Renamed some stuff in SurfaceExtractor.

Added functions to move samplers to adjacent voxels.
This commit is contained in:
David Williams 2009-06-06 11:52:56 +00:00
parent 6fdb11ebf4
commit 19e860d291
4 changed files with 195 additions and 92 deletions

View File

@ -44,16 +44,43 @@ namespace PolyVox
POLYVOX_SHARED_PTR<IndexedSurfacePatch> extractSurfaceForRegion(Region region);
private:
//Extract the surface for a particular LOD level
template<uint8_t uLodLevel>
void extractSurfaceImpl(void);
//Compute the cell bitmask for a particular slice in z.
template<bool isPrevZAvail, uint8_t uLodLevel>
uint32_t computeBitmaskForSlice(void);
//Compute the cell bitmask for a given cell.
template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail, uint8_t uLodLevel>
void computeBitmaskForCell(void);
//Use the cell bitmasks to generate all the vertices needed for that slice
void generateVerticesForSlice();
//Use the cell bitmasks to generate all the indices needed for that slice
void generateIndicesForSlice();
//Converts a position into an index for accessing scratch areas.
inline uint32_t getIndex(uint32_t x, uint32_t y)
{
return x + (y * m_uScratchPadWidth);
}
//The lod level can step size.
uint8_t m_uLodLevel;
uint8_t m_uStepSize;
//The volume data and a sampler to access it.
Volume<uint8_t> m_volData;
VolumeSampler<uint8_t> m_sampVolume;
//Cell bitmasks for the current and previous slices.
uint8_t* m_pPreviousBitmask;
uint8_t* m_pCurrentBitmask;
//Used to keep track of where generated vertices have been placed.
int32_t* m_pPreviousVertexIndicesX;
int32_t* m_pPreviousVertexIndicesY;
int32_t* m_pPreviousVertexIndicesZ;
@ -61,57 +88,40 @@ namespace PolyVox
int32_t* m_pCurrentVertexIndicesY;
int32_t* m_pCurrentVertexIndicesZ;
uint8_t v000;
uint8_t v100;
uint8_t v010;
uint8_t v110;
uint8_t v001;
uint8_t v101;
uint8_t v011;
uint8_t v111;
//Holds a position in volume space.
uint16_t uXVolSpace;
uint16_t uYVolSpace;
uint16_t uZVolSpace;
//Holds a position in region space.
uint16_t uXRegSpace;
uint16_t uYRegSpace;
uint16_t uZRegSpace;
//Used to return the number of cells in a slice which contain triangles.
uint32_t m_uNoOfOccupiedCells;
//The surface patch we are currently filling.
IndexedSurfacePatch* m_ispCurrent;
//Remove this?
Vector3DFloat m_v3dRegionOffset;
uint16_t m_uScratchPadWidth;
uint16_t m_uScratchPadHeight;
//Information about the region we a re currently processing
Region m_Region;
Region m_UncroppedRegion;
Region m_croppedVolume;
Region regSlice0;
Region regSlice1;
Region m_regSlicePrevious;
Region m_regSliceCurrent;
//Store the width and height because they are frequently
//used and have some overhead to compute.
uint16_t m_uRegionWidth;
uint16_t m_uRegionHeight;
inline uint32_t getIndex(uint32_t x, uint32_t y)
{
return x + (y * m_uScratchPadWidth);
}
template<uint8_t uLodLevel>
void extractSurfaceImpl(void);
template<bool isPrevZAvail, uint8_t uLodLevel>
uint32_t computeBitmaskForSlice(void);
template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail, uint8_t uLodLevel>
void computeBitmaskForCell(void);
void generateIndicesForSlice();
void generateVerticesForSlice();
//These are used in several places so best stored.
uint16_t m_uScratchPadWidth;
uint16_t m_uScratchPadHeight;
};
}

View File

@ -54,6 +54,12 @@ namespace PolyVox
void setPosition(uint16_t xPos, uint16_t yPos, uint16_t zPos);
void movePositiveX(void);
void movePositiveY(void);
void movePositiveZ(void);
void moveNegativeX(void);
void moveNegativeY(void);
void moveNegativeZ(void);
inline VoxelType peekVoxel1nx1ny1nz(void) const;
inline VoxelType peekVoxel1nx1ny0pz(void) const;
@ -95,20 +101,8 @@ namespace PolyVox
uint16_t mYPosInVolume;
uint16_t mZPosInVolume;
//The position of the current block
uint16_t mXBlock;
uint16_t mYBlock;
uint16_t mZBlock;
//The offset into the current block
uint16_t mXPosInBlock;
uint16_t mYPosInBlock;
uint16_t mZPosInBlock;
//Other current position information
VoxelType* mCurrentVoxel;
uint32_t mBlockIndexInVolume;
uint32_t mVoxelIndexInBlock;
};
}

