Arun Raghavan b5c48b97f6 Bump to WebRTC M131 release
Ongoing fixes and improvements, transient suppressor is gone. Also,
dropping isac because it doesn't seem to be useful, and is just build
system deadweight now.

Upstream references:

  Version: 131.0.6778.200
  WebRTC: 79aff54b0fa9238ce3518dd9eaf9610cd6f22e82
  Chromium: 2a19506ad24af755f2a215a4c61f775393e0db42
2024-12-26 12:55:16 -05:00

411 lines
16 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/reverb_decay_estimator.h"
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <numeric>
#include "api/array_view.h"
#include "api/audio/echo_canceller3_config.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr int kEarlyReverbMinSizeBlocks = 3;
constexpr int kBlocksPerSection = 6;
// Linear regression approach assumes symmetric index around 0.
constexpr float kEarlyReverbFirstPointAtLinearRegressors =
-0.5f * kBlocksPerSection * kFftLengthBy2 + 0.5f;
// Averages the values in a block of size kFftLengthBy2;
float BlockAverage(rtc::ArrayView<const float> v, size_t block_index) {
constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
const int i = block_index * kFftLengthBy2;
RTC_DCHECK_GE(v.size(), i + kFftLengthBy2);
const float sum =
std::accumulate(v.begin() + i, v.begin() + i + kFftLengthBy2, 0.f);
return sum * kOneByFftLengthBy2;
}
// Analyzes the gain in a block.
void AnalyzeBlockGain(const std::array<float, kFftLengthBy2>& h2,
float floor_gain,
float* previous_gain,
bool* block_adapting,
bool* decaying_gain) {
float gain = std::max(BlockAverage(h2, 0), 1e-32f);
*block_adapting =
*previous_gain > 1.1f * gain || *previous_gain < 0.9f * gain;
*decaying_gain = gain > floor_gain;
*previous_gain = gain;
}
// Arithmetic sum of $2 \sum_{i=0.5}^{(N-1)/2}i^2$ calculated directly.
constexpr float SymmetricArithmetricSum(int N) {
return N * (N * N - 1.0f) * (1.f / 12.f);
}
// Returns the peak energy of an impulse response.
float BlockEnergyPeak(rtc::ArrayView<const float> h, int peak_block) {
RTC_DCHECK_LE((peak_block + 1) * kFftLengthBy2, h.size());
RTC_DCHECK_GE(peak_block, 0);
float peak_value =
*std::max_element(h.begin() + peak_block * kFftLengthBy2,
h.begin() + (peak_block + 1) * kFftLengthBy2,
[](float a, float b) { return a * a < b * b; });
return peak_value * peak_value;
}
// Returns the average energy of an impulse response block.
float BlockEnergyAverage(rtc::ArrayView<const float> h, int block_index) {
RTC_DCHECK_LE((block_index + 1) * kFftLengthBy2, h.size());
RTC_DCHECK_GE(block_index, 0);
constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
return std::accumulate(h.begin() + block_index * kFftLengthBy2,
h.begin() + (block_index + 1) * kFftLengthBy2, 0.f,
sum_of_squares) *
kOneByFftLengthBy2;
}
} // namespace
ReverbDecayEstimator::ReverbDecayEstimator(const EchoCanceller3Config& config)
: filter_length_blocks_(config.filter.refined.length_blocks),
filter_length_coefficients_(GetTimeDomainLength(filter_length_blocks_)),
use_adaptive_echo_decay_(config.ep_strength.default_len < 0.f),
early_reverb_estimator_(config.filter.refined.length_blocks -
kEarlyReverbMinSizeBlocks),
late_reverb_start_(kEarlyReverbMinSizeBlocks),
late_reverb_end_(kEarlyReverbMinSizeBlocks),
previous_gains_(config.filter.refined.length_blocks, 0.f),
decay_(std::fabs(config.ep_strength.default_len)),
mild_decay_(std::fabs(config.ep_strength.nearend_len)) {
RTC_DCHECK_GT(config.filter.refined.length_blocks,
static_cast<size_t>(kEarlyReverbMinSizeBlocks));
}
ReverbDecayEstimator::~ReverbDecayEstimator() = default;
void ReverbDecayEstimator::Update(rtc::ArrayView<const float> filter,
const std::optional<float>& filter_quality,
int filter_delay_blocks,
bool usable_linear_filter,
bool stationary_signal) {
const int filter_size = static_cast<int>(filter.size());
if (stationary_signal) {
return;
}
bool estimation_feasible =
filter_delay_blocks <=
filter_length_blocks_ - kEarlyReverbMinSizeBlocks - 1;
estimation_feasible =
estimation_feasible && filter_size == filter_length_coefficients_;
estimation_feasible = estimation_feasible && filter_delay_blocks > 0;
estimation_feasible = estimation_feasible && usable_linear_filter;
if (!estimation_feasible) {
ResetDecayEstimation();
return;
}
if (!use_adaptive_echo_decay_) {
return;
}
const float new_smoothing = filter_quality ? *filter_quality * 0.2f : 0.f;
smoothing_constant_ = std::max(new_smoothing, smoothing_constant_);
if (smoothing_constant_ == 0.f) {
return;
}
if (block_to_analyze_ < filter_length_blocks_) {
// Analyze the filter and accumulate data for reverb estimation.
