use unsigned integers instead of integers in some collision code

This commit is contained in:
Irlan 2018-04-18 17:20:39 -03:00
parent 235b59a560
commit efae0fc202
15 changed files with 151 additions and 148 deletions

View File

@ -25,8 +25,8 @@
// A pair of broad-phase proxies.
struct b3Pair
{
i32 proxy1;
i32 proxy2;
u32 proxy1;
u32 proxy2;
};
// The broad-phase interface.
@ -39,28 +39,28 @@ public:
~b3BroadPhase();
// Create a proxy and return a index to it.
i32 CreateProxy(const b3AABB3& aabb, void* userData);
u32 CreateProxy(const b3AABB3& aabb, void* userData);
// Destroy a given proxy and remove it from the broadphase.
void DestroyProxy(i32 proxyId);
void DestroyProxy(u32 proxyId);
// Update an existing proxy AABB with a given AABB and a displacement.
// displacement = dt * velocity
// Return true if the proxy has moved.
bool MoveProxy(i32 proxyId, const b3AABB3& aabb, const b3Vec3& displacement);
bool MoveProxy(u32 proxyId, const b3AABB3& aabb, const b3Vec3& displacement);
// Add a proxy to the list of moved proxies.
// Only moved proxies will be used internally as an AABB query reference object.
void BufferMove(i32 proxyId);
void BufferMove(u32 proxyId);
// Get the AABB of a given proxy.
const b3AABB3& GetAABB(i32 proxyId) const;
const b3AABB3& GetAABB(u32 proxyId) const;
// Get the user data attached to a proxy.
void* GetUserData(i32 proxyId) const;
void* GetUserData(u32 proxyId) const;
// Test if two proxy AABBs are overlapping.
bool TestOverlap(i32 proxy1, i32 proxy2) const;
bool TestOverlap(u32 proxy1, u32 proxy2) const;
// Notify the client callback the AABBs that are overlapping with the passed AABB.
template<class T>
@ -71,10 +71,11 @@ public:
template<class T>
void RayCast(T* callback, const b3RayCastInput& input) const;
// Find and store overlapping AABB pairs.
// Notify the client callback the AABB pairs that are overlapping.
// The client must store the notified pairs.
template<class T>
void FindNewPairs(T* callback);
void FindPairs(T* callback);
// Draw the proxy AABBs.
void Draw() const;
@ -83,17 +84,17 @@ private :
// The client callback used to add an overlapping pair
// to the overlapping pair buffer.
bool Report(i32 proxyId);
bool Report(u32 proxyId);
// The dynamic tree.
b3DynamicTree m_tree;
// The current proxy being queried for overlap with another proxies.
// It is used to avoid a proxy overlap with itself.
i32 m_queryProxyId;
u32 m_queryProxyId;
// The objects that have moved in a step.
i32* m_moveBuffer;
u32* m_moveBuffer;
u32 m_moveBufferCount;
u32 m_moveBufferCapacity;
@ -103,12 +104,12 @@ private :
u32 m_pairCount;
};
inline const b3AABB3& b3BroadPhase::GetAABB(i32 proxyId) const
inline const b3AABB3& b3BroadPhase::GetAABB(u32 proxyId) const
{
return m_tree.GetAABB(proxyId);
}
inline void* b3BroadPhase::GetUserData(i32 proxyId) const
inline void* b3BroadPhase::GetUserData(u32 proxyId) const
{
return m_tree.GetUserData(proxyId);
}
@ -125,7 +126,7 @@ inline void b3BroadPhase::RayCast(T* callback, const b3RayCastInput& input) cons
return m_tree.RayCast(callback, input);
}
inline bool operator<(const b3Pair& pair1, const b3Pair& pair2)
static B3_FORCE_INLINE bool operator<(const b3Pair& pair1, const b3Pair& pair2)
{
if (pair1.proxy1 < pair2.proxy1)
{
@ -141,7 +142,7 @@ inline bool operator<(const b3Pair& pair1, const b3Pair& pair2)
}
template<class T>
inline void b3BroadPhase::FindNewPairs(T* callback)
inline void b3BroadPhase::FindPairs(T* callback)
{
// Reset the overlapping pairs buffer count for the current step.
m_pairCount = 0;
@ -151,7 +152,7 @@ inline void b3BroadPhase::FindNewPairs(T* callback)
{
// Keep the current queried proxy ID to avoid self overlapping.
m_queryProxyId = m_moveBuffer[i];
if (m_queryProxyId == NULL_NODE)
if (m_queryProxyId == B3_NULL_NODE_D)
{
continue;
}

