inertia simplification

This commit is contained in:
Irlan 2018-09-01 12:00:12 -03:00
parent e3577b9c2d
commit d8deae2917
2 changed files with 57 additions and 236 deletions

View File

@ -42,14 +42,12 @@ struct b3UniqueStackArray
//
static b3Vec3 b3ComputeCentroid(b3QHull* hull)
{
// M. Kallay - "Computing the Moment of Inertia of a Solid Defined by a Triangle Mesh"
B3_ASSERT(hull->vertexCount >= 4);
// volume = int(dV)
float32 volume = 0.0f;
// centroid.x = (1 / volume) * int(x * dV)
// centroid.y = (1 / volume) * int(y * dV)
// centroid.z = (1 / volume) * int(z * dV)
b3Vec3 centroid; centroid.SetZero();
// Put the reference point inside the hull
@ -60,9 +58,6 @@ static b3Vec3 b3ComputeCentroid(b3QHull* hull)
}
s /= float32(hull->vertexCount);
const float32 inv6 = 1.0f / 6.0f;
const float32 inv12 = 1.0f / 12.0f;
for (u32 i = 0; i < hull->faceCount; ++i)
{
const b3Face* face = hull->GetFace(i);
@ -77,30 +72,20 @@ static b3Vec3 b3ComputeCentroid(b3QHull* hull)
u32 i2 = edge->origin;
u32 i3 = next->origin;
b3Vec3 p1 = hull->GetVertex(i1) - s;
b3Vec3 p2 = hull->GetVertex(i2) - s;
b3Vec3 p3 = hull->GetVertex(i3) - s;
b3Vec3 v1 = hull->GetVertex(i1) - s;
b3Vec3 v2 = hull->GetVertex(i2) - s;
b3Vec3 v3 = hull->GetVertex(i3) - s;
float32 px1 = p1.x, py1 = p1.y, pz1 = p1.z;
float32 px2 = p2.x, py2 = p2.y, pz2 = p2.z;
float32 px3 = p3.x, py3 = p3.y, pz3 = p3.z;
// Signed tetrahedron volume
float32 D = b3Det(v1, v2, v3);
//
b3Vec3 D = b3Cross(p2 - p1, p3 - p1);
float32 Dx = D.x, Dy = D.y, Dz = D.z;
// Contribution to the mass
volume += D;
//
float32 intx = px1 + px2 + px3;
volume += (inv6 * D.x) * intx;
// Contribution to the centroid
b3Vec3 v4 = v1 + v2 + v3;
//
float32 intx2 = px1 * px1 + px1 * px2 + px1 * px3 + px2 * px2 + px2 * px3 + px3 * px3;
float32 inty2 = py1 * py1 + py1 * py2 + py1 * py3 + py2 * py2 + py2 * py3 + py3 * py3;
float32 intz2 = pz1 * pz1 + pz1 * pz2 + pz1 * pz3 + pz2 * pz2 + pz2 * pz3 + pz3 * pz3;
centroid.x += (0.5f * inv12 * Dx) * intx2;
centroid.y += (0.5f * inv12 * Dy) * inty2;
centroid.z += (0.5f * inv12 * Dz) * intz2;
centroid += D * v4;
edge = next;
} while (hull->GetEdge(edge->next) != begin);
@ -108,7 +93,7 @@ static b3Vec3 b3ComputeCentroid(b3QHull* hull)
// Centroid
B3_ASSERT(volume > B3_EPSILON);
centroid /= volume;
centroid /= 4.0f * volume;
centroid += s;
return centroid;
}

View File

@ -39,6 +39,9 @@ void b3HullShape::Swap(const b3HullShape& other)
void b3HullShape::ComputeMass(b3MassData* massData, float32 density) const
{
// M. Kallay - "Computing the Moment of Inertia of a Solid Defined by a Triangle Mesh"
// https://github.com/erich666/jgt-code/blob/master/Volume_11/Number_2/Kallay2006/Moment_of_Inertia.cpp
// Polyhedron mass, center of mass, and inertia.