View File

@ -190,24 +190,23 @@ namespace PolyVox
mYPosInVolume = yPos;
mZPosInVolume = zPos;
mXBlock = mXPosInVolume >> mVolume.m_uBlockSideLengthPower;
mYBlock = mYPosInVolume >> mVolume.m_uBlockSideLengthPower;
mZBlock = mZPosInVolume >> mVolume.m_uBlockSideLengthPower;
uint16_t uXBlock = mXPosInVolume >> mVolume.m_uBlockSideLengthPower;
uint16_t uYBlock = mYPosInVolume >> mVolume.m_uBlockSideLengthPower;
uint16_t uZBlock = mZPosInVolume >> mVolume.m_uBlockSideLengthPower;
mXPosInBlock = mXPosInVolume - (mXBlock << mVolume.m_uBlockSideLengthPower);
mYPosInBlock = mYPosInVolume - (mYBlock << mVolume.m_uBlockSideLengthPower);
mZPosInBlock = mZPosInVolume - (mZBlock << mVolume.m_uBlockSideLengthPower);
uint16_t uXPosInBlock = mXPosInVolume - (uXBlock << mVolume.m_uBlockSideLengthPower);
uint16_t uYPosInBlock = mYPosInVolume - (uYBlock << mVolume.m_uBlockSideLengthPower);
uint16_t uZPosInBlock = mZPosInVolume - (uZBlock << mVolume.m_uBlockSideLengthPower);
mBlockIndexInVolume = mXBlock +
mYBlock * mVolume.m_uWidthInBlocks +
mZBlock * mVolume.m_uWidthInBlocks * mVolume.m_uHeightInBlocks;
POLYVOX_SHARED_PTR< Block<VoxelType> > currentBlock = mVolume.m_pBlocks[mBlockIndexInVolume];
uint32_t uBlockIndexInVolume = uXBlock +
uYBlock * mVolume.m_uWidthInBlocks +
uZBlock * mVolume.m_uWidthInBlocks * mVolume.m_uHeightInBlocks;
POLYVOX_SHARED_PTR< Block<VoxelType> > currentBlock = mVolume.m_pBlocks[uBlockIndexInVolume];
mVoxelIndexInBlock = mXPosInBlock +
mYPosInBlock * mVolume.m_uBlockSideLength +
mZPosInBlock * mVolume.m_uBlockSideLength * mVolume.m_uBlockSideLength;
mCurrentVoxel = currentBlock->m_tData + mVoxelIndexInBlock;
uint32_t uVoxelIndexInBlock = uXPosInBlock +
uYPosInBlock * mVolume.m_uBlockSideLength +
uZPosInBlock * mVolume.m_uBlockSideLength * mVolume.m_uBlockSideLength;
mCurrentVoxel = currentBlock->m_tData + uVoxelIndexInBlock;
}
#pragma endregion
@ -215,17 +214,108 @@ namespace PolyVox
template <typename VoxelType>
void VolumeSampler<VoxelType>::movePositiveX(void)
{
++mXPosInVolume;
if(mXPosInVolume % mVolume.m_uBlockSideLength == 0)
assert(mXPosInVolume < mVolume.m_uWidth - 1);
//Note the *post* increament here
if((mXPosInVolume++) % mVolume.m_uBlockSideLength == 0)
{
//No need to compute new block.
++mCurrentVoxel;
}
else
{
//We've hit the block boundary. Just calling setPosition() is the easiest way to resolve this.
setPosition(mXPosInVolume, mYPosInVolume, mZPosInVolume);
}
else
}
template <typename VoxelType>
void VolumeSampler<VoxelType>::movePositiveY(void)
{
assert(mYPosInVolume < mVolume.m_uHeight - 1);
//Note the *post* increament here
if((mYPosInVolume++) % mVolume.m_uBlockSideLength == 0)
{
//No need to compute new block.
++mVoxelIndexInBlock;
++mCurrentVoxel;
mCurrentVoxel += mVolume.m_uBlockSideLength;
}
else
{
//We've hit the block boundary. Just calling setPosition() is the easiest way to resolve this.
setPosition(mXPosInVolume, mYPosInVolume, mZPosInVolume);
}
}
template <typename VoxelType>
void VolumeSampler<VoxelType>::movePositiveZ(void)
{
assert(mZPosInVolume < mVolume.m_uDepth - 1);
//Note the *post* increament here
if((mZPosInVolume++) % mVolume.m_uBlockSideLength == 0)
{
//No need to compute new block.
mCurrentVoxel += mVolume.m_uBlockSideLength * mVolume.m_uBlockSideLength;
}
else
{
//We've hit the block boundary. Just calling setPosition() is the easiest way to resolve this.
setPosition(mXPosInVolume, mYPosInVolume, mZPosInVolume);
}
}
template <typename VoxelType>
void VolumeSampler<VoxelType>::moveNegativeX(void)
{
assert(mXPosInVolume > 0);
//Note the *pre* increament here
if((--mXPosInVolume) % mVolume.m_uBlockSideLength == 0)
{
//No need to compute new block.
++mCurrentVoxel;
}
else
{
//We've hit the block boundary. Just calling setPosition() is the easiest way to resolve this.
setPosition(mXPosInVolume, mYPosInVolume, mZPosInVolume);
}
}
template <typename VoxelType>
void VolumeSampler<VoxelType>::moveNegativeY(void)
{
assert(mYPosInVolume > 0);
//Note the *pre* increament here
if((--mYPosInVolume) % mVolume.m_uBlockSideLength == 0)
{
//No need to compute new block.
mCurrentVoxel += mVolume.m_uBlockSideLength;
}
else
{
//We've hit the block boundary. Just calling setPosition() is the easiest way to resolve this.
setPosition(mXPosInVolume, mYPosInVolume, mZPosInVolume);
}
}
template <typename VoxelType>
void VolumeSampler<VoxelType>::moveNegativeZ(void)
{
assert(mZPosInVolume > 0);
//Note the *pre* increament here
if((--mZPosInVolume) % mVolume.m_uBlockSideLength == 0)
{
//No need to compute new block.
mCurrentVoxel += mVolume.m_uBlockSideLength * mVolume.m_uBlockSideLength;
}
else
{
//We've hit the block boundary. Just calling setPosition() is the easiest way to resolve this.
setPosition(mXPosInVolume, mYPosInVolume, mZPosInVolume);
}
}
#pragma endregion

