rewrite hull inertia computation

This commit is contained in:
Irlan 2018-04-17 02:00:21 -03:00
parent b85556a375
commit bfb2665930
2 changed files with 243 additions and 164 deletions

View File

@ -78,85 +78,3 @@ void b3Hull::Validate(const b3HalfEdge* e) const
++count;
} while (e != begin);
}
static B3_FORCE_INLINE void b3Subexpressions(float32& w0, float32& w1, float32& w2,
float32& f1, float32& f2, float32& f3)
{
float32 t0 = w0 + w1;
float32 t1 = w0 * w0;
float32 t2 = t1 + w1 * t0;
f1 = t0 + w2;
f2 = t2 + w2 * f1;
f3 = w0 * t1 + w1 * t2 + w2 * f2;
}
b3Vec3 b3Hull::GetCentroid() const
{
Validate();
const float32 inv6 = 1.0f / 6.0f;
const float32 inv24 = 1.0f / 24.0f;
float32 intgex = 0.0f;
float32 intgcx = 0.0f;
float32 intgcy = 0.0f;
float32 intgcz = 0.0f;
for (u32 i = 0; i < faceCount; ++i)
{
const b3Face* face = GetFace(i);
const b3HalfEdge* begin = GetEdge(face->edge);
const b3HalfEdge* edge = GetEdge(begin->next);
do
{
const b3HalfEdge* next = GetEdge(edge->next);
u32 i1 = begin->origin;
u32 i2 = edge->origin;
u32 i3 = next->origin;
b3Vec3 p1 = GetVertex(i1);
b3Vec3 p2 = GetVertex(i2);
b3Vec3 p3 = GetVertex(i3);
b3Vec3 e1 = p2 - p1;
b3Vec3 e2 = p3 - p1;
b3Vec3 d = b3Cross(e1, e2);
float32 f1x, f1y, f1z;
float32 f2x, f2y, f2z;
float32 f3x, f3y, f3z;
b3Subexpressions(p1.x, p2.x, p3.x, f1x, f2x, f3x);
b3Subexpressions(p1.y, p2.y, p3.y, f1y, f2y, f3y);
b3Subexpressions(p1.z, p2.z, p3.z, f1z, f2z, f3z);
intgex += inv6 * (d.x * f1x);
intgcx += inv24 * (d.x * f2x);
intgcy += inv24 * (d.y * f2y);
intgcz += inv24 * (d.z * f2z);
edge = next;
} while (GetEdge(edge->next) != begin);
}
// Apply constants
//intgex *= inv6;
//intgcx *= inv24;
//intgcy *= inv24;
//intgcz *= inv24;
// Center of volume
B3_ASSERT(intgex > B3_EPSILON);
intgcx /= intgex;
intgcy /= intgex;
intgcz /= intgex;
return b3Vec3(intgcx, intgcy, intgcz);
}

View File

@ -37,33 +37,98 @@ void b3HullShape::Swap(const b3HullShape& other)
m_hull = other.m_hull;
}
static B3_FORCE_INLINE void b3Subexpressions(float32& w0, float32& w1, float32& w2,
float32& f1, float32& f2, float32& f3,
float32& g0, float32& g1, float32& g2)
{
float32 t0 = w0 + w1;
float32 t1 = w0 * w0;
float32 t2 = t1 + w1 * t0;
f1 = t0 + w2;
f2 = t2 + w2 * f1;
f3 = w0 * t1 + w1 * t2 + w2 * f2;
g0 = f2 + w0 * (f1 + w0);
g1 = f2 + w1 * (f1 + w1);
g2 = f2 + w2 * (f1 + w2);
}
// For explanation, see Polyhedral Mass Properties - David Eberly
void b3HullShape::ComputeMass(b3MassData* data, float32 density) const
{
const float32 inv6 = 1.0f / 6.0f;
const float32 inv24 = 1.0f / 24.0f;
const float32 inv60 = 1.0f / 60.0f;
const float32 inv120 = 1.0f / 120.0f;
// Polyhedron mass, center of mass, and inertia.