// Let rho be the polyhedron density per unit volume
@ -59,59 +62,6 @@ void b3HullShape::ComputeMass(b3MassData* massData, float32 density) const
// Iyx = Ixy
// Izx = Ixz
// Izy = Iyz
// Using the Divergence's Theorem we can convert these volume integrals to surface integrals.
// int(div(F) * dV) = int(dot(F, N) * dS)
// The left side is an integral over the volume V.
// The right side is an integral over the closed surface S of V.
// N is the exterior normal of V along S.
// In order to compute the surface integral we need to choose an F
// such that div(F) equals the function to be integrated over V.
// Below are some simple choices for all F.
// div(x, 0, 0) = 1
// div(x^2, 0, 0) = x
// div(0, y^2, 0) = y
// div(0, 0, z^2) = z
// div(x^3 / 3, 0, 0) = x^2
// div(0, y^3 / 3, 0) = y^2
// div(0, 0, z^3 / 3) = z^2
// div(x^2 * y / 2, 0, 0) = x * y
// div(0, y^2 * z / 2, 0) = y * z
// div(0, 0, z^2 * x / 2) = x * z
// Thus, where the boundary representation is simply a set of n triangles,
// we can compute these integrals by summing all the integrals for each triangle
// of the polyhedron.
// int(f(x, y, z) * dV) = sum(int(dot(F, N_k) * dS)), k..n.
// If the normal N_k is constant over the triangle and s is an axis in the direction of F,
// we can bring N_k outside the integral
// int(f(x, y, z) * dV) = sum(dot(N_k, s) * int(g(x, y, z) * dS)), k..n.
// We need to compute surface integrals, where the g above is to be integrated along a triangle.
// Changing coordinates from (x, y, z) to (u, v) a formula for a integral along the triangle is
// int(g(x(u, v), y(u, v), z(u, v)) * norm(cross(e1, e2)) * du * dv)
// where x, y, and z are given from a parametrization for a triangle
// x = x1 + e1x * u + e2x * v
// y = y1 + e1y * u + e2y * v
// z = z1 + e1z * u + e2z * v
// and 0 <= u, 0 <= v, u + v <= 1
// We integrate g over [0, 1 - v] and then over [0, 1].
// Let D = cross(e1, e2)
// Thus, using the fact that
// N_k = D / norm(D),
// the volume integral can be further simplified to
// sum(dot(D, s) * int(g(x(u, v), y(u, v), z(u, v)) * du * dv))
// These double integrals are done either by a CAS or by hand.
// Here, it was used the great SymPy.
// SymPy was available at http://live.sympy.org/
B3_ASSERT(m_hull->vertexCount >= 4);
// Put the hull relative to a point that is inside the hull
@ -123,15 +73,16 @@ void b3HullShape::ComputeMass(b3MassData* massData, float32 density) const
}
s /= float32(m_hull->vertexCount);
b3Vec3 center; center.SetZero();