View File

@ -23,7 +23,7 @@
#include <bounce/collision/shapes/aabb3.h>
#include <bounce/collision/collision.h>
#define NULL_NODE (-1)
#define B3_NULL_NODE_D (0xFFFFFFFF)
// AABB tree for dynamic AABBs.
class b3DynamicTree
@ -33,22 +33,22 @@ public :
~b3DynamicTree();
// Insert a node into the tree and return its ID.
i32 InsertNode(const b3AABB3& aabb, void* userData);
u32 InsertNode(const b3AABB3& aabb, void* userData);
// Remove a node from the tree.
void RemoveNode(i32 proxyId);
void RemoveNode(u32 proxyId);
// Update a node AABB.
void UpdateNode(i32 proxyId, const b3AABB3& aabb);
void UpdateNode(u32 proxyId, const b3AABB3& aabb);
// Get the (fat) AABB of a given proxy.
const b3AABB3& GetAABB(i32 proxyId) const;
const b3AABB3& GetAABB(u32 proxyId) const;
// Get the data associated with a given proxy.
void* GetUserData(i32 proxyId) const;
void* GetUserData(u32 proxyId) const;
// Check if two aabbs in this tree are overlapping.
bool TestOverlap(i32 proxy1, i32 proxy2) const;
bool TestOverlap(u32 proxy1, u32 proxy2) const;
// Keep reporting the client callback the AABBs that are overlapping with
// the given AABB. The client callback must return true if the query
@ -63,7 +63,7 @@ public :
void RayCast(T* callback, const b3RayCastInput& input) const;
// Validate a given node of this tree.
void Validate(i32 node) const;
void Validate(u32 node) const;
// Draw this tree.
void Draw() const;
@ -73,8 +73,8 @@ private :
// Is this node a leaf?
bool IsLeaf() const
{
//A node is a leaf if child 2 == NULL_NODE or height == 0.
return child1 == NULL_NODE;
//A node is a leaf if child 2 == B3_NULL_NODE_D or height == 0.
return child1 == B3_NULL_NODE_D;
}
// The fattened node AABB.
@ -85,80 +85,81 @@ private :
union
{
i32 parent;
i32 next;
u32 parent;
u32 next;
};
i32 child1;
i32 child2;
u32 child1;
u32 child2;
// Flag
// leaf if 0, free node if -1
i32 height;
};
// Insert a node into the tree.
void InsertLeaf(i32 node);
void InsertLeaf(u32 node);
// Remove a node from the tree.
void RemoveLeaf(i32 node);
void RemoveLeaf(u32 node);
// Rebuild the hierarchy starting from the given node.
void WalkBackNodeAndCombineVolumes(i32 node);
void WalkBackNodeAndCombineVolumes(u32 node);
// Find the best node that can be merged with a given AABB.
i32 FindBest(const b3AABB3& aabb) const;
u32 FindBest(const b3AABB3& aabb) const;
// Peel a node from the free list and insert into the node array.
// Allocate a new node if necessary. The function returns the new node index.
i32 AllocateNode();
u32 AllocateNode();
// Free a node from the node pool and add it to the free list.
void FreeNode(i32 node);
void FreeNode(u32 node);
// Make a node available for the next allocation.
void AddToFreeList(i32 node);
void AddToFreeList(u32 node);
// The root of this tree.
i32 m_root;
u32 m_root;
// The nodes of this tree stored in an array.
b3Node* m_nodes;
i32 m_nodeCount;
i32 m_nodeCapacity;
i32 m_freeList;
u32 m_nodeCount;
u32 m_nodeCapacity;
u32 m_freeList;
};
inline const b3AABB3& b3DynamicTree::GetAABB(i32 proxyId) const
inline const b3AABB3& b3DynamicTree::GetAABB(u32 proxyId) const
{
B3_ASSERT(proxyId != NULL_NODE && proxyId < m_nodeCapacity);
B3_ASSERT(proxyId != B3_NULL_NODE_D && proxyId < m_nodeCapacity);
return m_nodes[proxyId].aabb;
}
inline void* b3DynamicTree::GetUserData(i32 proxyId) const
inline void* b3DynamicTree::GetUserData(u32 proxyId) const
{
B3_ASSERT(proxyId != NULL_NODE && proxyId < m_nodeCapacity);
B3_ASSERT(proxyId != B3_NULL_NODE_D && proxyId < m_nodeCapacity);
return m_nodes[proxyId].userData;
}
inline bool b3DynamicTree::TestOverlap(i32 proxy1, i32 proxy2) const
inline bool b3DynamicTree::TestOverlap(u32 proxy1, u32 proxy2) const
{
B3_ASSERT(proxy1 != NULL_NODE && proxy1 < m_nodeCapacity);
B3_ASSERT(proxy2 != NULL_NODE && proxy2 < m_nodeCapacity);
B3_ASSERT(proxy1 != B3_NULL_NODE_D && proxy1 < m_nodeCapacity);
B3_ASSERT(proxy2 != B3_NULL_NODE_D && proxy2 < m_nodeCapacity);
return b3TestOverlap(m_nodes[proxy1].aabb, m_nodes[proxy2].aabb);
}
template<class T>
inline void b3DynamicTree::QueryAABB(T* callback, const b3AABB3& aabb) const
{
b3Stack<i32, 256> stack;
b3Stack<u32, 256> stack;
stack.Push(m_root);
while (stack.IsEmpty() == false)
{
i32 nodeIndex = stack.Top();
u32 nodeIndex = stack.Top();
stack.Pop();
if (nodeIndex == NULL_NODE)
if (nodeIndex == B3_NULL_NODE_D)
{
continue;
}
@ -194,16 +195,16 @@ inline void b3DynamicTree::RayCast(T* callback, const b3RayCastInput& input) con
// Ensure non-degenerate segment.
B3_ASSERT(b3Dot(d, d) > B3_EPSILON * B3_EPSILON);
b3Stack<i32, 256> stack;
b3Stack<u32, 256> stack;
stack.Push(m_root);
while (stack.IsEmpty() == false)
{
i32 nodeIndex = stack.Top();
u32 nodeIndex = stack.Top();
stack.Pop();
if (nodeIndex == NULL_NODE)
if (nodeIndex == B3_NULL_NODE_D)
{
continue;
}