// Let rho be the polyhedron density per unit volume
const float32 ks[10] = { inv6, inv24, inv24, inv24, inv60, inv60, inv60, inv120, inv120, inv120 };
float32 is[10] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
// mass = rho * int(1 * dV)
// centroid.x = (1 / mass) * rho * int(x * dV)
// centroid.y = (1 / mass) * rho * int(y * dV)
// centroid.z = (1 / mass) * rho * int(z * dV)
// Ixx = rho * int((y^2 + z^2) * dV)
// Iyy = rho * int((x^2 + z^2) * dV)
// Izz = rho * int((x^2 + y^2) * dV)
// Ixy = -rho * int((x * y) * dV)
// Ixz = -rho * int((x * z) * dV)
// Iyz = -rho * int(y * z) * dV
// Iyx = Ixy
// Izx = Ixz
// Izy = Iyz
// Using the Divergence's Theorem we can convert these volume integrals to surface integrals.
// int(div(F) * dV) = int(dot(F, N) * dS)
// The left side is an integral over the volume V.
// The right side is an integral over the closed surface S of V.
// N is the exterior normal of V along S.
// In order to compute the surface integral we need to choose an F
// such that div(F) equals the function to be integrated over V.
// Below are some simple choices for all F.
// div(x, 0, 0) = 1
// div(x^2, 0, 0) = x
// div(0, y^2, 0) = y
// div(0, 0, z^2) = z
// div(x^3 / 3, 0, 0) = x^2
// div(0, y^3 / 3, 0) = y^2
// div(0, 0, z^3 / 3) = z^2
// div(x^2 * y / 2, 0, 0) = x * y
// div(0, y^2 * z / 2, 0) = y * z
// div(0, 0, z^2 * x / 2) = x * z
// Thus, where the boundary representation is simply a set of n triangles,
// we can compute these integrals by summing all the integrals for each triangle
// of the polyhedron.
// int(dV) = sum(int(dot(F, N_k) * dS)), k..n.
// If the normal N_k is constant over the triangle and s is an axis in the direction of F,
// we can bring N_k outside the integral
// int(dV) = sum(dot(N_k, s) * int(f(x, y, z) * dS)), k..n.
// We need to compute surface integrals, where the f above is to be integrated along a triangle.
// Changing coordinates from (x, y, z) to (u, v) a formula for a integral along the triangle is
// int(f(x(u, v), y(u, v), z(u, v)) * norm(cross(e1, e2)) * du * dv)
// where f is a parametrization for a triangle
// x = x1 + e1x * u + e2x * v
// y = y1 + e1y * u + e2y * v
// z = z1 + e1z * u + e2z * v
// and 0 <= u, 0 <= v, u + v <= 1
// We can view the surface integral above also as
// int(f * det(D) * du * dv)
// where D is the Jacobian of the parametrization:
// D = cross(e1, e2)
// Thus, using the fact that
// N_k = D / norm(D),
// the surface integral can be further simplified to
// sum(dot(D, s) * int(f(x(u, v), y(u, v), z(u, v)) * du * dv))
// We integrate f over [0, 1 - v] and then over [0, 1].
// These double integrals are done either by a CAS or by hand.
// Here, it was used the great SymPy.
