This corresponds to: Chromium: 6555f9456074c0c0e5f7713564b978588ac04a5d webrtc: c8b569e0a7ad0b369e15f0197b3a558699ec8efa
117 lines
3.5 KiB
C++
117 lines
3.5 KiB
C++
/*
|
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
|
|
#define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "webrtc/base/maybe.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// Coordinates in meters. The convention used is:
|
|
// x: the horizontal dimension, with positive to the right from the camera's
|
|
// perspective.
|
|
// y: the depth dimension, with positive forward from the camera's
|
|
// perspective.
|
|
// z: the vertical dimension, with positive upwards.
|
|
template<typename T>
|
|
struct CartesianPoint {
|
|
CartesianPoint() {
|
|
c[0] = 0;
|
|
c[1] = 0;
|
|
c[2] = 0;
|
|
}
|
|
CartesianPoint(T x, T y, T z) {
|
|
c[0] = x;
|
|
c[1] = y;
|
|
c[2] = z;
|
|
}
|
|
T x() const { return c[0]; }
|
|
T y() const { return c[1]; }
|
|
T z() const { return c[2]; }
|
|
T c[3];
|
|
};
|
|
|
|
using Point = CartesianPoint<float>;
|
|
|
|
// Calculates the direction from a to b.
|
|
Point PairDirection(const Point& a, const Point& b);
|
|
|
|
float DotProduct(const Point& a, const Point& b);
|
|
Point CrossProduct(const Point& a, const Point& b);
|
|
|
|
bool AreParallel(const Point& a, const Point& b);
|
|
bool ArePerpendicular(const Point& a, const Point& b);
|
|
|
|
// Returns the minimum distance between any two Points in the given
|
|
// |array_geometry|.
|
|
float GetMinimumSpacing(const std::vector<Point>& array_geometry);
|
|
|
|
// If the given array geometry is linear it returns the direction without
|
|
// normalizing.
|
|
rtc::Maybe<Point> GetDirectionIfLinear(
|
|
const std::vector<Point>& array_geometry);
|
|
|
|
// If the given array geometry is planar it returns the normal without
|
|
// normalizing.
|
|
rtc::Maybe<Point> GetNormalIfPlanar(const std::vector<Point>& array_geometry);
|
|
|
|
// Returns the normal of an array if it has one and it is in the xy-plane.
|
|
rtc::Maybe<Point> GetArrayNormalIfExists(
|
|
const std::vector<Point>& array_geometry);
|
|
|
|
// The resulting Point will be in the xy-plane.
|
|
Point AzimuthToPoint(float azimuth);
|
|
|
|
template<typename T>
|
|
float Distance(CartesianPoint<T> a, CartesianPoint<T> b) {
|
|
return std::sqrt((a.x() - b.x()) * (a.x() - b.x()) +
|
|
(a.y() - b.y()) * (a.y() - b.y()) +
|
|
(a.z() - b.z()) * (a.z() - b.z()));
|
|
}
|
|
|
|
// The convention used:
|
|
// azimuth: zero is to the right from the camera's perspective, with positive
|
|
// angles in radians counter-clockwise.
|
|
// elevation: zero is horizontal, with positive angles in radians upwards.
|
|
// radius: distance from the camera in meters.
|
|
template <typename T>
|
|
struct SphericalPoint {
|
|
SphericalPoint(T azimuth, T elevation, T radius) {
|
|
s[0] = azimuth;
|
|
s[1] = elevation;
|
|
s[2] = radius;
|
|
}
|
|
T azimuth() const { return s[0]; }
|
|
T elevation() const { return s[1]; }
|
|
T distance() const { return s[2]; }
|
|
T s[3];
|
|
};
|
|
|
|
using SphericalPointf = SphericalPoint<float>;
|
|
|
|
// Helper functions to transform degrees to radians and the inverse.
|
|
template <typename T>
|
|
T DegreesToRadians(T angle_degrees) {
|
|
return M_PI * angle_degrees / 180;
|
|
}
|
|
|
|
template <typename T>
|
|
T RadiansToDegrees(T angle_radians) {
|
|
return 180 * angle_radians / M_PI;
|
|
}
|
|
|
|
} // namespace webrtc
|
|
|
|
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
|