View File

@ -23,7 +23,7 @@
#include <bounce/collision/shapes/aabb3.h>
#include <bounce/collision/collision.h>
#define NULL_NODE_S (0xFFFFFFFF)
#define B3_NULL_NODE_S (0xFFFFFFFF)
// AABB tree for static AABBs.
class b3StaticTree
@ -72,7 +72,7 @@ private :
// Is this node a leaf?
bool IsLeaf() const
{
return child1 == NULL_NODE_S;
return child1 == B3_NULL_NODE_S;
}
};
@ -114,7 +114,7 @@ inline void b3StaticTree::QueryAABB(T* callback, const b3AABB3& aabb) const
{
u32 nodeIndex = stack.Top();
if (nodeIndex == NULL_NODE_S)
if (nodeIndex == B3_NULL_NODE_S)
{
continue;
}
@ -164,10 +164,10 @@ inline void b3StaticTree::RayCast(T* callback, const b3RayCastInput& input) cons
while (stack.IsEmpty() == false)
{
i32 nodeIndex = stack.Top();
u32 nodeIndex = stack.Top();
stack.Pop();
if (nodeIndex == NULL_NODE_S)
if (nodeIndex == B3_NULL_NODE_S)
{
continue;
}

View File

@ -258,9 +258,9 @@ inline b3Quat b3Mat33Quat(const b3Mat33& m)
}
// Diagonal is negative.
const i32 next[3] = { 1, 2, 0 };
const u32 next[3] = { 1, 2, 0 };
i32 i = 0;
u32 i = 0;
if (m[1][1] > m[0][0])
{
@ -272,8 +272,8 @@ inline b3Quat b3Mat33Quat(const b3Mat33& m)
i = 2;
}
i32 j = next[i];
i32 k = next[j];
u32 j = next[i];
u32 k = next[j];
float32 s = sqrt((m[i][i] - (m[j][j] + m[k][k])) + 1.0f);

View File

@ -41,6 +41,8 @@ typedef float float32;
#define B3_MAX_FLOAT (FLT_MAX)
#define B3_EPSILON (FLT_EPSILON)
#define B3_MAX_U32 (0xFFFFFFFF)
// Collision
// How much an AABB in the broad-phase should be extended by

View File

@ -325,7 +325,7 @@ private:
bool ShouldCollide(const b3Body* other) const;
b3BodyType m_type;
i32 m_islandID;
u32 m_islandID;
u32 m_flags;
float32 m_sleepTime;

View File

@ -140,7 +140,7 @@ public:
void SetUserData(void* data);
// Dump this shape to the log file.
void Dump(i32 bodyIndex) const;
void Dump(u32 bodyIndex) const;
// Get the next shape in the body shape list.
const b3Shape* GetNext() const;
@ -169,7 +169,7 @@ protected:
float32 m_density;
float32 m_restitution;
float32 m_friction;
i32 m_broadPhaseID;
u32 m_broadPhaseID;
// Contact edges for this shape contact graph.
b3List2<b3ContactEdge> m_contactEdges;

View File

@ -21,8 +21,8 @@
b3BroadPhase::b3BroadPhase()
{
m_moveBufferCapacity = 16;
m_moveBuffer = (i32*)b3Alloc(m_moveBufferCapacity * sizeof(i32));
memset(m_moveBuffer, 0, m_moveBufferCapacity * sizeof(i32));
