Corresponds to upstream commit 524e9b043e7e86fd72353b987c9d5f6a1ebf83e1 Update notes: * Pull in third party license file * Replace .gypi files with BUILD.gn to keep track of what changes upstream * Bunch of new filse pulled in as dependencies * Won't build yet due to changes needed on top of these
315 lines
11 KiB
C++
315 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
//
|
|
// Implements helper functions and classes for intelligibility enhancement.
|
|
//
|
|
|
|
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
|
|
using std::complex;
|
|
using std::min;
|
|
|
|
namespace webrtc {
|
|
|
|
namespace intelligibility {
|
|
|
|
float UpdateFactor(float target, float current, float limit) {
|
|
float delta = fabsf(target - current);
|
|
float sign = copysign(1.0f, target - current);
|
|
return current + sign * fminf(delta, limit);
|
|
}
|
|
|
|
float AddDitherIfZero(float value) {
|
|
return value == 0.f ? std::rand() * 0.01f / RAND_MAX : value;
|
|
}
|
|
|
|
complex<float> zerofudge(complex<float> c) {
|
|
return complex<float>(AddDitherIfZero(c.real()), AddDitherIfZero(c.imag()));
|
|
}
|
|
|
|
complex<float> NewMean(complex<float> mean, complex<float> data, size_t count) {
|
|
return mean + (data - mean) / static_cast<float>(count);
|
|
}
|
|
|
|
void AddToMean(complex<float> data, size_t count, complex<float>* mean) {
|
|
(*mean) = NewMean(*mean, data, count);
|
|
}
|
|
|
|
|
|
static const size_t kWindowBlockSize = 10;
|
|
|
|
VarianceArray::VarianceArray(size_t num_freqs,
|
|
StepType type,
|
|
size_t window_size,
|
|
float decay)
|
|
: running_mean_(new complex<float>[num_freqs]()),
|
|
running_mean_sq_(new complex<float>[num_freqs]()),
|
|
sub_running_mean_(new complex<float>[num_freqs]()),
|
|
sub_running_mean_sq_(new complex<float>[num_freqs]()),
|
|
variance_(new float[num_freqs]()),
|
|
conj_sum_(new float[num_freqs]()),
|
|
num_freqs_(num_freqs),
|
|
window_size_(window_size),
|
|
decay_(decay),
|
|
history_cursor_(0),
|
|
count_(0),
|
|
array_mean_(0.0f),
|
|
buffer_full_(false) {
|
|
history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
history_[i].reset(new complex<float>[window_size_]());
|
|
}
|
|
subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
subhistory_[i].reset(new complex<float>[window_size_]());
|
|
}
|
|
subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
subhistory_sq_[i].reset(new complex<float>[window_size_]());
|
|
}
|
|
switch (type) {
|
|
case kStepInfinite:
|
|
step_func_ = &VarianceArray::InfiniteStep;
|
|
break;
|
|
case kStepDecaying:
|
|
step_func_ = &VarianceArray::DecayStep;
|
|
break;
|
|
case kStepWindowed:
|
|
step_func_ = &VarianceArray::WindowedStep;
|
|
break;
|
|
case kStepBlocked:
|
|
step_func_ = &VarianceArray::BlockedStep;
|
|
break;
|
|
case kStepBlockBasedMovingAverage:
|
|
step_func_ = &VarianceArray::BlockBasedMovingAverage;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Compute the variance with Welford's algorithm, adding some fudge to
|
|
// the input in case of all-zeroes.
|
|
void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
|
|
array_mean_ = 0.0f;
|
|
++count_;
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
complex<float> sample = data[i];
|
|
if (!skip_fudge) {
|
|
sample = zerofudge(sample);
|
|
}
|
|
if (count_ == 1) {
|
|
running_mean_[i] = sample;
|
|
variance_[i] = 0.0f;
|
|
} else {
|
|
float old_sum = conj_sum_[i];
|
|
complex<float> old_mean = running_mean_[i];
|
|
running_mean_[i] =
|
|
old_mean + (sample - old_mean) / static_cast<float>(count_);
|
|
conj_sum_[i] =
|
|
(old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i]))
|
|
.real();
|
|
variance_[i] =
|
|
conj_sum_[i] / (count_ - 1);
|
|
}
|
|
array_mean_ += (variance_[i] - array_mean_) / (i + 1);
|
|
}
|
|
}
|
|
|
|
// Compute the variance from the beginning, with exponential decaying of the
|
|
// series data.
|
|
void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
|
|
array_mean_ = 0.0f;
|
|
++count_;
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
complex<float> sample = data[i];
|
|
sample = zerofudge(sample);
|
|
|
|
if (count_ == 1) {
|
|
running_mean_[i] = sample;
|
|
running_mean_sq_[i] = sample * std::conj(sample);
|
|
variance_[i] = 0.0f;
|
|
} else {
|
|
complex<float> prev = running_mean_[i];
|
|
complex<float> prev2 = running_mean_sq_[i];
|
|
running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample;
|
|
running_mean_sq_[i] =
|
|
decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample);
|
|
variance_[i] = (running_mean_sq_[i] -
|
|
running_mean_[i] * std::conj(running_mean_[i])).real();
|
|
}
|
|
|
|
array_mean_ += (variance_[i] - array_mean_) / (i + 1);
|
|
}
|
|
}
|
|
|
|
// Windowed variance computation. On each step, the variances for the
|
|
// window are recomputed from scratch, using Welford's algorithm.
