add MCG without Jacobi preconditioning, delegate cloth solver to another class, ignore positive separation, improve contact handling, support different shapes

Specially, see b3SpringSolver.cpp for details.
This commit is contained in:
Irlan 2018-03-26 16:03:43 -03:00
parent 3e55b28956
commit a21d46ac64
4 changed files with 1045 additions and 652 deletions

View File

@ -20,13 +20,14 @@
#define B3_SPRING_CLOTH_H
#include <bounce/common/math/mat33.h>
#include <bounce/collision/shapes/sphere.h>
#define B3_CLOTH_SPHERE_CAPACITY 32
#define B3_CLOTH_SHAPE_CAPACITY 32
class b3StackAllocator;
class b3Draw;
class b3Shape;
struct b3Mesh;
struct b3SpringClothDef
@ -94,13 +95,13 @@ enum b3MassType
e_dynamicMass
};
// This structure represents an acceleration constraint.
struct b3MassCollision
//
struct b3MassContact
{
b3Vec3 n, t1, t2;
float32 Fn, Ft1, Ft2;
u32 j;
float32 s;
b3Vec3 n;
bool active;
bool lockOnSurface, slideOnSurface;
};
// Time step statistics
@ -136,7 +137,13 @@ public:
b3MassType GetType(u32 i) const;
//
b3Sphere* CreateSphere(const b3Vec3& center, float32 radius);
void AddShape(b3Shape* shape);
//
u32 GetShapeCount() const;
//
b3Shape** GetShapes();
//
const b3SpringClothStep& GetStep() const;
@ -150,11 +157,16 @@ public:
//
void Draw(b3Draw* draw) const;
protected:
void UpdateCollisions() const;
friend class b3SpringSolver;
// Update contacts.
// This is where some contacts might be initiated or terminated.
void UpdateContacts();
b3StackAllocator* m_allocator;
b3Mesh* m_mesh;
float32 m_r;
b3Vec3 m_gravity;
@ -163,17 +175,16 @@ protected:
b3Vec3* m_f;
float32* m_inv_m;
b3Vec3* m_y;
b3MassType* m_massTypes;
b3MassCollision* m_collisions;
b3MassType* m_types;
u32 m_massCount;
b3MassContact* m_contacts;
b3Spring* m_springs;
u32 m_springCount;
float32 m_r;
b3Sphere m_spheres[B3_CLOTH_SPHERE_CAPACITY];
u32 m_sphereCount;
b3Shape* m_shapes[B3_CLOTH_SHAPE_CAPACITY];
u32 m_shapeCount;
b3SpringClothStep m_step;
};
@ -191,13 +202,23 @@ inline void b3SpringCloth::SetGravity(const b3Vec3& gravity)
inline b3MassType b3SpringCloth::GetType(u32 i) const
{
B3_ASSERT(i < m_massCount);
return m_massTypes[i];
return m_types[i];
}
inline void b3SpringCloth::SetType(u32 i, b3MassType type)
{
B3_ASSERT(i < m_massCount);
m_massTypes[i] = type;
m_types[i] = type;
}
inline u32 b3SpringCloth::GetShapeCount() const
{
return m_shapeCount;
}
inline b3Shape** b3SpringCloth::GetShapes()
{
return m_shapes;
}
inline const b3SpringClothStep& b3SpringCloth::GetStep() const

View File

@ -0,0 +1,93 @@
/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_SPRING_SOLVER_H
#define B3_SPRING_SOLVER_H
#include <bounce/common/math/vec3.h>
#include <bounce/common/math/mat33.h>
class b3SpringCloth;
class b3StackAllocator;
struct b3MassContact;
struct b3Spring;
enum b3MassType;
struct b3SpringSolverDef
{
b3SpringCloth* cloth;
float32 dt;
};
class b3SpringSolver
{
public:
b3SpringSolver(const b3SpringSolverDef& def);
~b3SpringSolver();
void Solve(b3Vec3* constraintForces);
u32 GetIterations() const;
private:
// Apply internal forces and store their unique derivatives.
void InitializeSpringForces();
// Initialize b, from Ax = b
void Compute_b(b3Vec3* b) const;
// Solve Ax = b using the Modified Conjugate Gradient (MCG).
// Output x and the residual error f.
void Solve_MCG(b3Vec3* x, b3Vec3* f, u32& iterations, const b3Vec3* b) const;
// Solve Ax = b using MCG with Jacobi preconditioning.
// Output x and the residual error f.
// This method is slower than MCG because we have to compute the preconditioning
// matrix P, but it can improve convergence.
void Solve_MPCG(b3Vec3* x, b3Vec3* f, u32& iterations, const b3Vec3* b) const;
b3SpringCloth * m_cloth;
float32 m_h;
b3Mat33* m_Jx;
b3Mat33* m_Jv;
u32 m_iterations;
b3StackAllocator* m_allocator;
b3Vec3* m_x;
b3Vec3* m_v;
b3Vec3* m_f;
float32* m_inv_m;
b3Vec3* m_y;
b3MassType* m_types;
u32 m_massCount;
b3MassContact* m_contacts;
b3Spring* m_springs;
u32 m_springCount;
};
inline u32 b3SpringSolver::GetIterations() const
{
return m_iterations;
}
#endif

View File

@ -17,11 +17,12 @@
*/
#include <bounce/dynamics/cloth/spring_cloth.h>
#include <bounce/dynamics/cloth/spring_solver.h>
#include <bounce/dynamics/shapes/shape.h>
#include <bounce/collision/shapes/mesh.h>
#include <bounce/common/memory/stack_allocator.h>
// Here, we solve Ax = b using the Modified Conjugate Gradient method.
// This work is based on the paper "Large Steps in Cloth Simulation - David Baraff, Andrew Witkin".