m_moveBuffer = (u32*)b3Alloc(m_moveBufferCapacity * sizeof(u32));
memset(m_moveBuffer, 0, m_moveBufferCapacity * sizeof(u32));
m_moveBufferCount = 0;
m_pairCapacity = 16;
@ -37,7 +37,7 @@ b3BroadPhase::~b3BroadPhase()
b3Free(m_pairs);
}
void b3BroadPhase::BufferMove(i32 proxyId)
void b3BroadPhase::BufferMove(u32 proxyId)
{
// The proxy has been moved. Add it to the buffer of moved proxies.
// Check capacity.
@ -46,9 +46,9 @@ void b3BroadPhase::BufferMove(i32 proxyId)
// Duplicate capacity.
m_moveBufferCapacity *= 2;
i32* oldMoveBuffer = m_moveBuffer;
m_moveBuffer = (i32*)b3Alloc(m_moveBufferCapacity * sizeof(i32));
memcpy(m_moveBuffer, oldMoveBuffer, m_moveBufferCount * sizeof(i32));
u32* oldMoveBuffer = m_moveBuffer;
m_moveBuffer = (u32*)b3Alloc(m_moveBufferCapacity * sizeof(u32));
memcpy(m_moveBuffer, oldMoveBuffer, m_moveBufferCount * sizeof(u32));
b3Free(oldMoveBuffer);
}
@ -57,12 +57,12 @@ void b3BroadPhase::BufferMove(i32 proxyId)
++m_moveBufferCount;
}
bool b3BroadPhase::TestOverlap(i32 proxy1, i32 proxy2) const
bool b3BroadPhase::TestOverlap(u32 proxy1, u32 proxy2) const
{
return m_tree.TestOverlap(proxy1, proxy2);
}
i32 b3BroadPhase::CreateProxy(const b3AABB3& aabb, void* userData)
u32 b3BroadPhase::CreateProxy(const b3AABB3& aabb, void* userData)
{
// Later, if the node aabb has changed then it should be reinserted into the tree.
// However, this can be expansive due to the hierarchy reconstruction.
@ -70,17 +70,17 @@ i32 b3BroadPhase::CreateProxy(const b3AABB3& aabb, void* userData)
// so we can check later if the new (original) AABB is inside the old (fat) AABB.
b3AABB3 fatAABB = aabb;
fatAABB.Extend(B3_AABB_EXTENSION);
i32 proxyId = m_tree.InsertNode(fatAABB, userData);
u32 proxyId = m_tree.InsertNode(fatAABB, userData);
BufferMove(proxyId);
return proxyId;
}
void b3BroadPhase::DestroyProxy(i32 proxyId)
void b3BroadPhase::DestroyProxy(u32 proxyId)
{
return m_tree.RemoveNode(proxyId);
}
bool b3BroadPhase::MoveProxy(i32 proxyId, const b3AABB3& aabb, const b3Vec3& displacement)
bool b3BroadPhase::MoveProxy(u32 proxyId, const b3AABB3& aabb, const b3Vec3& displacement)
{
if (m_tree.GetAABB(proxyId).Contains(aabb))
{
@ -133,7 +133,7 @@ bool b3BroadPhase::MoveProxy(i32 proxyId, const b3AABB3& aabb, const b3Vec3& dis
return true;
}
bool b3BroadPhase::Report(i32 proxyId)
bool b3BroadPhase::Report(u32 proxyId)
{
if (proxyId == m_queryProxyId)
{