View File

@ -63,11 +63,11 @@ namespace PolyVox
m_v3dRegionOffset = static_cast<Vector3DFloat>(m_Region.getLowerCorner());
//Create a region corresponding to the first slice
regSlice0 = m_Region;
Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner();
v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
regSlice0.setUpperCorner(v3dUpperCorner);
regSlice1 = regSlice0;
m_regSlicePrevious = m_Region;
Vector3DInt32 v3dUpperCorner = m_regSlicePrevious.getUpperCorner();
v3dUpperCorner.setZ(m_regSlicePrevious.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
m_regSlicePrevious.setUpperCorner(v3dUpperCorner);
m_regSliceCurrent = m_regSlicePrevious;
switch(m_uLodLevel)
{
@ -120,8 +120,8 @@ namespace PolyVox
std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY);
std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ);
regSlice0 = regSlice1;
regSlice1.shift(Vector3DInt32(0,0,m_uStepSize));
m_regSlicePrevious = m_regSliceCurrent;
m_regSliceCurrent.shift(Vector3DInt32(0,0,m_uStepSize));
//Process the other slices (previous slice is available)
for(uint32_t uSlice = 1; uSlice <= m_Region.depth(); uSlice += m_uStepSize)
@ -148,13 +148,13 @@ namespace PolyVox
std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY);
std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ);
regSlice0 = regSlice1;
regSlice1.shift(Vector3DInt32(0,0,m_uStepSize));
m_regSlicePrevious = m_regSliceCurrent;
m_regSliceCurrent.shift(Vector3DInt32(0,0,m_uStepSize));
}
//A final slice just to close of the volume
regSlice1.shift(Vector3DInt32(0,0,-m_uStepSize));
if(regSlice1.getLowerCorner().getZ() == m_croppedVolume.getUpperCorner().getZ())
m_regSliceCurrent.shift(Vector3DInt32(0,0,-m_uStepSize));
if(m_regSliceCurrent.getLowerCorner().getZ() == m_croppedVolume.getUpperCorner().getZ())
{
memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4);
@ -168,15 +168,15 @@ namespace PolyVox
{
m_uNoOfOccupiedCells = 0;
const uint16_t uMaxXVolSpace = regSlice1.getUpperCorner().getX();
const uint16_t uMaxYVolSpace = regSlice1.getUpperCorner().getY();
const uint16_t uMaxXVolSpace = m_regSliceCurrent.getUpperCorner().getX();
const uint16_t uMaxYVolSpace = m_regSliceCurrent.getUpperCorner().getY();
uZVolSpace = regSlice1.getLowerCorner().getZ();
uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
uZRegSpace = uZVolSpace - m_v3dRegionOffset.getZ();
//Process the lower left corner
uYVolSpace = regSlice1.getLowerCorner().getY();
uXVolSpace = regSlice1.getLowerCorner().getX();
uYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
uXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
uXRegSpace = uXVolSpace - m_v3dRegionOffset.getX();
uYRegSpace = uYVolSpace - m_v3dRegionOffset.getY();
@ -186,8 +186,8 @@ namespace PolyVox
//Process the edge where x is minimal.
uXVolSpace = regSlice1.getLowerCorner().getX();
for(uYVolSpace = regSlice1.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize)
uXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize)
{
uXRegSpace = uXVolSpace - m_v3dRegionOffset.getX();
uYRegSpace = uYVolSpace - m_v3dRegionOffset.getY();
@ -197,8 +197,8 @@ namespace PolyVox
}
//Process the edge where y is minimal.
uYVolSpace = regSlice1.getLowerCorner().getY();
for(uXVolSpace = regSlice1.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize)
uYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize)
{