#define B3_FORCE_THRESHOLD (0.1f)
b3SpringCloth::b3SpringCloth()
{
@ -36,16 +37,16 @@ b3SpringCloth::b3SpringCloth()
m_f = nullptr;
m_y = nullptr;
m_inv_m = nullptr;
m_massTypes = nullptr;
m_collisions = nullptr;
m_types = nullptr;
m_contacts = nullptr;
m_massCount = 0;
m_springs = nullptr;
m_springCount = 0;
m_springCount = 0;
m_r = 0.0f;
m_sphereCount = 0;
m_shapeCount = 0;
m_step.iterations = 0;
}
@ -57,8 +58,8 @@ b3SpringCloth::~b3SpringCloth()
b3Free(m_f);
b3Free(m_inv_m);
b3Free(m_y);
b3Free(m_massTypes);
b3Free(m_collisions);
b3Free(m_types);
b3Free(m_contacts);
b3Free(m_springs);
}
@ -72,7 +73,7 @@ void b3SpringCloth::Initialize(const b3SpringClothDef& def)
m_gravity = def.gravity;
m_r = def.r;
const b3Mesh* m = m_mesh;
m_massCount = m->vertexCount;
@ -81,18 +82,23 @@ void b3SpringCloth::Initialize(const b3SpringClothDef& def)
m_f = (b3Vec3*)b3Alloc(m_massCount * sizeof(b3Vec3));
m_inv_m = (float32*)b3Alloc(m_massCount * sizeof(float32));
m_y = (b3Vec3*)b3Alloc(m_massCount * sizeof(b3Vec3));
m_massTypes = (b3MassType*)b3Alloc(m_massCount * sizeof(b3MassType));
m_collisions = (b3MassCollision*)b3Alloc(m_massCount * sizeof(b3MassCollision));
m_types = (b3MassType*)b3Alloc(m_massCount * sizeof(b3MassType));
m_contacts = (b3MassContact*)b3Alloc(m_massCount * sizeof(b3MassContact));
for (u32 i = 0; i < m->vertexCount; ++i)
{
m_collisions[i].active = false;
m_contacts[i].Fn = 0.0f;
m_contacts[i].Ft1 = 0.0f;
m_contacts[i].Ft2 = 0.0f;
m_contacts[i].lockOnSurface = false;
m_contacts[i].slideOnSurface = false;
m_x[i] = m->vertices[i];
m_v[i].SetZero();
m_f[i].SetZero();
m_inv_m[i] = 0.0f;
m_y[i].SetZero();
m_massTypes[i] = e_staticMass;
m_types[i] = e_staticMass;
}
// Initialize mass
@ -113,25 +119,25 @@ void b3SpringCloth::Initialize(const b3SpringClothDef& def)
m_inv_m[t->v2] += inv3 * mass;
m_inv_m[t->v3] += inv3 * mass;
}
// Invert
for (u32 i = 0; i < m_massCount; ++i)
{
if (m_inv_m[i] > 0.0f)
{
m_inv_m[i] = 1.0f / m_inv_m[i];
m_massTypes[i] = e_dynamicMass;
m_types[i] = e_dynamicMass;
}
}
// Initialize springs
m_springs = (b3Spring*)b3Alloc(3 * m->triangleCount * sizeof(b3Spring));
// Streching
for (u32 i = 0; i < m->triangleCount; ++i)
{
b3Triangle* t = m->triangles + i;
u32 is[3] = { t->v1, t->v2, t->v3 };
for (u32 j = 0; j < 3; ++j)
{
@ -168,624 +174,185 @@ void b3SpringCloth::Initialize(const b3SpringClothDef& def)
}
}
b3Sphere* b3SpringCloth::CreateSphere(const b3Vec3& center, float32 radius)
void b3SpringCloth::AddShape(b3Shape* shape)
{
B3_ASSERT(m_sphereCount < B3_CLOTH_SPHERE_CAPACITY);
if (m_sphereCount == B3_CLOTH_SPHERE_CAPACITY)
{
return nullptr;
}
B3_ASSERT(m_shapeCount < B3_CLOTH_SHAPE_CAPACITY);
b3Sphere* sphere = m_spheres + m_sphereCount;
sphere->vertex = center;
sphere->radius = radius;
++m_sphereCount;
return sphere;
}
static B3_FORCE_INLINE void b3Make_z(b3Vec3* out, u32 size,
const b3MassType* types, const b3MassCollision* collisions)
{
for (u32 i = 0; i < size; ++i)
{
switch (types[i])
{
case e_staticMass:
{
out[i].SetZero();
break;
}
case e_dynamicMass:
{
if (collisions[i].active)
{
out[i].SetZero();
break;
}
out[i].SetZero();
break;
}
default:
{
B3_ASSERT(false);
break;
}
}
}
}
static B3_FORCE_INLINE void b3Filter(b3Vec3* out, const b3Vec3* v, u32 size,
const b3MassType* types, const b3MassCollision* collisions)
{
for (u32 i = 0; i < size; ++i)
{
switch (types[i])
{
case e_staticMass:
{
out[i].SetZero();
break;
}
case e_dynamicMass:
{
if (collisions[i].active)
{
b3Vec3 n = collisions[i].n;
b3Mat33 S = b3Mat33_identity - b3Outer(n, n);
out[i] = S * v[i];
break;
}
out[i] = v[i];
break;
}
default:
{
B3_ASSERT(false);
break;
}
}
}
}
static B3_FORCE_INLINE void b3SetZero(b3Vec3* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
}
}
static B3_FORCE_INLINE void b3Copy(b3Vec3* out, const b3Vec3* v, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = v[i];
}
}
static B3_FORCE_INLINE void b3Add(b3Vec3* out, const b3Vec3* a, const b3Vec3* b, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = a[i] + b[i];
}
}
static B3_FORCE_INLINE void b3Sub(b3Vec3* out, const b3Vec3* a, const b3Vec3* b, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = a[i] - b[i];
}
}
static B3_FORCE_INLINE float32 b3Dot(const b3Vec3* a, const b3Vec3* b, u32 size)
{
float32 result = 0.0f;
for (u32 i = 0; i < size; ++i)
{
result += b3Dot(a[i], b[i]);
}
return result;
}
#define B3_INDEX(i, j, size) (i + j * size)
static B3_FORCE_INLINE void b3SetZero(b3Mat33* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
for (u32 j = 0; j < size; ++j)
{
out[B3_INDEX(i, j, size)].SetZero();
}
}
}
static B3_FORCE_INLINE void b3Mul(b3Vec3* out, const b3Mat33* M, const b3Vec3* v, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
for (u32 j = 0; j < size; ++j)
{
out[i] += M[ B3_INDEX(i, j, size) ] * v[j];
}
}
}
// J = dfdx or dvdx
static B3_FORCE_INLINE void b3Mul_Jacobian(b3Vec3* out, const b3Vec3* v, u32 mass_size,
const b3Mat33* J_ii, const b3Spring* springs, u32 spring_size)