View File

@ -21,7 +21,7 @@
b3DynamicTree::b3DynamicTree()
{
m_root = NULL_NODE;
m_root = B3_NULL_NODE_D;
// Preallocate 32 nodes.
m_nodeCapacity = 32;
@ -40,9 +40,11 @@ b3DynamicTree::~b3DynamicTree()
}
// Return a node from the pool.
i32 b3DynamicTree::AllocateNode()
u32 b3DynamicTree::AllocateNode()
{
if (m_freeList == NULL_NODE)
B3_ASSERT(m_nodeCapacity > 0);
if (m_freeList == B3_NULL_NODE_D)
{
B3_ASSERT(m_nodeCount == m_nodeCapacity);
@ -60,13 +62,13 @@ i32 b3DynamicTree::AllocateNode()
}
// Grab the free node.
i32 node = m_freeList;
u32 node = m_freeList;
m_freeList = m_nodes[node].next;
m_nodes[node].parent = NULL_NODE;
m_nodes[node].child1 = NULL_NODE;
m_nodes[node].child2 = NULL_NODE;
m_nodes[node].parent = B3_NULL_NODE_D;
m_nodes[node].child1 = B3_NULL_NODE_D;
m_nodes[node].child2 = B3_NULL_NODE_D;
m_nodes[node].height = 0;
m_nodes[node].userData = NULL;
@ -75,35 +77,37 @@ i32 b3DynamicTree::AllocateNode()
return node;
}
void b3DynamicTree::FreeNode(i32 node)
void b3DynamicTree::FreeNode(u32 node)
{
B3_ASSERT(node != NULL_NODE && node < m_nodeCapacity);
B3_ASSERT(node != B3_NULL_NODE_D && node < m_nodeCapacity);
m_nodes[node].next = m_freeList;
m_nodes[node].height = -1;
m_freeList = node;
--m_nodeCount;
}
void b3DynamicTree::AddToFreeList(i32 node)
void b3DynamicTree::AddToFreeList(u32 node)
{
B3_ASSERT(m_nodeCapacity > 0);
// Starting from the given node, relink the linked list of nodes.
for (i32 i = node; i < m_nodeCapacity - 1; ++i)
for (u32 i = node; i < m_nodeCapacity - 1; ++i)
{
m_nodes[i].next = i + 1;
m_nodes[i].height = -1;
}
m_nodes[m_nodeCapacity - 1].next = NULL_NODE;
m_nodes[m_nodeCapacity - 1].next = B3_NULL_NODE_D;
m_nodes[m_nodeCapacity - 1].height = -1;
// Make the node available for the next allocation.
m_freeList = node;
}
i32 b3DynamicTree::InsertNode(const b3AABB3& aabb, void* userData)
u32 b3DynamicTree::InsertNode(const b3AABB3& aabb, void* userData)
{
// Insert into the array.
i32 node = AllocateNode();
u32 node = AllocateNode();
m_nodes[node].aabb = aabb;
m_nodes[node].userData = userData;
m_nodes[node].height = 0;
@ -115,7 +119,7 @@ i32 b3DynamicTree::InsertNode(const b3AABB3& aabb, void* userData)
return node;
}
void b3DynamicTree::RemoveNode(i32 proxyId)
void b3DynamicTree::RemoveNode(u32 proxyId)
{
// Remove from the tree.
RemoveLeaf(proxyId);
@ -123,9 +127,9 @@ void b3DynamicTree::RemoveNode(i32 proxyId)
FreeNode(proxyId);
}
void b3DynamicTree::UpdateNode(i32 proxyId, const b3AABB3& aabb)
void b3DynamicTree::UpdateNode(u32 proxyId, const b3AABB3& aabb)
{
B3_ASSERT(m_root != NULL_NODE);