AnalyzeFilter(filter);
++block_to_analyze_;
} else {
// When the filter is fully analyzed, estimate the reverb decay and reset
// the block_to_analyze_ counter.
EstimateDecay(filter, filter_delay_blocks);
}
}
void ReverbDecayEstimator::ResetDecayEstimation() {
early_reverb_estimator_.Reset();
late_reverb_decay_estimator_.Reset(0);
block_to_analyze_ = 0;
estimation_region_candidate_size_ = 0;
estimation_region_identified_ = false;
smoothing_constant_ = 0.f;
late_reverb_start_ = 0;
late_reverb_end_ = 0;
}
void ReverbDecayEstimator::EstimateDecay(rtc::ArrayView<const float> filter,
int peak_block) {
auto& h = filter;
RTC_DCHECK_EQ(0, h.size() % kFftLengthBy2);
// Reset the block analysis counter.
block_to_analyze_ =
std::min(peak_block + kEarlyReverbMinSizeBlocks, filter_length_blocks_);
// To estimate the reverb decay, the energy of the first filter section must
// be substantially larger than the last. Also, the first filter section
// energy must not deviate too much from the max peak.
const float first_reverb_gain = BlockEnergyAverage(h, block_to_analyze_);
const size_t h_size_blocks = h.size() >> kFftLengthBy2Log2;
tail_gain_ = BlockEnergyAverage(h, h_size_blocks - 1);
float peak_energy = BlockEnergyPeak(h, peak_block);
const bool sufficient_reverb_decay = first_reverb_gain > 4.f * tail_gain_;
const bool valid_filter =
first_reverb_gain > 2.f * tail_gain_ && peak_energy < 100.f;
// Estimate the size of the regions with early and late reflections.
const int size_early_reverb = early_reverb_estimator_.Estimate();
const int size_late_reverb =
std::max(estimation_region_candidate_size_ - size_early_reverb, 0);
// Only update the reverb decay estimate if the size of the identified late
// reverb is sufficiently large.
if (size_late_reverb >= 5) {
if (valid_filter && late_reverb_decay_estimator_.EstimateAvailable()) {
float decay = std::pow(
2.0f, late_reverb_decay_estimator_.Estimate() * kFftLengthBy2);
constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60.
constexpr float kMinDecay = 0.02f; // ~15 ms max RT60.
decay = std::max(.97f * decay_, decay);
decay = std::min(decay, kMaxDecay);
decay = std::max(decay, kMinDecay);
decay_ += smoothing_constant_ * (decay - decay_);
}
// Update length of decay. Must have enough data (number of sections) in
// order to estimate decay rate.
late_reverb_decay_estimator_.Reset(size_late_reverb * kFftLengthBy2);
late_reverb_start_ =
peak_block + kEarlyReverbMinSizeBlocks + size_early_reverb;
late_reverb_end_ =
block_to_analyze_ + estimation_region_candidate_size_ - 1;
} else {
late_reverb_decay_estimator_.Reset(0);
late_reverb_start_ = 0;
late_reverb_end_ = 0;
}
// Reset variables for the identification of the region for reverb decay
// estimation.