// SymPy was available at http://live.sympy.org/
b3Vec3 center;
center.SetZero();
float32 volume = 0.0f;
b3Mat33 I;
I.SetZero();
const float32 inv3 = 1.0f / 3.0f;
const float32 inv6 = 1.0f / 6.0f;
const float32 inv12 = 1.0f / 12.0f;
const float32 inv20 = 1.0f / 20.0f;
const float32 inv60 = 1.0f / 60.0f;
for (u32 i = 0; i < m_hull->faceCount; ++i)
{
@ -79,76 +144,172 @@ void b3HullShape::ComputeMass(b3MassData* data, float32 density) const
u32 i2 = edge->origin;
u32 i3 = next->origin;
b3Vec3 p1 = m_hull->GetVertex(i1);
b3Vec3 p2 = m_hull->GetVertex(i2);
b3Vec3 p3 = m_hull->GetVertex(i3);
b3Vec3 e1 = m_hull->GetVertex(i1);
b3Vec3 e2 = m_hull->GetVertex(i2);
b3Vec3 e3 = m_hull->GetVertex(i3);
b3Vec3 e1 = p2 - p1;
b3Vec3 e2 = p3 - p1;
float32 ex1 = e1.x, ey1 = e1.y, ez1 = e1.z;
float32 ex2 = e2.x, ey2 = e2.y, ez2 = e2.z;
float32 ex3 = e3.x, ey3 = e3.y, ez3 = e3.z;
b3Vec3 d = b3Cross(e1, e2);
float32 a1 = ex2 - ex1, a2 = ey2 - ey1, a3 = ez2 - ez1;
float32 b1 = ex3 - ex1, b2 = ey3 - ey1, b3 = ez3 - ez1;
float32 f1x, f1y, f1z;
float32 f2x, f2y, f2z;
float32 f3x, f3y, f3z;
// D = cross(e2 - e1, e3 - e1);
float32 D1 = a2 * b3 - a3 * b2;
float32 D2 = a3 * b1 - a1 * b3;
float32 D3 = a1 * b2 - a2 * b1;
float32 g0x, g0y, g0z;
float32 g1x, g1y, g1z;
float32 g2x, g2y, g2z;
//
float32 intx = ex1 + ex2 + ex3;
volume += (inv6 * D1) * intx;
b3Subexpressions(p1.x, p2.x, p3.x, f1x, f2x, f3x, g0x, g1x, g2x);
b3Subexpressions(p1.y, p2.y, p3.y, f1y, f2y, f3y, g0y, g1y, g2y);
b3Subexpressions(p1.z, p2.z, p3.z, f1z, f2z, f3z, g0z, g1z, g2z);
//
float32 intx2 = ex1 * ex1 + ex1 * ex2 + ex1 * ex3 + ex2 * ex2 + ex2 * ex3 + ex3 * ex3;
float32 inty2 = ey1 * ey1 + ey1 * ey2 + ey1 * ey3 + ey2 * ey2 + ey2 * ey3 + ey3 * ey3;
float32 intz2 = ez1 * ez1 + ez1 * ez2 + ez1 * ez3 + ez2 * ez2 + ez2 * ez3 + ez3 * ez3;
is[0] += ks[0] * (d.x * f1x);
center.x += (0.5f * inv12 * D1) * intx2;
center.y += (0.5f * inv12 * D2) * inty2;
center.z += (0.5f * inv12 * D3) * intz2;
is[1] += ks[1] * (d.x * f2x);
is[2] += ks[2] * (d.y * f2y);
is[3] += ks[3] * (d.z * f2z);
//
float32 intx3 =
ex1 * ex1 * ex1 +
ex1 * ex1 * ex2 +
ex1 * ex1 * ex3 +
ex1 * ex2 * ex2 +
ex1 * ex2 * ex3 +
ex1 * ex3 * ex3 +
ex2 * ex2 * ex2 +
ex2 * ex2 * ex3 +
ex2 * ex3 * ex3 +
ex3 * ex3 * ex3;
is[4] += ks[4] * (d.x * f3x);
is[5] += ks[5] * (d.y * f3y);
is[6] += ks[6] * (d.z * f3z);
float32 inty3 =
ey1 * ey1 * ey1 +
ey1 * ey1 * ey2 +
ey1 * ey1 * ey3 +
ey1 * ey2 * ey2 +
ey1 * ey2 * ey3 +
ey1 * ey3 * ey3 +
ey2 * ey2 * ey2 +
ey2 * ey2 * ey3 +
ey2 * ey3 * ey3 +
ey3 * ey3 * ey3;
is[7] += ks[7] * (d.x * (p1.y * g0x + p2.y * g1x + p3.y * g2x));