B3_ASSERT(m_root != B3_NULL_NODE_D);
B3_ASSERT(m_nodes[proxyId].IsLeaf());
// Remove old AABB from the tree.
RemoveLeaf(proxyId);
@ -134,13 +138,9 @@ void b3DynamicTree::UpdateNode(i32 proxyId, const b3AABB3& aabb)
InsertLeaf(proxyId);
}
i32 b3DynamicTree::FindBest(const b3AABB3& leafAABB) const
u32 b3DynamicTree::FindBest(const b3AABB3& leafAABB) const
{
// To find a good branch node, the manhattan distance could be used as heuristic.
// However, the current propagated node and the leaf node volume are incompletely considerable.
// Therefore, an approximation of the surface are heuristic (SAH) is used.
i32 index = m_root;
u32 index = m_root;
while (!m_nodes[index].IsLeaf())
{
float32 branchArea = m_nodes[index].aabb.SurfaceArea();
@ -155,8 +155,8 @@ i32 b3DynamicTree::FindBest(const b3AABB3& leafAABB) const
float32 inheritanceCost = 2.0f * (combinedArea - branchArea);
// The branch node child nodes cost.
i32 child1 = m_nodes[index].child1;
i32 child2 = m_nodes[index].child2;
u32 child1 = m_nodes[index].child1;
u32 child2 = m_nodes[index].child2;
// Cost of descending onto child1.
float32 childCost1 = 0.0f;
@ -201,14 +201,14 @@ i32 b3DynamicTree::FindBest(const b3AABB3& leafAABB) const
return index;
}
void b3DynamicTree::InsertLeaf(i32 leaf)
void b3DynamicTree::InsertLeaf(u32 leaf)
{
if (m_root == NULL_NODE)
if (m_root == B3_NULL_NODE_D)
{
// If this tree root node is empty then just set the leaf
// node to it.
m_root = leaf;
m_nodes[m_root].parent = NULL_NODE;
m_nodes[m_root].parent = B3_NULL_NODE_D;
return;
}
@ -216,12 +216,12 @@ void b3DynamicTree::InsertLeaf(i32 leaf)
b3AABB3 leafAabb = m_nodes[leaf].aabb;
// Search for the best branch node of this tree starting from the tree root node.
i32 sibling = FindBest(leafAabb);
u32 sibling = FindBest(leafAabb);
i32 oldParent = m_nodes[sibling].parent;
u32 oldParent = m_nodes[sibling].parent;
// Create and setup new parent.
i32 newParent = AllocateNode();
u32 newParent = AllocateNode();
m_nodes[newParent].parent = oldParent;
m_nodes[newParent].child1 = sibling;
m_nodes[sibling].parent = newParent;
@ -231,7 +231,7 @@ void b3DynamicTree::InsertLeaf(i32 leaf)
m_nodes[newParent].aabb = b3Combine(leafAabb, m_nodes[sibling].aabb);
m_nodes[newParent].height = m_nodes[sibling].height + 1;
if (oldParent != NULL_NODE)
if (oldParent != B3_NULL_NODE_D)
{
// The sibling was not the root.
// Find which child node of the old parent is the sibling
@ -256,17 +256,17 @@ void b3DynamicTree::InsertLeaf(i32 leaf)
WalkBackNodeAndCombineVolumes(newParent);
}
void b3DynamicTree::RemoveLeaf(i32 leaf)
void b3DynamicTree::RemoveLeaf(u32 leaf)
