Moving around some Marching Cubes code so that only the public stuff is in the header.
Tidying up some documentation.
This commit is contained in:
parent
d544de6dd1
commit
64c4c8ce86
@ -29,13 +29,15 @@
|
||||
#include "Impl/PlatformDefinitions.h"
|
||||
|
||||
#include "Array.h"
|
||||
#include "BaseVolume.h" //For wrap modes... should move these?
|
||||
#include "Mesh.h"
|
||||
#include "DefaultMarchingCubesController.h"
|
||||
#include "Mesh.h"
|
||||
#include "Vertex.h"
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
/// A specialised vertex format which encodes the data from the Marching Cubes algorithm in a very
|
||||
/// compact way. You will probably want to use the decodeVertex() function to turn it into a regular
|
||||
/// Vertex for rendering, but advanced users can also decode it on the GPU (see PolyVox examples).
|
||||
template<typename _DataType>
|
||||
struct MarchingCubesVertex
|
||||
{
|
||||
@ -57,121 +59,17 @@ namespace PolyVox
|
||||
//template <typename VertexDataType, typename IndexType = DefaultIndexType>
|
||||
//using MarchingCubesMesh = Mesh< MarchingCubesVertex<VertexDataType>, IndexType >;
|
||||
|
||||
/// Decodes a position from a MarchingCubesVertex
|
||||
inline Vector3DFloat decodePosition(const Vector3DUint16& encodedPosition)
|
||||
{
|
||||
Vector3DFloat result(encodedPosition.getX(), encodedPosition.getY(), encodedPosition.getZ());
|
||||
result *= (1.0f / 256.0f); // Division is compile-time constant
|
||||
return result;
|
||||
}
|
||||
|
||||
inline uint16_t encodeNormal(const Vector3DFloat& normal)
|
||||
{
|
||||
// The first part of this function is based off the code in Listing 1 of http://jcgt.org/published/0003/02/01/
|
||||
// It was rewritten in C++ and is restructued for the CPU rather than the GPU.
|
||||
|
||||
// Get the input components
|
||||
float vx = normal.getX();
|
||||
float vy = normal.getY();
|
||||
float vz = normal.getZ();
|
||||
|
||||
// Project the sphere onto the octahedron, and then onto the xy plane
|
||||
float px = vx * (1.0f / (std::abs(vx) + std::abs(vy) + std::abs(vz)));
|
||||
float py = vy * (1.0f / (std::abs(vx) + std::abs(vy) + std::abs(vz)));
|
||||
|
||||
// Reflect the folds of the lower hemisphere over the diagonals.
|
||||
if (vz <= 0.0f)
|
||||
{
|
||||
float refx = ((1.0f - std::abs(py)) * (px >= 0.0f ? +1.0f : -1.0f));
|
||||
float refy = ((1.0f - std::abs(px)) * (py >= 0.0f ? +1.0f : -1.0f));
|
||||
px = refx;
|
||||
py = refy;
|
||||
}
|
||||
|
||||
// The next part was not given in the paper. We map our two
|
||||
// floats into two bytes and store them in a single uint16_t
|
||||
|
||||
// Move from range [-1.0f, 1.0f] to [0.0f, 255.0f]
|
||||
px = (px + 1.0f) * 127.5f;
|
||||
py = (py + 1.0f) * 127.5f;
|
||||
|
||||
// Convert to uints
|
||||
uint16_t resultX = static_cast<uint16_t>(px + 0.5f);
|
||||
uint16_t resultY = static_cast<uint16_t>(py + 0.5f);
|
||||
|
||||
// Make sure only the lower bits are set. Probably
|
||||
// not necessary but we're just being careful really.
|
||||
resultX &= 0xFF;
|
||||
resultY &= 0xFF;
|
||||
|
||||
// Contatenate the bytes and return the result.
|
||||
return (resultX << 8) | resultY;
|
||||
}
|
||||
|
||||
inline Vector3DFloat decodeNormal(const uint16_t& encodedNormal)
|
||||
{
|
||||
// Extract the two bytes from the uint16_t.
|
||||
uint16_t ux = (encodedNormal >> 8) & 0xFF;
|
||||
uint16_t uy = (encodedNormal)& 0xFF;
|
||||
|
||||
// Convert to floats in the range [-1.0f, +1.0f].