{
b3SetZero(out, mass_size);
for (u32 i = 0; i < spring_size; ++i)
{
const b3Spring* S = springs + i;
u32 i1 = S->i1;
u32 i2 = S->i2;
b3Mat33 J_11 = J_ii[i];
b3Mat33 J_12 = -J_11;
b3Mat33 J_21 = J_12;
b3Mat33 J_22 = J_11;
out[i1] += J_11 * v[i1] + J_12 * v[i2];
out[i2] += J_21 * v[i1] + J_22 * v[i2];
}
}
static B3_FORCE_INLINE void b3SetZero_Jacobian(b3Mat33* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
}
}
// A = M - h * dfdv - h * h * dfdx
// A * v = (M - h * dfdv - h * h * dfdx) * v = M * v + (-h * dfdv * v) + (-h * h * dfdx * v)
static B3_FORCE_INLINE void b3Mul_A(b3Vec3* out, const b3Vec3* v, u32 mass_size,
b3StackAllocator* allocator,
const float32* inv_m, float32 h, const b3Mat33* Jx, const b3Mat33* Jv, const b3Spring* springs, u32 spring_size)
{
// v1 = M * v
b3Vec3* v1 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
for (u32 i = 0; i < mass_size; ++i)
{
float32 m = inv_m[i] != 0.0f ? 1.0f / inv_m[i] : 0.0f;
v1[i] = m * v[i];
}
// v2 = (-h * dfdv * v)
b3Vec3* v2 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
b3Mul_Jacobian(v2, v, mass_size, Jv, springs, spring_size);
for (u32 i = 0; i < mass_size; ++i)
{
v2[i] *= -h;
}
// v3 = (-h * h * dfdx * v)
b3Vec3* v3 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
b3Mul_Jacobian(v3, v, mass_size, Jx, springs, spring_size);
for (u32 i = 0; i < mass_size; ++i)
{
v3[i] *= -h * h;
}
// v = v1 + v2 + v3
for (u32 i = 0; i < mass_size; ++i)
{
out[i] = v1[i] + v2[i] + v3[i];
}
allocator->Free(v3);
allocator->Free(v2);
allocator->Free(v1);
}
void b3SpringCloth::UpdateCollisions() const
{
// Compute cloth-solid collision position alteration
for (u32 i = 0; i < m_massCount; ++i)
{
// Clear flag
m_collisions[i].active = false;
b3Vec3 c1 = m_x[i];
float32 r1 = m_r;
// Only solve the deepest penetrations
float32 bestSeparation = B3_MAX_FLOAT;
u32 bestIndex = ~0;
for (u32 j = 0; j < m_sphereCount; ++j)
{
const b3Sphere* sphere = m_spheres + j;
b3Vec3 c2 = sphere->vertex;
float32 r2 = sphere->radius;
b3Vec3 d = c2 - c1;
float32 dd = b3Dot(d, d);
float32 totalRadius = r1 + r2;
if (dd > totalRadius * totalRadius)
{
continue;
}
float32 distance = b3Length(d);
float32 separation = distance - totalRadius;
if (separation < bestSeparation)
{
bestSeparation = separation;
bestIndex = j;
}
}
if (bestIndex != ~0)
{
const b3Sphere* sphere = m_spheres + bestIndex;
b3Vec3 c2 = sphere->vertex;
float32 r2 = sphere->radius;
float32 totalRadius = r1 + r2;
b3Vec3 d = c2 - c1;
float32 distance = b3Length(d);
float32 separation = distance - totalRadius;
b3Vec3 n(0.0f, 1.0f, 0.0f);
if (distance > B3_EPSILON)
{
n = d / distance;
}
// Avoid large corrections
const float32 kMaxCorrection = 0.75f;
separation = b3Clamp(separation, -kMaxCorrection, 0.0f);
b3Vec3 dx1 = separation * n;
// Add position alteration
m_y[i] += dx1;
m_collisions[i].active = true;
m_collisions[i].j = bestIndex;
m_collisions[i].s = separation;
m_collisions[i].n = n;
}
}
}
void b3SpringCloth::Step(float32 h)
{
if (h == 0.0f)
if (m_shapeCount == B3_CLOTH_SHAPE_CAPACITY)
{
return;
}
// Detect and store collisions
UpdateCollisions();
m_shapes[m_shapeCount++] = shape;
}
u32 size = m_massCount;
b3MassType* types = m_massTypes;
u32 spring_size = m_springCount;
// Add gravity
for (u32 i = 0; i < size; ++i)
static B3_FORCE_INLINE void b3MakeTangents(b3Vec3& t1, b3Vec3& t2, const b3Vec3& dv, const b3Vec3& n)
{
t1 = dv - b3Dot(dv, n) * n;
if (b3Dot(t1, t1) > B3_EPSILON * B3_EPSILON)
{
if (types[i] == e_dynamicMass)
t1.Normalize();
t2 = b3Cross(t1, n);
}
else
{
t1 = b3Perp(n);
t2 = b3Cross(t1, n);
}
}
void b3SpringCloth::UpdateContacts()
{
for (u32 i = 0; i < m_massCount; ++i)
{
b3MassContact* c = m_contacts + i;
bool wasLocked = c->lockOnSurface;
bool wasSliding = c->slideOnSurface;
b3Sphere s1;
s1.vertex = m_x[i];
s1.radius = m_r;
// Solve the deepest penetration
float32 bestSeparation = 0.0f;
b3Vec3 bestNormal(0.0f, 0.0f, 0.0f);
u32 bestIndex = ~0;
for (u32 j = 0; j < m_shapeCount; ++j)
{
b3Shape* shape = m_shapes[j];
b3Transform xf2;
xf2.SetIdentity();
b3TestSphereOutput output;
if (shape->TestSphere(&output, s1, xf2) == false)
{
continue;
}
if (output.separation < bestSeparation)
{
bestSeparation = output.separation;
bestNormal = output.normal;
bestIndex = j;
}
}
if (bestIndex == ~0)
{
c->Fn = 0.0f;
c->Ft1 = 0.0f;
c->Ft2 = 0.0f;
c->lockOnSurface = false;
c->slideOnSurface = false;
continue;
}
B3_ASSERT(bestSeparation <= 0.0f);
const b3Shape* shape = m_shapes[bestIndex];
float32 s = bestSeparation;
// Ensure the normal points to the shape
b3Vec3 n = -bestNormal;
// Apply position correction
b3Vec3 dx = s * n;
m_y[i] += dx;
// Update contact state
if (wasLocked)
{
// Was the contact force attractive?
if (c->Fn > -B3_FORCE_THRESHOLD)
{
// Terminate the contact.
c->lockOnSurface = false;
continue;
}
// Since the contact force was repulsive
// maintain the acceleration constraint.
c->n = n;
c->j = bestIndex;
c->lockOnSurface = true;
}
else
{
// The contact has began.