{
if (leaf == m_root)
{
m_root = NULL_NODE;
m_root = B3_NULL_NODE_D;
return;
}
i32 parent = m_nodes[leaf].parent;
i32 grandParent = m_nodes[parent].parent;
i32 sibling;
u32 parent = m_nodes[leaf].parent;
u32 grandParent = m_nodes[parent].parent;
u32 sibling;
if (m_nodes[parent].child1 == leaf)
{
sibling = m_nodes[parent].child2;
@ -276,7 +276,7 @@ void b3DynamicTree::RemoveLeaf(i32 leaf)
sibling = m_nodes[parent].child1;
}
if (grandParent != NULL_NODE)
if (grandParent != B3_NULL_NODE_D)
{
if (m_nodes[grandParent].child1 == parent)
{
@ -297,23 +297,23 @@ void b3DynamicTree::RemoveLeaf(i32 leaf)
else
{
m_root = sibling;
m_nodes[sibling].parent = NULL_NODE;
m_nodes[sibling].parent = B3_NULL_NODE_D;
// Remove parent node.
FreeNode(parent);
}
}
void b3DynamicTree::WalkBackNodeAndCombineVolumes(i32 node)
void b3DynamicTree::WalkBackNodeAndCombineVolumes(u32 node)
{
while (node != NULL_NODE)
while (node != B3_NULL_NODE_D)
{
//@todo node = Balance(node);
i32 child1 = m_nodes[node].child1;
i32 child2 = m_nodes[node].child2;
u32 child1 = m_nodes[node].child1;
u32 child2 = m_nodes[node].child2;
B3_ASSERT(child1 != NULL_NODE);
B3_ASSERT(child2 != NULL_NODE);
B3_ASSERT(child1 != B3_NULL_NODE_D);
B3_ASSERT(child2 != B3_NULL_NODE_D);
m_nodes[node].height = 1 + b3Max(m_nodes[child1].height, m_nodes[child2].height);
m_nodes[node].aabb = b3Combine(m_nodes[child1].aabb, m_nodes[child2].aabb);
@ -322,9 +322,9 @@ void b3DynamicTree::WalkBackNodeAndCombineVolumes(i32 node)
}
}
void b3DynamicTree::Validate(i32 nodeID) const
void b3DynamicTree::Validate(u32 nodeID) const
{
if (nodeID == NULL_NODE)
if (nodeID == B3_NULL_NODE_D)
{
return;
}
@ -332,19 +332,19 @@ void b3DynamicTree::Validate(i32 nodeID) const
// The root node has no parent.
if (nodeID == m_root)
{
B3_ASSERT(m_nodes[nodeID].parent == NULL_NODE);
B3_ASSERT(m_nodes[nodeID].parent == B3_NULL_NODE_D);
}
const b3Node* node = m_nodes + nodeID;
i32 child1 = node->child1;
i32 child2 = node->child2;
u32 child1 = node->child1;
u32 child2 = node->child2;
if (node->IsLeaf())
{
// Leaf nodes has no children and its height is zero.
B3_ASSERT(child1 == NULL_NODE);
B3_ASSERT(child2 == NULL_NODE);
B3_ASSERT(child1 == B3_NULL_NODE_D);
B3_ASSERT(child2 == B3_NULL_NODE_D);
B3_ASSERT(node->height == 0);
}
else
@ -370,15 +370,15 @@ void b3DynamicTree::Draw() const
return;
}
b3Stack<i32, 256> stack;
b3Stack<u32, 256> stack;
stack.Push(m_root);
while (!stack.IsEmpty())
{
i32 nodeIndex = stack.Top();
u32 nodeIndex = stack.Top();
stack.Pop();
if (nodeIndex == NULL_NODE)
if (nodeIndex == B3_NULL_NODE_D)
{
continue;
}