estimation_region_identified_ = !(valid_filter && sufficient_reverb_decay);
estimation_region_candidate_size_ = 0;
// Stop estimation of the decay until another good filter is received.
smoothing_constant_ = 0.f;
// Reset early reflections detector.
early_reverb_estimator_.Reset();
}
void ReverbDecayEstimator::AnalyzeFilter(rtc::ArrayView<const float> filter) {
auto h = rtc::ArrayView<const float>(
filter.begin() + block_to_analyze_ * kFftLengthBy2, kFftLengthBy2);
// Compute squared filter coeffiecients for the block to analyze_;
std::array<float, kFftLengthBy2> h2;
std::transform(h.begin(), h.end(), h2.begin(), [](float a) { return a * a; });
// Map out the region for estimating the reverb decay.
bool adapting;
bool above_noise_floor;
AnalyzeBlockGain(h2, tail_gain_, &previous_gains_[block_to_analyze_],
&adapting, &above_noise_floor);
// Count consecutive number of "good" filter sections, where "good" means:
// 1) energy is above noise floor.
// 2) energy of current section has not changed too much from last check.
estimation_region_identified_ =
estimation_region_identified_ || adapting || !above_noise_floor;
if (!estimation_region_identified_) {
++estimation_region_candidate_size_;
}
// Accumulate data for reverb decay estimation and for the estimation of early
// reflections.
if (block_to_analyze_ <= late_reverb_end_) {
if (block_to_analyze_ >= late_reverb_start_) {
for (float h2_k : h2) {
float h2_log2 = FastApproxLog2f(h2_k + 1e-10);
late_reverb_decay_estimator_.Accumulate(h2_log2);
early_reverb_estimator_.Accumulate(h2_log2, smoothing_constant_);
}
} else {
for (float h2_k : h2) {
float h2_log2 = FastApproxLog2f(h2_k + 1e-10);
early_reverb_estimator_.Accumulate(h2_log2, smoothing_constant_);
}
}
}
}
void ReverbDecayEstimator::Dump(ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_reverb_decay", decay_);
data_dumper->DumpRaw("aec3_reverb_tail_energy", tail_gain_);
data_dumper->DumpRaw("aec3_reverb_alpha", smoothing_constant_);
data_dumper->DumpRaw("aec3_num_reverb_decay_blocks",
late_reverb_end_ - late_reverb_start_);
data_dumper->DumpRaw("aec3_late_reverb_start", late_reverb_start_);
data_dumper->DumpRaw("aec3_late_reverb_end", late_reverb_end_);
early_reverb_estimator_.Dump(data_dumper);
}
void ReverbDecayEstimator::LateReverbLinearRegressor::Reset(
int num_data_points) {
RTC_DCHECK_LE(0, num_data_points);
RTC_DCHECK_EQ(0, num_data_points % 2);
const int N = num_data_points;
nz_ = 0.f;
// Arithmetic sum of $2 \sum_{i=0.5}^{(N-1)/2}i^2$ calculated directly.
nn_ = SymmetricArithmetricSum(N);
// The linear regression approach assumes symmetric index around 0.
count_ = N > 0 ? -N * 0.5f + 0.5f : 0.f;
N_ = N;
n_ = 0;
}
void ReverbDecayEstimator::LateReverbLinearRegressor::Accumulate(float z) {
nz_ += count_ * z;
++count_;
++n_;
}
float ReverbDecayEstimator::LateReverbLinearRegressor::Estimate() {
RTC_DCHECK(EstimateAvailable());
if (nn_ == 0.f) {
RTC_DCHECK_NOTREACHED();
return 0.f;
}
return nz_ / nn_;
}
ReverbDecayEstimator::EarlyReverbLengthEstimator::EarlyReverbLengthEstimator(
int max_blocks)
: numerators_smooth_(max_blocks - kBlocksPerSection, 0.f),
numerators_(numerators_smooth_.size(), 0.f),
coefficients_counter_(0) {
RTC_DCHECK_LE(0, max_blocks);
}
ReverbDecayEstimator::EarlyReverbLengthEstimator::
~EarlyReverbLengthEstimator() = default;
void ReverbDecayEstimator::EarlyReverbLengthEstimator::Reset() {
coefficients_counter_ = 0;
std::fill(numerators_.begin(), numerators_.end(), 0.f);
block_counter_ = 0;
}
void ReverbDecayEstimator::EarlyReverbLengthEstimator::Accumulate(
float value,
float smoothing) {
// Each section is composed by kBlocksPerSection blocks and each section
// overlaps with the next one in (kBlocksPerSection - 1) blocks. For example,
// the first section covers the blocks [0:5], the second covers the blocks
// [1:6] and so on. As a result, for each value, kBlocksPerSection sections
// need to be updated.