c->n = n;
c->Fn = 0.0f;
c->Ft1 = 0.0f;
c->Ft2 = 0.0f;
c->j = bestIndex;
c->lockOnSurface = true;
// Relative velocity
b3Vec3 dv = m_v[i];
b3MakeTangents(c->t1, c->t2, dv, n);
c->slideOnSurface = false;
continue;
}
}
}
void b3SpringCloth::Step(float32 dt)
{
if (dt == 0.0f)
{
return;
}
// Update contacts
UpdateContacts();
// Apply gravity
for (u32 i = 0; i < m_massCount; ++i)
{
if (m_types[i] == e_dynamicMass)
{
m_f[i] += m_gravity;
}
}
// Compute non-zero Jacobians Jx, Jv
b3Mat33* Jx = (b3Mat33*)m_allocator->Allocate(spring_size * sizeof(b3Mat33));
b3SetZero_Jacobian(Jx, spring_size);
// Solve springs, constraints, and integrate
b3SpringSolverDef solverDef;
solverDef.cloth = this;
solverDef.dt = dt;
b3Mat33* Jv = (b3Mat33*)m_allocator->Allocate(spring_size * sizeof(b3Mat33));
b3SetZero_Jacobian(Jv, spring_size);
b3SpringSolver solver(solverDef);
// Compute forces and Jacobians
for (u32 i = 0; i < m_springCount; ++i)
{
b3Spring* S = m_springs + i;
// Constraint forces that are required to satisfy the constraints
b3Vec3* forces = (b3Vec3*)m_allocator->Allocate(m_massCount * sizeof(b3Vec3));
b3Vec3 x1 = m_x[S->i1];
b3Vec3 v1 = m_v[S->i1];
solver.Solve(forces);
b3Vec3 x2 = m_x[S->i2];
b3Vec3 v2 = m_v[S->i2];
// Strech
b3Vec3 dx = x2 - x1;
float32 L = b3Length(dx);
b3Vec3 n = dx;
if (L > 0.0f)
{
n /= L;
}
float32 C = L - S->L0;
// Compute streching forces
b3Vec3 sf1 = -S->ks * C * -n;
b3Vec3 sf2 = -sf1;
m_f[S->i1] += sf1;
m_f[S->i2] += sf2;
// Compute damping forces
b3Vec3 dv = v2 - v1;
b3Vec3 df1 = -S->kd * -dv;
b3Vec3 df2 = -df1;
m_f[S->i1] += df1;
m_f[S->i2] += df2;
b3Mat33 I = b3Mat33_identity;
// Compute Jx11
float32 inv_L = L > 0.0f ? 1.0f / L : 0.0f;
float32 L2 = L * L;
float32 inv_L2 = L2 > 0.0f ? 1.0f / L2 : 0.0f;
// Hessian
// del^2_C / del_x
b3Mat33 H_11 = inv_L * I + inv_L2 * b3Outer(dx, -n);
// del_C / del_x * del_C / del_x^T
b3Mat33 JJ_11 = b3Outer(-n, -n);
b3Mat33 Jx11 = -S->ks * (C * H_11 + JJ_11);
Jx[i] = Jx11;
// Compute Jv11
b3Mat33 Jv11 = -S->kd * I;
Jv[i] = Jv11;
}
// Solve Ax = b
// Compute b
// b = h * (f0 + h * dfdx * v0 + dfdx * y) )
b3Vec3* b = (b3Vec3*) m_allocator->Allocate(size * sizeof(b3Vec3));
// Jx_v = dfdx * v
b3Vec3* Jx_v = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
// b3Mul(Jx_v, dfdx, v, size);
b3Mul_Jacobian(Jx_v, m_v, size, Jx, m_springs, m_springCount);
// Jx_v0y = dfdx * y
b3Vec3* Jx_y = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
// b3Mul(Jx_y, dfdx, y, size);
b3Mul_Jacobian(Jx_y, m_y, size, Jx, m_springs, m_springCount);
// b = h * (f0 + h * Jx_v + Jx_y )
for (u32 i = 0; i < size; ++i)
{
b[i] = h * (m_f[i] + h * Jx_v[i] + Jx_y[i]);
}
m_allocator->Free(Jx_y);
m_allocator->Free(Jx_v);
// Solve Ax = b
b3Vec3* z = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* dv = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* Adv = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* r = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* c = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* q = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* s = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* P = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* inv_P = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
// Compute z
b3Make_z(z, size, types, m_collisions);
// dv = z
b3Copy(dv, z, size);
// Adv = A * dv
// b3Mul(Adv, A, dv, size);
b3Mul_A(Adv, dv, size, m_allocator, m_inv_m, h, Jx, Jv, m_springs, m_springCount);
// Compute P, P^-1
// We compute A because P = diag(A)^-1
// Note this is not necessary, and should be optimized as soon
// as possible.
// A = M - h * dfdv - h * h * dfdx
b3Mat33* A = (b3Mat33*)m_allocator->Allocate(size * size * sizeof(b3Mat33));
// A = 0
b3SetZero(A, size);
// Compute dfdx, dfdv
b3Mat33* dfdx = (b3Mat33*)m_allocator->Allocate(size * size * sizeof(b3Mat33));
b3SetZero(dfdx, size);
b3Mat33* dfdv = (b3Mat33*)m_allocator->Allocate(size * size * sizeof(b3Mat33));
b3SetZero(dfdv, size);
for (u32 i = 0; i < m_springCount; ++i)
{
b3Spring* S = m_springs + i;
b3Mat33 Jx11 = Jx[i];
b3Mat33 Jx12 = -Jx11;
b3Mat33 Jx21 = Jx12;
b3Mat33 Jx22 = Jx11;
dfdx[B3_INDEX(S->i1, S->i1, size)] += Jx11;
dfdx[B3_INDEX(S->i1, S->i2, size)] += Jx12;
dfdx[B3_INDEX(S->i2, S->i1, size)] += Jx21;
dfdx[B3_INDEX(S->i2, S->i2, size)] += Jx22;
b3Mat33 Jv11 = Jv[i];
b3Mat33 Jv12 = -Jv11;
b3Mat33 Jv21 = Jv12;
b3Mat33 Jv22 = Jv11;
dfdv[B3_INDEX(S->i1, S->i1, size)] += Jv11;
dfdv[B3_INDEX(S->i1, S->i2, size)] += Jv12;
dfdv[B3_INDEX(S->i2, S->i1, size)] += Jv21;
dfdv[B3_INDEX(S->i2, S->i2, size)] += Jv22;
}
// A += M
for (u32 i = 0; i < size; ++i)
{
float32 m = 1.0f / m_inv_m[i];
A[B3_INDEX(i, i, size)] += b3Diagonal(m);