uXRegSpace = uXVolSpace - m_v3dRegionOffset.getX();
uYRegSpace = uYVolSpace - m_v3dRegionOffset.getY();
@ -208,9 +208,9 @@ namespace PolyVox
}
//Process all remaining elemnents of the slice. In this case, previous x and y values are always available
for(uYVolSpace = regSlice1.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize)
for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize)
{
for(uXVolSpace = regSlice1.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize)
for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize)
{
uXRegSpace = uXVolSpace - m_v3dRegionOffset.getX();
uYRegSpace = uYVolSpace - m_v3dRegionOffset.getY();
@ -228,6 +228,15 @@ namespace PolyVox
{
uint8_t iCubeIndex = 0;
uint8_t v000 = 0;
uint8_t v100 = 0;
uint8_t v010 = 0;
uint8_t v110 = 0;
uint8_t v001 = 0;
uint8_t v101 = 0;
uint8_t v011 = 0;
uint8_t v111 = 0;
if(isPrevZAvail)
{
if(isPrevYAvail)
@ -524,11 +533,11 @@ namespace PolyVox
void SurfaceExtractor::generateVerticesForSlice()
{
//Iterate over each cell in the region
for(uint16_t uYVolSpace = regSlice1.getLowerCorner().getY(); uYVolSpace <= regSlice1.getUpperCorner().getY(); uYVolSpace += m_uStepSize)
for(uint16_t uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); uYVolSpace <= m_regSliceCurrent.getUpperCorner().getY(); uYVolSpace += m_uStepSize)
{
for(uint16_t uXVolSpace = regSlice1.getLowerCorner().getX(); uXVolSpace <= regSlice1.getUpperCorner().getX(); uXVolSpace += m_uStepSize)
for(uint16_t uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); uXVolSpace <= m_regSliceCurrent.getUpperCorner().getX(); uXVolSpace += m_uStepSize)
{
uint16_t uZVolSpace = regSlice1.getLowerCorner().getZ();
uint16_t uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
//Current position
const uint16_t uXRegSpace = uXVolSpace - m_v3dRegionOffset.getX();
@ -553,7 +562,7 @@ namespace PolyVox
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
//if(uXVolSpace != regSlice1.getUpperCorner().getX())
//if(uXVolSpace != m_regSliceCurrent.getUpperCorner().getX())
{
m_sampVolume.setPosition(uXVolSpace + m_uStepSize,uYVolSpace,uZVolSpace);
const uint8_t v100 = m_sampVolume.getSubSampledVoxel(m_uLodLevel);
@ -567,7 +576,7 @@ namespace PolyVox
}
if (edgeTable[iCubeIndex] & 8)
{
//if(uYVolSpace != regSlice1.getUpperCorner().getY())
//if(uYVolSpace != m_regSliceCurrent.getUpperCorner().getY())
{
m_sampVolume.setPosition(uXVolSpace,uYVolSpace + m_uStepSize,uZVolSpace);
const uint8_t v010 = m_sampVolume.getSubSampledVoxel(m_uLodLevel);
@ -605,11 +614,11 @@ namespace PolyVox
indlist[i] = -1;
}
for(uint16_t uYVolSpace = regSlice0.getLowerCorner().getY(); uYVolSpace < m_UncroppedRegion.getUpperCorner().getY(); uYVolSpace += m_uStepSize)
for(uint16_t uYVolSpace = m_regSlicePrevious.getLowerCorner().getY(); uYVolSpace < m_UncroppedRegion.getUpperCorner().getY(); uYVolSpace += m_uStepSize)
{
for(uint16_t uXVolSpace = regSlice0.getLowerCorner().getX(); uXVolSpace < m_UncroppedRegion.getUpperCorner().getX(); uXVolSpace += m_uStepSize)
for(uint16_t uXVolSpace = m_regSlicePrevious.getLowerCorner().getX(); uXVolSpace < m_UncroppedRegion.getUpperCorner().getX(); uXVolSpace += m_uStepSize)
{
uint16_t uZVolSpace = regSlice0.getLowerCorner().getZ();
uint16_t uZVolSpace = m_regSlicePrevious.getLowerCorner().getZ();
m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
//Current position