View File

@ -120,7 +120,7 @@ void b3StaticTree::Build(const b3AABB3* set, b3Node* node, u32* ids, u32 count,
if (count <= minObjectsPerLeaf)
{
++leafCount;
node->child1 = NULL_NODE_S;
node->child1 = B3_NULL_NODE_S;
node->index = ids[0];
}
else

View File

@ -83,7 +83,6 @@ b3Body::b3Body(const b3BodyDef& def, b3World* world)
m_angularDamping = def.angularDamping;
m_gravityScale = def.gravityScale;
m_userData = def.userData;
m_islandID = -1;
m_sleepTime = 0.0f;
}
@ -464,7 +463,7 @@ void b3Body::SetType(b3BodyType type)
void b3Body::Dump() const
{
i32 bodyIndex = m_islandID;
u32 bodyIndex = m_islandID;
b3Log(" {\n");
b3Log(" b3BodyDef bd;\n");

View File

@ -154,7 +154,7 @@ void b3ContactManager::SynchronizeShapes()
// Find potentially overlapping shape pairs.
void b3ContactManager::FindNewContacts()
{
m_broadPhase.FindNewPairs(this);
m_broadPhase.FindPairs(this);
b3MeshContactLink* c = m_meshContactList.m_head;
while (c)
@ -175,11 +175,11 @@ void b3ContactManager::UpdateContacts()
b3OverlappingPair* pair = &c->m_pair;
b3Shape* shapeA = pair->shapeA;
i32 proxyA = shapeA->m_broadPhaseID;
u32 proxyA = shapeA->m_broadPhaseID;
b3Body* bodyA = shapeA->m_body;
b3Shape* shapeB = pair->shapeB;
i32 proxyB = shapeB->m_broadPhaseID;
u32 proxyB = shapeB->m_broadPhaseID;
b3Body* bodyB = shapeB->m_body;
// Check if the bodies must not collide with each other.

View File

@ -384,7 +384,7 @@ bool b3HullShape::RayCast(b3RayCastOutput* output, const b3RayCastInput& input,
float32 lower = 0.0f;
float32 upper = input.maxFraction;
i32 index = -1;
u32 index = B3_MAX_U32;
// s(lower) = p1 + lower * d, 0 <= lower <= kupper
// The segment intersects the plane if a 'lower' exists
@ -451,7 +451,7 @@ bool b3HullShape::RayCast(b3RayCastOutput* output, const b3RayCastInput& input,
B3_ASSERT(lower >= 0.0f && lower <= input.maxFraction);
if (index >= 0)
if (index != B3_MAX_U32)
{
output->fraction = lower;
output->normal = b3Mul(xf.rotation, planes[index].normal);

View File

@ -65,7 +65,7 @@ void b3Shape::DestroyContacts()
}
}
void b3Shape::Dump(i32 bodyIndex) const
void b3Shape::Dump(u32 bodyIndex) const
{
switch (m_type)
{

View File

@ -312,7 +312,7 @@ void b3World::Solve(float32 dt, u32 velocityIterations, u32 positionIterations)
struct b3RayCastCallback
{
float32 Report(const b3RayCastInput& input, i32 proxyId)
float32 Report(const b3RayCastInput& input, u32 proxyId)
{
// Get shape associated with the proxy.
void* userData = broadPhase->GetUserData(proxyId);
@ -360,7 +360,7 @@ void b3World::RayCast(b3RayCastListener* listener, const b3Vec3& p1, const b3Vec
struct b3RayCastSingleCallback
{
float32 Report(const b3RayCastInput& input, i32 proxyId)
float32 Report(const b3RayCastInput& input, u32 proxyId)
{
// Get shape associated with the proxy.
void* userData = broadPhase->GetUserData(proxyId);
@ -425,7 +425,7 @@ bool b3World::RayCastSingle(b3RayCastSingleOutput* output, const b3Vec3& p1, con
struct b3QueryAABBCallback
{
bool Report(i32 proxyID)
bool Report(u32 proxyID)
{
b3Shape* shape = (b3Shape*)broadPhase->GetUserData(proxyID);
return listener->ReportShape(shape);