}
// A += - h * dfdv - h * h * dfdx
for (u32 i = 0; i < size; ++i)
{
for (u32 j = 0; j < size; ++j)
{
A[B3_INDEX(i, j, size)] += (-h * dfdv[B3_INDEX(i, j, size)]) + (-h * h * dfdx[B3_INDEX(i, j, size)]);
}
}
for (u32 i = 0; i < size; ++i)
{
b3Mat33 D = A[B3_INDEX(i, i, size)];
B3_ASSERT(D[0][0] != 0.0f);
B3_ASSERT(D[1][1] != 0.0f);
B3_ASSERT(D[2][2] != 0.0f);
P[i] = b3Vec3(1.0f / D[0][0], 1.0f / D[1][1], 1.0f / D[2][2]);
inv_P[i] = b3Vec3(D[0][0], D[1][1], D[2][2]);
}
m_allocator->Free(dfdv);
m_allocator->Free(dfdx);
m_allocator->Free(A);
// eps0 = dot( filter(b), P * filter(b) )
b3Vec3* filter_b = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Filter(filter_b, b, size, types, m_collisions);
b3Vec3* P_filter_b = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
for (u32 i = 0; i < size; ++i)
{
P_filter_b[i][0] = P[i][0] * filter_b[i][0];
P_filter_b[i][1] = P[i][1] * filter_b[i][1];
P_filter_b[i][2] = P[i][2] * filter_b[i][2];
}
float32 eps0 = b3Dot(filter_b, P_filter_b, size);
m_allocator->Free(P_filter_b);
m_allocator->Free(filter_b);
// r = filter(b - Adv)
b3Sub(r, b, Adv, size);
b3Filter(r, r, size, types, m_collisions);
// c = filter(P^-1 * r)
// Store constraint forces for physics logic
for (u32 i = 0; i < m_massCount; ++i)
{
c[i][0] = inv_P[i][0] * r[i][0];
c[i][1] = inv_P[i][1] * r[i][1];
c[i][2] = inv_P[i][2] * r[i][2];
}
b3Filter(c, c, size, types, m_collisions);
b3Vec3 force = forces[i];
// epsNew = dot(r, c)
float32 epsNew = b3Dot(r, c, size);
b3MassContact* contact = m_contacts + i;
// This is in [0, 1]
// Making it smaller can increase accuracy, but it might increase the number
// of iterations to be taken by the solver.
const float32 kTol = 0.25f;
// Signed normal force magnitude
contact->Fn = b3Dot(force, contact->n);
// Limit number of iterations to prevent cycling.
const u32 kMaxIters = 200;
// Main iteration loop.
u32 iter = 0;
while (iter < kMaxIters && epsNew > kTol * kTol * eps0)
{
// q = filter(A * c)
// b3Mul(q, A, c, size);
b3Mul_A(q, c, size, m_allocator, m_inv_m, h, Jx, Jv, m_springs, m_springCount);
b3Filter(q, q, size, types, m_collisions);
// alpha = epsNew / dot(c, q)
float32 alpha = epsNew / b3Dot(c, q, size);
// x = x + alpha * c
for (u32 i = 0; i < m_massCount; ++i)
{
dv[i] = dv[i] + alpha * c[i];
}
// r = r - alpha * q
for (u32 i = 0; i < m_massCount; ++i)
{
r[i] = r[i] - alpha * q[i];
}
// s = inv_P * r
for (u32 i = 0; i < m_massCount; ++i)
{
s[i][0] = inv_P[i][0] * r[i][0];
s[i][1] = inv_P[i][1] * r[i][1];
s[i][2] = inv_P[i][2] * r[i][2];
}
// epsOld = epsNew
float32 epsOld = epsNew;
// epsNew = dot(r, s)
epsNew = b3Dot(r, s, size);
// beta = epsNew / epsOld
float32 beta = epsNew / epsOld;
// c = filter(s + beta * c)
for (u32 i = 0; i < m_massCount; ++i)
{
c[i] = s[i] + beta * c[i];
}
b3Filter(c, c, size, types, m_collisions);
++iter;
// Signed tangent forces magnitude
contact->Ft1 = b3Dot(force, contact->t1);
contact->Ft2 = b3Dot(force, contact->t2);
}
m_step.iterations = iter;
m_allocator->Free(forces);
// Update state
// Clear position correction
for (u32 i = 0; i < m_massCount; ++i)
{
m_v[i] += dv[i];
m_x[i] += h * m_v[i] + m_y[i];
m_y[i].SetZero();
}
// Clear forces
@ -793,25 +360,6 @@ void b3SpringCloth::Step(float32 h)
{
m_f[i].SetZero();
}
// Clear position alteration
for (u32 i = 0; i < m_massCount; ++i)
{
m_y[i].SetZero();
}
m_allocator->Free(inv_P);
m_allocator->Free(P);
m_allocator->Free(s);
m_allocator->Free(q);
m_allocator->Free(c);
m_allocator->Free(r);
m_allocator->Free(Adv);
m_allocator->Free(dv);
m_allocator->Free(z);
m_allocator->Free(b);
m_allocator->Free(Jv);
m_allocator->Free(Jx);
}
void b3SpringCloth::Apply() const
@ -824,16 +372,25 @@ void b3SpringCloth::Apply() const
void b3SpringCloth::Draw(b3Draw* draw) const
{
for (u32 i = 0; i < m_sphereCount; ++i)
{
draw->DrawSolidSphere(m_spheres[i].vertex, m_spheres[i].radius, b3Color_white);
}
const b3Mesh* m = m_mesh;
for (u32 i = 0; i < m->vertexCount; ++i)
{
draw->DrawPoint(m_x[i], 2.0f, b3Color_green);
if (m_contacts[i].lockOnSurface)
{
if (m_contacts[i].Fn > -B3_FORCE_THRESHOLD)
{
draw->DrawPoint(m_x[i], 6.0f, b3Color_yellow);
}
else
{
draw->DrawPoint(m_x[i], 6.0f, b3Color_red);
}
}
else
{
draw->DrawPoint(m_x[i], 6.0f, b3Color_green);
}
}
for (u32 i = 0; i < m->triangleCount; ++i)

View File

@ -0,0 +1,722 @@
/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <bounce/dynamics/cloth/spring_solver.h>
#include <bounce/dynamics/cloth/spring_cloth.h>
#include <bounce/common/memory/stack_allocator.h>
// Here, we solve Ax = b using the Modified Conjugate Gradient method.
// This work is based on the paper "Large Steps in Cloth Simulation - David Baraff, Andrew Witkin".