is[8] += ks[8] * (d.y * (p1.z * g0y + p2.z * g1y + p3.z * g2y));
is[9] += ks[9] * (d.z * (p1.x * g0z + p2.x * g1z + p3.x * g2z));
float32 intz3 =
ez1 * ez1 * ez1 +
ez1 * ez1 * ez2 +
ez1 * ez1 * ez3 +
ez1 * ez2 * ez2 +
ez1 * ez2 * ez3 +
ez1 * ez3 * ez3 +
ez2 * ez2 * ez2 +
ez2 * ez2 * ez3 +
ez2 * ez3 * ez3 +
ez3 * ez3 * ez3;
// Apply constants
intx3 *= inv3 * inv20 * D1;
inty3 *= inv3 * inv20 * D2;
intz3 *= inv3 * inv20 * D3;
I.x.x += inty3 + intz3;
I.y.y += intx3 + intz3;
I.z.z += intx3 + inty3;
//
float32 intx2y =
3.0f * ex1 * ex1 * ey1 +
ex1 * ex1 * ey2 +
ex1 * ex1 * ey3 +
2.0f * ex1 * ex2 * ey1 +
2.0f * ex1 * ex2 * ey2 +
ex1 * ex2 * ey3 +
2.0f * ex1 * ex3 * ey1 +
ex1 * ex3 * ey2 +
2.0f * ex1 * ex3 * ey3 +
ex2 * ex2 * ey1 +
3.0f * ex2 * ex2 * ey2 +
ex2 * ex2 * ey3 +
ex2 * ex3 * ey1 +
2.0f * ex2 * ex3 * ey2 +
2.0f * ex2 * ex3 * ey3 +
ex3 * ex3 * ey1 +
ex3 * ex3 * ey2 +
3.0f * ex3 * ex3 * ey3;
float32 inty2z =
3.0f * ey1 * ey1 * ez1 +
ey1 * ey1 * ez2 +
ey1 * ey1 * ez3 +
2.0f * ey1 * ey2 * ez1 +
2.0f * ey1 * ey2 * ez2 +
ey1 * ey2 * ez3 +
2.0f * ey1 * ey3 * ez1 +
ey1 * ey3 * ez2 +
2.0f * ey1 * ey3 * ez3 +
ey2 * ey2 * ez1 +
3.0f * ey2 * ey2 * ez2 +
ey2 * ey2 * ez3 +
ey2 * ey3 * ez1 +
2.0f * ey2 * ey3 * ez2 +
2.0f * ey2 * ey3 * ez3 +
ey3 * ey3 * ez1 +
ey3 * ey3 * ez2 +
3.0f * ey3 * ey3 * ez3;
float32 intz2x =
3.0f * ez1 * ez1 * ex1 +
ez1 * ez1 * ex2 +
ez1 * ez1 * ex3 +
2.0f * ez1 * ez2 * ex1 +
2.0f * ez1 * ez2 * ex2 +
ez1 * ez2 * ex3 +
2.0f * ez1 * ez3 * ex1 +
ez1 * ez3 * ex2 +
2.0f * ez1 * ez3 * ex3 +
ez2 * ez2 * ex1 +
3.0f * ez2 * ez2 * ex2 +
ez2 * ez2 * ex3 +
ez2 * ez3 * ex1 +
2.0f * ez2 * ez3 * ex2 +
2.0f * ez2 * ez3 * ex3 +
ez3 * ez3 * ex1 +
ez3 * ez3 * ex2 +
3.0f * ez3 * ez3 * ex3;
// Apply constants
intx2y *= 0.5f * inv60 * D1;
inty2z *= 0.5f * inv60 * D2;
intz2x *= 0.5f * inv60 * D3;
I.x.y += intx2y;
I.y.z += inty2z;
I.z.x += intz2x;
edge = next;
} while (m_hull->GetEdge(edge->next) != begin);
}
// Apply constants
//for (u32 i = 0; i < 10; ++i)
//{
//is[i] *= ks[i];
//}
// Volume
float32 V = is[0];
B3_ASSERT(V > B3_EPSILON);
// Center of volume
b3Vec3 c(is[1], is[2], is[3]);
c /= V;
// Inertia about the local origin
b3Mat33 I;
I.x.x = is[5] + is[6];
I.x.y = -is[7];
I.x.z = -is[9];
// Negate
I.x.y = -I.x.y;
I.y.z = -I.y.z;
I.z.x = -I.z.x;
// Use symmetry
I.y.x = I.x.y;
I.y.y = is[4] + is[6];
I.y.z = -is[8];
I.z.x = I.x.z;
I.z.y = I.y.z;
I.z.z = is[4] + is[5];
I.x.z = I.x.z;
// Center of mass
B3_ASSERT(volume > B3_EPSILON);
center /= volume;
// Apply density
data->center = c;
data->mass = density * V;
data->center = center;
data->mass = density * volume;
data->I = density * I;
}