// sensible thing to do. For a,b <- same unit.
template <class Unit_T>
class RelativeUnit : public UnitBase<Unit_T> {
public:
constexpr Unit_T Clamped(Unit_T min_value, Unit_T max_value) const {
return std::max(min_value,
std::min(UnitBase<Unit_T>::AsSubClassRef(), max_value));
}
constexpr void Clamp(Unit_T min_value, Unit_T max_value) {
*this = Clamped(min_value, max_value);
}
constexpr Unit_T operator+(const Unit_T other) const {
if (this->IsPlusInfinity() || other.IsPlusInfinity()) {
RTC_DCHECK(!this->IsMinusInfinity());
RTC_DCHECK(!other.IsMinusInfinity());
return this->PlusInfinity();
} else if (this->IsMinusInfinity() || other.IsMinusInfinity()) {
RTC_DCHECK(!this->IsPlusInfinity());
RTC_DCHECK(!other.IsPlusInfinity());
return this->MinusInfinity();
}
return UnitBase<Unit_T>::FromValue(this->ToValue() + other.ToValue());
}
constexpr Unit_T operator-(const Unit_T other) const {
if (this->IsPlusInfinity() || other.IsMinusInfinity()) {
RTC_DCHECK(!this->IsMinusInfinity());
RTC_DCHECK(!other.IsPlusInfinity());
return this->PlusInfinity();
} else if (this->IsMinusInfinity() || other.IsPlusInfinity()) {
RTC_DCHECK(!this->IsPlusInfinity());
RTC_DCHECK(!other.IsMinusInfinity());
return this->MinusInfinity();
}
return UnitBase<Unit_T>::FromValue(this->ToValue() - other.ToValue());
}
constexpr Unit_T& operator+=(const Unit_T other) {
*this = *this + other;
return this->AsSubClassRef();
}
constexpr Unit_T& operator-=(const Unit_T other) {
*this = *this - other;
return this->AsSubClassRef();
}
constexpr double operator/(const Unit_T other) const {
return UnitBase<Unit_T>::template ToValue<double>() /
other.template ToValue<double>();
}
template <typename T,
typename std::enable_if_t<std::is_floating_point_v<T>>* = nullptr>
constexpr Unit_T operator/(T scalar) const {
return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() / scalar));
}
template <typename T,
typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
constexpr Unit_T operator/(T scalar) const {
return UnitBase<Unit_T>::FromValue(this->ToValue() / scalar);
}
constexpr Unit_T operator*(double scalar) const {
return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() * scalar));
}
constexpr Unit_T operator*(int64_t scalar) const {
return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
}
constexpr Unit_T operator*(int32_t scalar) const {
return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
}
constexpr Unit_T operator*(size_t scalar) const {
return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
}
protected:
using UnitBase<Unit_T>::UnitBase;
};
template <class Unit_T>
inline constexpr Unit_T operator*(double scalar, RelativeUnit<Unit_T> other) {
return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(int64_t scalar, RelativeUnit<Unit_T> other) {
return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(int32_t scalar, RelativeUnit<Unit_T> other) {
return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator*(size_t scalar, RelativeUnit<Unit_T> other) {
return other * scalar;
}
template <class Unit_T>
inline constexpr Unit_T operator-(RelativeUnit<Unit_T> other) {
if (other.IsPlusInfinity())
return UnitBase<Unit_T>::MinusInfinity();
if (other.IsMinusInfinity())
return UnitBase<Unit_T>::PlusInfinity();
return -1 * other;
}
} // namespace rtc_units_impl
} // namespace webrtc
#endif // RTC_BASE_UNITS_UNIT_BASE_H_