// Enable preconditioning. It can be slow, depending on
// how the preconditioning matrix is computed, but it can help
// to increase convergence.
bool b3_enablePrecontitioning = false;
b3SpringSolver::b3SpringSolver(const b3SpringSolverDef& def)
{
m_cloth = def.cloth;
m_h = def.dt;
m_iterations = 0;
m_Jx = nullptr;
m_Jv = nullptr;
m_allocator = m_cloth->m_allocator;
m_x = m_cloth->m_x;
m_v = m_cloth->m_v;
m_f = m_cloth->m_f;
m_inv_m = m_cloth->m_inv_m;
m_y = m_cloth->m_y;
m_types = m_cloth->m_types;
m_massCount = m_cloth->m_massCount;
m_contacts = m_cloth->m_contacts;
m_springs = m_cloth->m_springs;
m_springCount = m_cloth->m_springCount;
}
b3SpringSolver::~b3SpringSolver()
{
}
void b3SpringSolver::Solve(b3Vec3* f)
{
u32 size = m_massCount;
b3MassType* types = m_types;
u32 spring_size = m_springCount;
m_Jx = (b3Mat33*)m_allocator->Allocate(spring_size * sizeof(b3Mat33));
m_Jv = (b3Mat33*)m_allocator->Allocate(spring_size * sizeof(b3Mat33));
// Compute and apply spring forces, store their unique derivatives.
InitializeSpringForces();
// Integrate
// Solve Ax = b, where
// A = M - h * dfdv - h * h * dfdx
// b = h * (f0 + h * dfdx * v0 + dfdx * y)
//
b3Vec3* b = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
Compute_b(b);
//
b3Vec3* x = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
// Solve Ax = b
if (b3_enablePrecontitioning)
{
Solve_MPCG(x, f, m_iterations, b);
}
else
{
Solve_MCG(x, f, m_iterations, b);
}
// Update state
for (u32 i = 0; i < m_massCount; ++i)
{
m_v[i] += x[i];
// dx = h * (v0 + dv) + y = h * v1 + y
m_x[i] += m_h * m_v[i] + m_y[i];
}
m_allocator->Free(x);
m_allocator->Free(b);
m_allocator->Free(m_Jv);
m_allocator->Free(m_Jx);
m_Jv = nullptr;
m_Jx = nullptr;
}
// This outputs the desired acceleration of the masses in the constrained
// directions.
static B3_FORCE_INLINE void b3Compute_z(b3Vec3* out,
u32 size, const b3MassType* types, const b3MassContact* contacts)
{
for (u32 i = 0; i < size; ++i)
{
switch (types[i])
{
case e_staticMass:
{
out[i].SetZero();
break;
}
case e_dynamicMass:
{
if (contacts[i].lockOnSurface)
{
out[i].SetZero();
break;
}
out[i].SetZero();
break;
}
default:
{
B3_ASSERT(false);
break;
}
}
}
}
static B3_FORCE_INLINE void b3Filter(b3Vec3* out,
const b3Vec3* v, u32 size, const b3MassType* types, const b3MassContact* contacts)
{
for (u32 i = 0; i < size; ++i)
{
switch (types[i])
{
case e_staticMass:
{
out[i].SetZero();
break;
}
case e_dynamicMass:
{
if (contacts[i].lockOnSurface)
{
b3Vec3 n = contacts[i].n;
b3Mat33 S = b3Mat33_identity - b3Outer(n, n);
out[i] = S * v[i];
break;
}
out[i] = v[i];
break;
}
default:
{
B3_ASSERT(false);
break;
}
}
}
}
static B3_FORCE_INLINE void b3SetZero(b3Vec3* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
}
}
static B3_FORCE_INLINE void b3Copy(b3Vec3* out, const b3Vec3* v, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = v[i];
}
}
static B3_FORCE_INLINE void b3Add(b3Vec3* out, const b3Vec3* a, const b3Vec3* b, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = a[i] + b[i];
}
}
static B3_FORCE_INLINE void b3Sub(b3Vec3* out, const b3Vec3* a, const b3Vec3* b, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = a[i] - b[i];
}
}
static B3_FORCE_INLINE float32 b3Dot(const b3Vec3* a, const b3Vec3* b, u32 size)
{
float32 result = 0.0f;
for (u32 i = 0; i < size; ++i)
{
result += b3Dot(a[i], b[i]);
}
return result;
}
#define B3_INDEX(i, j, size) (i + j * size)
static B3_FORCE_INLINE void b3SetZero(b3Mat33* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
for (u32 j = 0; j < size; ++j)
{
out[B3_INDEX(i, j, size)].SetZero();
}
}
}
static B3_FORCE_INLINE void b3Mul(b3Vec3* out, const b3Mat33* M, const b3Vec3* v, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
for (u32 j = 0; j < size; ++j)
{
out[i] += M[B3_INDEX(i, j, size)] * v[j];
}
}
}
// J = dfdx or dvdx
static B3_FORCE_INLINE void b3Mul_Jacobian(b3Vec3* out, const b3Vec3* v, u32 mass_size,
const b3Mat33* J_ii, const b3Spring* springs, u32 spring_size)
{
b3SetZero(out, mass_size);
for (u32 i = 0; i < spring_size; ++i)
{
const b3Spring* S = springs + i;
u32 i1 = S->i1;
u32 i2 = S->i2;
b3Mat33 J_11 = J_ii[i];
b3Mat33 J_12 = -J_11;
b3Mat33 J_21 = J_12;
b3Mat33 J_22 = J_11;
out[i1] += J_11 * v[i1] + J_12 * v[i2];
out[i2] += J_21 * v[i1] + J_22 * v[i2];
}
}
static B3_FORCE_INLINE void b3SetZero_Jacobian(b3Mat33* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
}
}
// A = M - h * dfdv - h * h * dfdx
// A * v = (M - h * dfdv - h * h * dfdx) * v = M * v + (-h * dfdv * v) + (-h * h * dfdx * v)
static B3_FORCE_INLINE void b3Mul_A(b3Vec3* out, const b3Vec3* v, u32 mass_size,
b3StackAllocator* allocator,
const float32* inv_m, float32 h, const b3Mat33* Jx, const b3Mat33* Jv, const b3Spring* springs, u32 spring_size)
{
// v1 = M * v
b3Vec3* v1 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