|
|
void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
|
size_t num = min(count_ + 1, window_size_);
|
|
array_mean_ = 0.0f;
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
complex<float> mean;
|
|
float conj_sum = 0.0f;
|
|
|
|
history_[i][history_cursor_] = data[i];
|
|
|
|
mean = history_[i][history_cursor_];
|
|
variance_[i] = 0.0f;
|
|
for (size_t j = 1; j < num; ++j) {
|
|
complex<float> sample =
|
|
zerofudge(history_[i][(history_cursor_ + j) % window_size_]);
|
|
sample = history_[i][(history_cursor_ + j) % window_size_];
|
|
float old_sum = conj_sum;
|
|
complex<float> old_mean = mean;
|
|
|
|
mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1);
|
|
conj_sum =
|
|
(old_sum + std::conj(sample - old_mean) * (sample - mean)).real();
|
|
variance_[i] = conj_sum / (j);
|
|
}
|
|
array_mean_ += (variance_[i] - array_mean_) / (i + 1);
|
|
}
|
|
history_cursor_ = (history_cursor_ + 1) % window_size_;
|
|
++count_;
|
|
}
|
|
|
|
// Variance with a window of blocks. Within each block, the variances are
|
|
// recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|.
|
|
// Once a block is filled with kWindowBlockSize samples, it is added to the
|
|
// history window and a new block is started. The variances for the window
|
|
// are recomputed from scratch at each of these transitions.
|
|
void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
|
size_t blocks = min(window_size_, history_cursor_ + 1);
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
|
|
AddToMean(data[i] * std::conj(data[i]), count_ + 1,
|
|
&sub_running_mean_sq_[i]);
|
|
subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i];
|
|
subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i];
|
|
|
|
variance_[i] =
|
|
(NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) -
|
|
NewMean(running_mean_[i], sub_running_mean_[i], blocks) *
|
|
std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks)))
|
|
.real();
|
|
if (count_ == kWindowBlockSize - 1) {
|
|
sub_running_mean_[i] = complex<float>(0.0f, 0.0f);
|
|
sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
|
|
running_mean_[i] = complex<float>(0.0f, 0.0f);
|
|
running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
|
|
for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) {
|
|
AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]);
|
|
AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]);
|
|
}
|
|
++history_cursor_;
|
|
}
|
|
}
|
|
++count_;
|
|
if (count_ == kWindowBlockSize) {
|
|
count_ = 0;
|
|
}
|
|
}
|
|
|
|
// Recomputes variances for each window from scratch based on previous window.
|
|
void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
|
bool /*dummy*/) {
|
|
// TODO(ekmeyerson) To mitigate potential divergence, add counter so that
|
|
// after every so often sums are computed scratch by summing over all
|
|
// elements instead of subtracting oldest and adding newest.
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
sub_running_mean_[i] += data[i];
|
|
sub_running_mean_sq_[i] += data[i] * std::conj(data[i]);
|
|
}
|
|
++count_;
|
|
|
|
// TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow
|
|
// experimentation with different block size,window size pairs.
|
|
if (count_ >= kWindowBlockSize) {
|
|
count_ = 0;
|
|
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
running_mean_[i] -= subhistory_[i][history_cursor_];
|
|
running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_];
|
|
|
|
float scale = 1.f / kWindowBlockSize;
|
|
subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale;
|
|
subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale;
|
|
|
|
sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f);
|
|
sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f);
|
|
|
|
running_mean_[i] += subhistory_[i][history_cursor_];
|
|
running_mean_sq_[i] += subhistory_sq_[i][history_cursor_];
|
|
|
|
scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1);
|
|
variance_[i] = std::real(running_mean_sq_[i] * scale -
|
|
running_mean_[i] * scale *
|
|
std::conj(running_mean_[i]) * scale);
|
|
}
|
|
|
|
++history_cursor_;
|
|
if (history_cursor_ >= window_size_) {
|
|
buffer_full_ = true;
|
|
history_cursor_ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VarianceArray::Clear() {
|
|
memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * num_freqs_);
|
|
memset(running_mean_sq_.get(), 0,
|
|
sizeof(*running_mean_sq_.get()) * num_freqs_);
|
|
memset(variance_.get(), 0, sizeof(*variance_.get()) * num_freqs_);
|
|
memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * num_freqs_);
|
|
history_cursor_ = 0;
|
|
count_ = 0;
|
|
array_mean_ = 0.0f;
|
|
}
|
|
|
|
void VarianceArray::ApplyScale(float scale) {
|
|
array_mean_ = 0.0f;
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
variance_[i] *= scale * scale;
|
|
array_mean_ += (variance_[i] - array_mean_) / (i + 1);
|
|
}
|
|
}
|
|
|
|
GainApplier::GainApplier(size_t freqs, float change_limit)
|
|
: num_freqs_(freqs),
|
|
change_limit_(change_limit),
|
|
target_(new float[freqs]()),
|
|
current_(new float[freqs]()) {
|
|
for (size_t i = 0; i < freqs; ++i) {
|
|
target_[i] = 1.0f;
|
|
current_[i] = 1.0f;
|
|
}
|
|
}
|
|
|
|
void GainApplier::Apply(const complex<float>* in_block,
|
|
complex<float>* out_block) {
|
|
for (size_t i = 0; i < num_freqs_; ++i) {
|
|
float factor = sqrtf(fabsf(current_[i]));
|
|
if (!std::isnormal(factor)) {
|
|
factor = 1.0f;
|
|
}
|
|
out_block[i] = factor * in_block[i];
|
|
current_[i] = UpdateFactor(target_[i], current_[i], change_limit_);
|
|
}
|
|
}
|
|
|
|
} // namespace intelligibility
|
|
|
|
} // namespace webrtc
|