int first_section_index = std::max(block_counter_ - kBlocksPerSection + 1, 0);
int last_section_index =
std::min(block_counter_, static_cast<int>(numerators_.size() - 1));
float x_value = static_cast<float>(coefficients_counter_) +
kEarlyReverbFirstPointAtLinearRegressors;
const float value_to_inc = kFftLengthBy2 * value;
float value_to_add =
x_value * value + (block_counter_ - last_section_index) * value_to_inc;
for (int section = last_section_index; section >= first_section_index;
--section, value_to_add += value_to_inc) {
numerators_[section] += value_to_add;
}
// Check if this update was the last coefficient of the current block. In that
// case, check if we are at the end of one of the sections and update the
// numerator of the linear regressor that is computed in such section.
if (++coefficients_counter_ == kFftLengthBy2) {
if (block_counter_ >= (kBlocksPerSection - 1)) {
size_t section = block_counter_ - (kBlocksPerSection - 1);
RTC_DCHECK_GT(numerators_.size(), section);
RTC_DCHECK_GT(numerators_smooth_.size(), section);
numerators_smooth_[section] +=
smoothing * (numerators_[section] - numerators_smooth_[section]);
n_sections_ = section + 1;
}
++block_counter_;
coefficients_counter_ = 0;
}
}
// Estimates the size in blocks of the early reverb. The estimation is done by
// comparing the tilt that is estimated in each section. As an optimization
// detail and due to the fact that all the linear regressors that are computed
// shared the same denominator, the comparison of the tilts is done by a
// comparison of the numerator of the linear regressors.
int ReverbDecayEstimator::EarlyReverbLengthEstimator::Estimate() {
constexpr float N = kBlocksPerSection * kFftLengthBy2;
constexpr float nn = SymmetricArithmetricSum(N);
// numerator_11 refers to the quantity that the linear regressor needs in the
// numerator for getting a decay equal to 1.1 (which is not a decay).
// log2(1.1) * nn / kFftLengthBy2.
constexpr float numerator_11 = 0.13750352374993502f * nn / kFftLengthBy2;
// log2(0.8) * nn / kFftLengthBy2.
constexpr float numerator_08 = -0.32192809488736229f * nn / kFftLengthBy2;
constexpr int kNumSectionsToAnalyze = 9;
if (n_sections_ < kNumSectionsToAnalyze) {
return 0;
}
// Estimation of the blocks that correspond to early reverberations. The
// estimation is done by analyzing the impulse response. The portions of the
// impulse response whose energy is not decreasing over its coefficients are
// considered to be part of the early reverberations. Furthermore, the blocks
// where the energy is decreasing faster than what it does at the end of the
// impulse response are also considered to be part of the early
// reverberations. The estimation is limited to the first
// kNumSectionsToAnalyze sections.
RTC_DCHECK_LE(n_sections_, numerators_smooth_.size());
const float min_numerator_tail =
*std::min_element(numerators_smooth_.begin() + kNumSectionsToAnalyze,
numerators_smooth_.begin() + n_sections_);
int early_reverb_size_minus_1 = 0;
for (int k = 0; k < kNumSectionsToAnalyze; ++k) {
if ((numerators_smooth_[k] > numerator_11) ||
(numerators_smooth_[k] < numerator_08 &&
numerators_smooth_[k] < 0.9f * min_numerator_tail)) {
early_reverb_size_minus_1 = k;
}
}
return early_reverb_size_minus_1 == 0 ? 0 : early_reverb_size_minus_1 + 1;
}
void ReverbDecayEstimator::EarlyReverbLengthEstimator::Dump(
ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_er_acum_numerator", numerators_smooth_);
}
} // namespace webrtc