for (u32 i = 0; i < mass_size; ++i)
{
float32 m = inv_m[i] != 0.0f ? 1.0f / inv_m[i] : 0.0f;
v1[i] = m * v[i];
}
// v2 = (-h * dfdv * v)
b3Vec3* v2 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
b3Mul_Jacobian(v2, v, mass_size, Jv, springs, spring_size);
for (u32 i = 0; i < mass_size; ++i)
{
v2[i] *= -h;
}
// v3 = (-h * h * dfdx * v)
b3Vec3* v3 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
b3Mul_Jacobian(v3, v, mass_size, Jx, springs, spring_size);
for (u32 i = 0; i < mass_size; ++i)
{
v3[i] *= -h * h;
}
// v = v1 + v2 + v3
for (u32 i = 0; i < mass_size; ++i)
{
out[i] = v1[i] + v2[i] + v3[i];
}
allocator->Free(v3);
allocator->Free(v2);
allocator->Free(v1);
}
void b3SpringSolver::InitializeSpringForces()
{
u32 size = m_massCount;
u32 spring_size = m_springCount;
// Zero Jacobians
b3SetZero_Jacobian(m_Jx, spring_size);
b3SetZero_Jacobian(m_Jv, spring_size);
// Compute forces and Jacobians
for (u32 i = 0; i < spring_size; ++i)
{
b3Spring* S = m_springs + i;
b3Vec3 x1 = m_x[S->i1];
b3Vec3 v1 = m_v[S->i1];
b3Vec3 x2 = m_x[S->i2];
b3Vec3 v2 = m_v[S->i2];
// Strech
b3Vec3 dx = x2 - x1;
float32 L = b3Length(dx);
b3Vec3 n = dx;
if (L > 0.0f)
{
n /= L;
}
float32 C = L - S->L0;
// Compute streching forces
b3Vec3 sf1 = -S->ks * C * -n;
b3Vec3 sf2 = -sf1;
m_f[S->i1] += sf1;
m_f[S->i2] += sf2;
// Compute damping forces
b3Vec3 dv = v2 - v1;
b3Vec3 df1 = -S->kd * -dv;
b3Vec3 df2 = -df1;
m_f[S->i1] += df1;
m_f[S->i2] += df2;
b3Mat33 I = b3Mat33_identity;
// Compute Jx11
float32 inv_L = L > 0.0f ? 1.0f / L : 0.0f;
float32 L2 = L * L;
float32 inv_L2 = L2 > 0.0f ? 1.0f / L2 : 0.0f;
// Hessian
// del^2_C / del_x
b3Mat33 H_11 = inv_L * I + inv_L2 * b3Outer(dx, -n);
// del_C / del_x * del_C / del_x^T
b3Mat33 JJ_11 = b3Outer(-n, -n);
b3Mat33 Jx11 = -S->ks * (C * H_11 + JJ_11);
m_Jx[i] = Jx11;
// Compute Jv11
b3Mat33 Jv11 = -S->kd * I;
m_Jv[i] = Jv11;
}
}
void b3SpringSolver::Compute_b(b3Vec3* b) const
{
float32 h = m_h;
u32 size = m_massCount;
// Jx_v = dfdx * v
b3Vec3* Jx_v = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Mul_Jacobian(Jx_v, m_v, size, m_Jx, m_springs, m_springCount);
// Jx_y = dfdx * y
b3Vec3* Jx_y = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Mul_Jacobian(Jx_y, m_y, size, m_Jx, m_springs, m_springCount);
// b = h * (f0 + h * Jx_v + Jx_y )
for (u32 i = 0; i < size; ++i)
{
b[i] = h * (m_f[i] + h * Jx_v[i] + Jx_y[i]);
}
m_allocator->Free(Jx_y);
m_allocator->Free(Jx_v);
}
void b3SpringSolver::Solve_MCG(b3Vec3* dv, b3Vec3* e, u32& iterations, const b3Vec3* b) const
{
// dv = z
b3Compute_z(dv, m_massCount, m_types, m_contacts);
// r = filter(b - Adv)
b3Vec3* r = (b3Vec3*)m_allocator->Allocate(m_massCount * sizeof(b3Vec3));
// Adv = A * dv
b3Vec3* Adv = (b3Vec3*)m_allocator->Allocate(m_massCount * sizeof(b3Vec3));
b3Mul_A(Adv, dv, m_massCount, m_allocator, m_inv_m, m_h, m_Jx, m_Jv, m_springs, m_springCount);
b3Sub(r, b, Adv, m_massCount);
b3Filter(r, r, m_massCount, m_types, m_contacts);
m_allocator->Free(Adv);
// c = r
b3Vec3* c = (b3Vec3*)m_allocator->Allocate(m_massCount * sizeof(b3Vec3));
b3Copy(c, r, m_massCount);
// eps0 = dot(f, f)
float32 eps0 = b3Dot(r, r, m_massCount);
// epsNew = dot(r, r)
float32 epsNew = eps0;
// [0, 1]
const float32 kTol = 0.25f;
// Limit number of iterations to prevent cycling.
const u32 kMaxIters = 100;
// Main iteration loop.
u32 iter = 0;
while (iter < kMaxIters && epsNew > kTol * kTol * eps0)
{
// q = filter(A * c)
b3Vec3* q = (b3Vec3*)m_allocator->Allocate(m_massCount * sizeof(b3Vec3));
b3Mul_A(q, c, m_massCount, m_allocator, m_inv_m, m_h, m_Jx, m_Jv, m_springs, m_springCount);
b3Filter(q, q, m_massCount, m_types, m_contacts);
// alpha = epsNew / dot(c, q)
float32 alpha_den = b3Dot(c, q, m_massCount);
float32 alpha = epsNew / alpha_den;
// dv = dv + alpha * c
for (u32 i = 0; i < m_massCount; ++i)
{
dv[i] = dv[i] + alpha * c[i];
}
// r = r - alpha * q
for (u32 i = 0; i < m_massCount; ++i)
{
r[i] = r[i] - alpha * q[i];
}
m_allocator->Free(q);
// epsOld = epsNew
float32 epsOld = epsNew;
// epsNew = dot(r, r)
epsNew = b3Dot(r, r, m_massCount);
float32 beta = epsNew / epsOld;
// c = filter(r + beta * c)
for (u32 i = 0; i < m_massCount; ++i)
{
c[i] = r[i] + beta * c[i];
}
b3Filter(c, c, m_massCount, m_types, m_contacts);
++iter;
}
m_allocator->Free(c);
m_allocator->Free(r);
iterations = iter;
// f = A * dv - b
b3Mul_A(e, dv, m_massCount, m_allocator, m_inv_m, m_h, m_Jx, m_Jv, m_springs, m_springCount);
b3Sub(e, e, b, m_massCount);
}
static void B3_FORCE_INLINE b3Make_A(b3Mat33* A,
const b3Mat33* Jx, const b3Mat33* Jv, u32 size,
b3StackAllocator* allocator, float32 h, float32* inv_m,
const b3Spring* springs, u32 spring_size)
{
// A = M - h * dfdv - h * h * dfdx
// A = 0
b3SetZero(A, size);
// Compute dfdx, dfdv