float32 volume = 0.0f;
b3Mat33 I; I.SetZero();
const float32 inv3 = 1.0f / 3.0f;
const float32 inv6 = 1.0f / 6.0f;
const float32 inv12 = 1.0f / 12.0f;
const float32 inv20 = 1.0f / 20.0f;
const float32 inv60 = 1.0f / 60.0f;
b3Vec3 center; center.SetZero();
float32 xx = 0.0f;
float32 xy = 0.0f;
float32 yy = 0.0f;
float32 xz = 0.0f;
float32 zz = 0.0f;
float32 yz = 0.0f;
for (u32 i = 0; i < m_hull->faceCount; ++i)
{
@ -147,172 +98,57 @@ void b3HullShape::ComputeMass(b3MassData* massData, float32 density) const
u32 i2 = edge->origin;
u32 i3 = next->origin;
b3Vec3 p1 = m_hull->GetVertex(i1) - s;
b3Vec3 p2 = m_hull->GetVertex(i2) - s;
b3Vec3 p3 = m_hull->GetVertex(i3) - s;
b3Vec3 v1 = m_hull->GetVertex(i1) - s;
b3Vec3 v2 = m_hull->GetVertex(i2) - s;
b3Vec3 v3 = m_hull->GetVertex(i3) - s;
float32 px1 = p1.x, py1 = p1.y, pz1 = p1.z;
float32 px2 = p2.x, py2 = p2.y, pz2 = p2.z;
float32 px3 = p3.x, py3 = p3.y, pz3 = p3.z;
// Signed tetrahedron volume
float32 D = b3Det(v1, v2, v3);
// D = cross(e1, e2);
b3Vec3 e1 = p2 - p1, e2 = p3 - p1;
b3Vec3 D = b3Cross(e1, e2);
float32 Dx = D.x, Dy = D.y, Dz = D.z;
// Contribution to the mass
volume += D;
// Contribution to the centroid
b3Vec3 v4 = v1 + v2 + v3;
//
float32 intx = px1 + px2 + px3;
volume += (inv6 * Dx) * intx;
center += D * v4;
//
float32 intx2 = px1 * px1 + px1 * px2 + px1 * px3 + px2 * px2 + px2 * px3 + px3 * px3;
float32 inty2 = py1 * py1 + py1 * py2 + py1 * py3 + py2 * py2 + py2 * py3 + py3 * py3;
float32 intz2 = pz1 * pz1 + pz1 * pz2 + pz1 * pz3 + pz2 * pz2 + pz2 * pz3 + pz3 * pz3;
center.x += (0.5f * inv12 * Dx) * intx2;
center.y += (0.5f * inv12 * Dy) * inty2;
center.z += (0.5f * inv12 * Dz) * intz2;
//
float32 intx3 =
px1 * px1 * px1 +
px1 * px1 * px2 +
px1 * px1 * px3 +
px1 * px2 * px2 +
px1 * px2 * px3 +
px1 * px3 * px3 +
px2 * px2 * px2 +
px2 * px2 * px3 +
px2 * px3 * px3 +
px3 * px3 * px3;
float32 inty3 =
py1 * py1 * py1 +
py1 * py1 * py2 +
py1 * py1 * py3 +
py1 * py2 * py2 +
py1 * py2 * py3 +
py1 * py3 * py3 +
py2 * py2 * py2 +
py2 * py2 * py3 +
py2 * py3 * py3 +
py3 * py3 * py3;
float32 intz3 =
pz1 * pz1 * pz1 +
pz1 * pz1 * pz2 +
pz1 * pz1 * pz3 +
pz1 * pz2 * pz2 +
pz1 * pz2 * pz3 +
pz1 * pz3 * pz3 +
pz2 * pz2 * pz2 +
pz2 * pz2 * pz3 +
pz2 * pz3 * pz3 +
pz3 * pz3 * pz3;
// Apply constants
intx3 *= inv3 * inv20 * Dx;
inty3 *= inv3 * inv20 * Dy;
intz3 *= inv3 * inv20 * Dz;
I.x.x += inty3 + intz3;
I.y.y += intx3 + intz3;
I.z.z += intx3 + inty3;
//
float32 intx2y =
3.0f * px1 * px1 * py1 +
px1 * px1 * py2 +
