Work on unclassing the ambient occlusion calculation as it is currently making use of the old raycasts.
This commit is contained in:
		@@ -67,6 +67,131 @@ namespace PolyVox
 | 
			
		||||
 | 
			
		||||
		polyvox_function<bool(const typename VolumeType::VoxelType& voxel)> m_funcIsTransparent;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	class AmbientOcclusionCalculatorRaycastCallback
 | 
			
		||||
	{
 | 
			
		||||
	public:
 | 
			
		||||
		AmbientOcclusionCalculatorRaycastCallback()
 | 
			
		||||
		{
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		bool operator()(const SimpleVolume<uint8_t>::Sampler& sampler)
 | 
			
		||||
		{
 | 
			
		||||
			return sampler.getVoxel() == 0;
 | 
			
		||||
		}
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	template<typename VolumeType>
 | 
			
		||||
	void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, polyvox_function<bool(const typename VolumeType::VoxelType& voxel)> funcIsTransparent)
 | 
			
		||||
	{
 | 
			
		||||
		Region m_region = region;
 | 
			
		||||
		typename VolumeType::Sampler m_sampVolume(volInput);
 | 
			
		||||
		VolumeType* m_volInput = volInput;
 | 
			
		||||
		Array<3, uint8_t>* m_arrayResult = arrayResult;
 | 
			
		||||
		float m_fRayLength = fRayLength;
 | 
			
		||||
 | 
			
		||||
		uint8_t m_uNoOfSamplesPerOutputElement = uNoOfSamplesPerOutputElement;
 | 
			
		||||
 | 
			
		||||
		uint16_t mRandomUnitVectorIndex = 0;
 | 
			
		||||
		uint16_t mRandomVectorIndex = 0;
 | 
			
		||||
		uint16_t mIndexIncreament;
 | 
			
		||||
 | 
			
		||||
		polyvox_function<bool(const typename VolumeType::VoxelType& voxel)> m_funcIsTransparent = funcIsTransparent;
 | 
			
		||||
 | 
			
		||||
		//Make sure that the size of the volume is an exact multiple of the size of the array.
 | 
			
		||||
		assert(m_volInput->getWidth() % arrayResult->getDimension(0) == 0);
 | 
			
		||||
		assert(m_volInput->getHeight() % arrayResult->getDimension(1) == 0);
 | 
			
		||||
		assert(m_volInput->getDepth() % arrayResult->getDimension(2) == 0);
 | 
			
		||||
 | 
			
		||||
		//Our initial indices. It doesn't matter exactly what we set here, but the code below makes 
 | 
			
		||||
		//sure they are different for different regions which helps reduce tiling patterns in the results.
 | 
			
		||||
		mRandomUnitVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
 | 
			
		||||
		mRandomVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
 | 
			
		||||
 | 
			
		||||
		//This value helps us jump around in the array a bit more, so the
 | 
			
		||||
		//nth 'random' value isn't always followed by the n+1th 'random' value.
 | 
			
		||||
		mIndexIncreament = 1;
 | 
			
		||||
 | 
			
		||||
		const int iRatioX = m_volInput->getWidth()  / m_arrayResult->getDimension(0);
 | 
			
		||||
		const int iRatioY = m_volInput->getHeight() / m_arrayResult->getDimension(1);
 | 
			
		||||
		const int iRatioZ = m_volInput->getDepth()  / m_arrayResult->getDimension(2);
 | 
			
		||||
 | 
			
		||||
		const float fRatioX = iRatioX;
 | 
			
		||||
		const float fRatioY = iRatioY;
 | 
			
		||||
		const float fRatioZ = iRatioZ;
 | 
			
		||||
		const Vector3DFloat v3dRatio(fRatioX, fRatioY, fRatioZ);
 | 
			
		||||
 | 
			
		||||
		const float fHalfRatioX = fRatioX * 0.5f;
 | 
			
		||||
		const float fHalfRatioY = fRatioY * 0.5f;
 | 
			
		||||
		const float fHalfRatioZ = fRatioZ * 0.5f;
 | 
			
		||||
		const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ);
 | 
			
		||||
 | 
			
		||||
		const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
 | 
			
		||||
 | 
			
		||||
		//RaycastResult raycastResult;
 | 
			
		||||
		//Raycast<VolumeType> raycast(m_volInput, Vector3DFloat(0.0f,0.0f,0.0f), Vector3DFloat(1.0f,1.0f,1.0f), raycastResult, polyvox_bind(&PolyVox::AmbientOcclusionCalculator<VolumeType>::raycastCallback, this, std::placeholders::_1));
 | 
			
		||||
 | 
			
		||||
		//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
 | 
			
		||||
		for(uint16_t z = m_region.getLowerCorner().getZ(); z <= m_region.getUpperCorner().getZ(); z += iRatioZ)
 | 
			
		||||
		{
 | 
			
		||||
			for(uint16_t y = m_region.getLowerCorner().getY(); y <= m_region.getUpperCorner().getY(); y += iRatioY)
 | 
			