b3Mat33* dfdx = (b3Mat33*)allocator->Allocate(size * size * sizeof(b3Mat33));
b3SetZero(dfdx, size);
b3Mat33* dfdv = (b3Mat33*)allocator->Allocate(size * size * sizeof(b3Mat33));
b3SetZero(dfdv, size);
for (u32 i = 0; i < spring_size; ++i)
{
const b3Spring* S = springs + i;
b3Mat33 Jx11 = Jx[i];
b3Mat33 Jx12 = -Jx11;
b3Mat33 Jx21 = Jx12;
b3Mat33 Jx22 = Jx11;
dfdx[B3_INDEX(S->i1, S->i1, size)] += Jx11;
dfdx[B3_INDEX(S->i1, S->i2, size)] += Jx12;
dfdx[B3_INDEX(S->i2, S->i1, size)] += Jx21;
dfdx[B3_INDEX(S->i2, S->i2, size)] += Jx22;
b3Mat33 Jv11 = Jv[i];
b3Mat33 Jv12 = -Jv11;
b3Mat33 Jv21 = Jv12;
b3Mat33 Jv22 = Jv11;
dfdv[B3_INDEX(S->i1, S->i1, size)] += Jv11;
dfdv[B3_INDEX(S->i1, S->i2, size)] += Jv12;
dfdv[B3_INDEX(S->i2, S->i1, size)] += Jv21;
dfdv[B3_INDEX(S->i2, S->i2, size)] += Jv22;
}
// A += M
for (u32 i = 0; i < size; ++i)
{
B3_ASSERT(inv_m[i] != 0.0f);
float32 m = 1.0f / inv_m[i];
A[B3_INDEX(i, i, size)] += b3Diagonal(m);
}
// A += - h * dfdv - h * h * dfdx
for (u32 i = 0; i < size; ++i)
{
for (u32 j = 0; j < size; ++j)
{
A[B3_INDEX(i, j, size)] += (-h * dfdv[B3_INDEX(i, j, size)]) + (-h * h * dfdx[B3_INDEX(i, j, size)]);
}
}
allocator->Free(dfdv);
allocator->Free(dfdx);
}
void b3SpringSolver::Solve_MPCG(b3Vec3* dv, b3Vec3* e, u32& iterations, const b3Vec3* b) const
{
u32 size = m_massCount;
b3MassType* types = m_types;
u32 spring_size = m_springCount;
b3Vec3* r = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* c = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* s = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* inv_P = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
// dv = z
b3Compute_z(dv, size, types, m_contacts);
// P = diag(A)^-1
b3Vec3* P = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
// A = M - h * dfdv - h * h * dfdx
b3Mat33* A = (b3Mat33*)m_allocator->Allocate(size * size * sizeof(b3Mat33));
b3Make_A(A, m_Jx, m_Jv, size, m_allocator, m_h, m_inv_m, m_springs, m_springCount);
// Compute P, P^-1
// @todo Optimize so we don't need to compute A.
for (u32 i = 0; i < size; ++i)
{
b3Mat33 D = A[B3_INDEX(i, i, size)];
B3_ASSERT(D[0][0] != 0.0f);
B3_ASSERT(D[1][1] != 0.0f);
B3_ASSERT(D[2][2] != 0.0f);
P[i] = b3Vec3(1.0f / D[0][0], 1.0f / D[1][1], 1.0f / D[2][2]);
inv_P[i] = b3Vec3(D[0][0], D[1][1], D[2][2]);
}
m_allocator->Free(A);
// eps0 = dot( filter(b), P * filter(b) )
b3Vec3* filter_b = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Filter(filter_b, b, size, types, m_contacts);
b3Vec3* P_filter_b = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
for (u32 i = 0; i < size; ++i)
{
P_filter_b[i][0] = P[i][0] * filter_b[i][0];
P_filter_b[i][1] = P[i][1] * filter_b[i][1];
P_filter_b[i][2] = P[i][2] * filter_b[i][2];
}
float32 eps0 = b3Dot(filter_b, P_filter_b, size);
m_allocator->Free(P_filter_b);
m_allocator->Free(filter_b);
m_allocator->Free(P);
// r = filter(b - Adv)
// Adv = A * dv
b3Vec3* Adv = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Mul_A(Adv, dv, size, m_allocator, m_inv_m, m_h, m_Jx, m_Jv, m_springs, m_springCount);
b3Sub(r, b, Adv, size);
m_allocator->Free(Adv);
b3Filter(r, r, size, types, m_contacts);
// c = filter(P^-1 * r)
for (u32 i = 0; i < m_massCount; ++i)
{
c[i][0] = inv_P[i][0] * r[i][0];
c[i][1] = inv_P[i][1] * r[i][1];
c[i][2] = inv_P[i][2] * r[i][2];
}
b3Filter(c, c, size, types, m_contacts);
// epsNew = dot(r, c)
float32 epsNew = b3Dot(r, c, size);
// [0, 1]
const float32 kTol = 0.25f;
// Limit number of iterations to prevent cycling.
const u32 kMaxIters = 100;
// Main iteration loop.
u32 iter = 0;
while (iter < kMaxIters && epsNew > kTol * kTol * eps0)
{
// q = filter(A * c)
b3Vec3* q = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Mul_A(q, c, size, m_allocator, m_inv_m, m_h, m_Jx, m_Jv, m_springs, m_springCount);
b3Filter(q, q, size, types, m_contacts);
// alpha = epsNew / dot(c, q)
float32 alpha = epsNew / b3Dot(c, q, size);
// x = x + alpha * c
for (u32 i = 0; i < m_massCount; ++i)
{
dv[i] = dv[i] + alpha * c[i];
}
// r = r - alpha * q
for (u32 i = 0; i < m_massCount; ++i)
{
r[i] = r[i] - alpha * q[i];
}
m_allocator->Free(q);
// s = inv_P * r
for (u32 i = 0; i < m_massCount; ++i)
{
s[i][0] = inv_P[i][0] * r[i][0];
s[i][1] = inv_P[i][1] * r[i][1];
s[i][2] = inv_P[i][2] * r[i][2];
}
// epsOld = epsNew
float32 epsOld = epsNew;
// epsNew = dot(r, s)
epsNew = b3Dot(r, s, size);
// beta = epsNew / epsOld
float32 beta = epsNew / epsOld;
// c = filter(s + beta * c)
for (u32 i = 0; i < m_massCount; ++i)
{
c[i] = s[i] + beta * c[i];
}
b3Filter(c, c, size, types, m_contacts);
++iter;
}
m_allocator->Free(inv_P);
m_allocator->Free(s);
m_allocator->Free(c);
m_allocator->Free(r);
iterations = iter;
// Residual error
// f = A * x - b
b3Mul_A(e, dv, size, m_allocator, m_inv_m, m_h, m_Jx, m_Jv, m_springs, spring_size);
b3Sub(e, e, b, size);
}