px1 * px1 * py3 +
2.0f * px1 * px2 * py1 +
2.0f * px1 * px2 * py2 +
px1 * px2 * py3 +
2.0f * px1 * px3 * py1 +
px1 * px3 * py2 +
2.0f * px1 * px3 * py3 +
px2 * px2 * py1 +
3.0f * px2 * px2 * py2 +
px2 * px2 * py3 +
px2 * px3 * py1 +
2.0f * px2 * px3 * py2 +
2.0f * px2 * px3 * py3 +
px3 * px3 * py1 +
px3 * px3 * py2 +
3.0f * px3 * px3 * py3;
float32 inty2z =
3.0f * py1 * py1 * pz1 +
py1 * py1 * pz2 +
py1 * py1 * pz3 +
2.0f * py1 * py2 * pz1 +
2.0f * py1 * py2 * pz2 +
py1 * py2 * pz3 +
2.0f * py1 * py3 * pz1 +
py1 * py3 * pz2 +
2.0f * py1 * py3 * pz3 +
py2 * py2 * pz1 +
3.0f * py2 * py2 * pz2 +
py2 * py2 * pz3 +
py2 * py3 * pz1 +
2.0f * py2 * py3 * pz2 +
2.0f * py2 * py3 * pz3 +
py3 * py3 * pz1 +
py3 * py3 * pz2 +
3.0f * py3 * py3 * pz3;
float32 intz2x =
3.0f * pz1 * pz1 * px1 +
pz1 * pz1 * px2 +
pz1 * pz1 * px3 +
2.0f * pz1 * pz2 * px1 +
2.0f * pz1 * pz2 * px2 +
pz1 * pz2 * px3 +
2.0f * pz1 * pz3 * px1 +
pz1 * pz3 * px2 +
2.0f * pz1 * pz3 * px3 +
pz2 * pz2 * px1 +
3.0f * pz2 * pz2 * px2 +
pz2 * pz2 * px3 +
pz2 * pz3 * px1 +
2.0f * pz2 * pz3 * px2 +
2.0f * pz2 * pz3 * px3 +
pz3 * pz3 * px1 +
pz3 * pz3 * px2 +
3.0f * pz3 * pz3 * px3;
// Apply constants
intx2y *= 0.5f * inv60 * Dx;
inty2z *= 0.5f * inv60 * Dy;
intz2x *= 0.5f * inv60 * Dz;
I.x.y += intx2y;
I.y.z += inty2z;
I.z.x += intz2x;
// Contribution to moment of inertia monomials
xx += D * (v1.x * v1.x + v2.x * v2.x + v3.x * v3.x + v4.x * v4.x);
yy += D * (v1.y * v1.y + v2.y * v2.y + v3.y * v3.y + v4.y * v4.y);
zz += D * (v1.z * v1.z + v2.z * v2.z + v3.z * v3.z + v4.z * v4.z);
xy += D * (v1.x * v1.y + v2.x * v2.y + v3.x * v3.y + v4.x * v4.y);
xz += D * (v1.x * v1.z + v2.x * v2.z + v3.x * v3.z + v4.x * v4.z);
yz += D * (v1.y * v1.z + v2.y * v2.z + v3.y * v3.z + v4.y * v4.z);
edge = next;
} while (m_hull->GetEdge(edge->next) != begin);
}
// Negate
I.x.y = -I.x.y;
I.y.z = -I.y.z;
I.z.x = -I.z.x;
b3Mat33 I;
// Use symmetry
I.y.x = I.x.y;
I.z.y = I.y.z;
I.x.z = I.x.z;
I.x.x = yy + zz;
I.x.y = -xy;
I.x.z = -xz;
I.y.x = -xy;
I.y.y = xx + zz;
I.y.z = -yz;
I.z.x = -xz;
I.z.y = -yz;
I.z.z = xx + yy;
// Total mass
massData->mass = density * volume;
massData->mass = density * volume / 6.0f;
// Center of mass
B3_ASSERT(volume > B3_EPSILON);
center /= volume;
center /= 4.0f * volume;
massData->center = center + s;
// Inertia relative to the local origin (s).
massData->I = density * I;
massData->I = (density / 120.0f) * I;
// Shift the inertia to center of mass then to the body origin.
// Ib = Ic - m * c^2 + m * m.c^2