		||||
			{
 | 
			
		||||
				for(uint16_t x = m_region.getLowerCorner().getX(); x <= m_region.getUpperCorner().getX(); x += iRatioX)
 | 
			
		||||
				{
 | 
			
		||||
					//Compute a start position corresponding to 
 | 
			
		||||
					//the centre of the cell in the output array.
 | 
			
		||||
					Vector3DFloat v3dStart(x, y, z);
 | 
			
		||||
					v3dStart -= v3dOffset;
 | 
			
		||||
					v3dStart += v3dHalfRatio;
 | 
			
		||||
 | 
			
		||||
					//Keep track of how many rays did not hit anything
 | 
			
		||||
					uint8_t uVisibleDirections = 0;
 | 
			
		||||
 | 
			
		||||
					for(int ct = 0; ct < m_uNoOfSamplesPerOutputElement; ct++)
 | 
			
		||||
					{						
 | 
			
		||||
						//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
 | 
			
		||||
						//This jitter value moves our sample point from the center of the array cell to somewhere else in the array cell
 | 
			
		||||
						Vector3DFloat v3dJitter = randomVectors[(mRandomVectorIndex += (++mIndexIncreament)) % 1019]; //Prime number helps avoid repetition on sucessive loops.
 | 
			
		||||
						v3dJitter *= v3dHalfRatio;
 | 
			
		||||
						const Vector3DFloat v3dRayStart = v3dStart + v3dJitter;
 | 
			
		||||
 | 
			
		||||
						Vector3DFloat v3dRayDirection = randomUnitVectors[(mRandomUnitVectorIndex += (++mIndexIncreament)) % 1021]; //Differenct prime number.
 | 
			
		||||
						v3dRayDirection *= m_fRayLength;
 | 
			
		||||
						
 | 
			
		||||
						/*raycast.setStart(v3dRayStart);
 | 
			
		||||
						raycast.setDirection(v3dRayDirection);
 | 
			
		||||
						raycast.execute();
 | 
			
		||||
 | 
			
		||||
						if(raycastResult.foundIntersection == false)
 | 
			
		||||
						{
 | 
			
		||||
							++uVisibleDirections;
 | 
			
		||||
						}*/
 | 
			
		||||
 | 
			
		||||
						MyRaycastResult result = raycastWithDirection(m_volInput, v3dRayStart, v3dRayDirection, AmbientOcclusionCalculatorRaycastCallback());
 | 
			
		||||
						if(result == MyRaycastResults::Completed)
 | 
			
		||||
						{
 | 
			
		||||
							++uVisibleDirections;
 | 
			
		||||
						}
 | 
			
		||||
					}
 | 
			
		||||
 | 
			
		||||
					float fVisibility;
 | 
			
		||||
					if(m_uNoOfSamplesPerOutputElement == 0)
 | 
			
		||||
					{
 | 
			
		||||
						//The user might request zero samples (I've done this in the past while debugging - I don't want to
 | 
			
		||||
						//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.
 | 
			
		||||
						fVisibility = 1.0f;
 | 
			
		||||
					}
 | 
			
		||||
					else
 | 
			
		||||
					{
 | 
			
		||||
						fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(m_uNoOfSamplesPerOutputElement);
 | 
			
		||||
						assert((fVisibility >= 0.0f) && (fVisibility <= 1.0f));
 | 
			
		||||
					}
 | 
			
		||||
 | 
			
		||||
					(*m_arrayResult)[z / iRatioZ][y / iRatioY][x / iRatioX] = static_cast<uint8_t>(255.0f * fVisibility);
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#include "PolyVoxCore/AmbientOcclusionCalculator.inl"
 | 
			
		||||
 
 | 
			
		||||
@@ -61,11 +61,8 @@ void TestAmbientOcclusionGenerator::testExecute()
 | 
			
		||||
	const int32_t g_uArraySideLength = g_uVolumeSideLength / 2;
 | 
			
		||||
	Array<3, uint8_t> ambientOcclusionResult(ArraySizes(g_uArraySideLength)(g_uArraySideLength)(g_uArraySideLength));
 | 
			
		||||
 | 
			
		||||
	//Create the ambient occlusion calculator
 | 
			
		||||
	AmbientOcclusionCalculator< SimpleVolume<uint8_t> > calculator(&volData, &ambientOcclusionResult, volData.getEnclosingRegion(), 32.0f, 255, isVoxelTransparent);
 | 
			
		||||
 | 
			
		||||
	//Execute the calculator
 | 
			
		||||
	calculator.execute();
 | 
			
		||||
	// Calculate the ambient occlusion values
 | 
			
		||||
	calculateAmbientOcclusion(&volData, &ambientOcclusionResult, volData.getEnclosingRegion(), 32.0f, 255, isVoxelTransparent);
 | 
			
		||||
	
 | 
			
		||||
	//Check the results by sampling along a line though the centre of the volume. Because
 | 
			
		||||
	//of the two walls we added, samples in the middle are darker than those at the edge.
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user