|
||||
float ex = ux / 127.5f - 1.0f;
|
||||
float ey = uy / 127.5f - 1.0f;
|
||||
|
||||
// Reconstruct the origninal vector. This is a C++ implementation
|
||||
// of Listing 2 of http://jcgt.org/published/0003/02/01/
|
||||
float vx = ex;
|
||||
float vy = ey;
|
||||
float vz = 1.0f - std::abs(ex) - std::abs(ey);
|
||||
|
||||
if (vz < 0.0f)
|
||||
{
|
||||
float refX = ((1.0f - std::abs(vy)) * (vx >= 0.0f ? +1.0f : -1.0f));
|
||||
float refY = ((1.0f - std::abs(vx)) * (vy >= 0.0f ? +1.0f : -1.0f));
|
||||
vx = refX;
|
||||
vy = refY;
|
||||
}
|
||||
|
||||
// Normalise and return the result.
|
||||
Vector3DFloat v(vx, vy, vz);
|
||||
v.normalise();
|
||||
return v;
|
||||
}
|
||||
|
||||
/// Decodes a MarchingCubesVertex by converting it into a regular Vertex which can then be directly used for rendering.
|
||||
template<typename DataType>
|
||||
Vertex<DataType> decodeVertex(const MarchingCubesVertex<DataType>& marchingCubesVertex)
|
||||
{
|
||||
Vertex<DataType> result;
|
||||
result.position = decodePosition(marchingCubesVertex.encodedPosition);
|
||||
result.normal = decodeNormal(marchingCubesVertex.encodedNormal);
|
||||
result.data = marchingCubesVertex.data; // Data is not encoded
|
||||
return result;
|
||||
}
|
||||
Vertex<DataType> decodeVertex(const MarchingCubesVertex<DataType>& marchingCubesVertex);
|
||||
|
||||
// This version of the function performs the extraction into a user-provided mesh rather than allocating a mesh automatically.
|
||||
// There are a few reasons why this might be useful to more advanced users:
|
||||
//
|
||||
// 1. It leaves the user in control of memory allocation and would allow them to implement e.g. a mesh pooling system.
|
||||
// 2. The user-provided mesh could have a different index type (e.g. 16-bit indices) to reduce memory usage.
|
||||
// 3. The user could provide a custom mesh class, e.g a thin wrapper around an OpenGL VBO to allow direct writing into this structure.
|
||||
//
|
||||
// We don't provide a default MeshType here. If the user doesn't want to provide a MeshType then it probably makes
|
||||
// more sense to use the other variant of this function where the mesh is a return value rather than a parameter.
|
||||
//
|
||||
// Note: This function is called 'extractMarchingCubesMeshCustom' rather than 'extractMarchingCubesMesh' to avoid ambiguity when only three parameters
|
||||
// are provided (would the third parameter be a controller or a mesh?). It seems this can be fixed by using enable_if/static_assert to emulate concepts,
|
||||
// but this is relatively complex and I haven't done it yet. Could always add it later as another overload.
|
||||
// Generates a mesh from the voxel data using the Marching Cubes algorithm.
|
||||
template< typename VolumeType, typename ControllerType = DefaultMarchingCubesController<typename VolumeType::VoxelType> >
|
||||
Mesh<MarchingCubesVertex<typename VolumeType::VoxelType> > extractMarchingCubesMesh(VolumeType* volData, Region region, ControllerType controller = ControllerType());
|
||||
|
||||
// Generates a mesh from the voxel data using the Marching Cubes algorithm, placing the result into a user-provided Mesh.
|
||||
template< typename VolumeType, typename MeshType, typename ControllerType = DefaultMarchingCubesController<typename VolumeType::VoxelType> >
|
||||
void extractMarchingCubesMeshCustom(VolumeType* volData, Region region, MeshType* result, ControllerType controller = ControllerType());
|
||||
|
||||
template< typename VolumeType, typename ControllerType = DefaultMarchingCubesController<typename VolumeType::VoxelType> >
|
||||
Mesh<MarchingCubesVertex<typename VolumeType::VoxelType> > extractMarchingCubesMesh(VolumeType* volData, Region region, ControllerType controller = ControllerType())
|
||||
{
|
||||
Mesh<MarchingCubesVertex<typename VolumeType::VoxelType> > result;
|
||||
extractMarchingCubesMeshCustom<VolumeType, Mesh<MarchingCubesVertex<typename VolumeType::VoxelType>, DefaultIndexType > >(volData, region, &result, controller);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
#include "MarchingCubesSurfaceExtractor.inl"
|
||||
|
@ -26,6 +26,104 @@
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Vertex encoding/decoding
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
inline Vector3DFloat decodePosition(const Vector3DUint16& encodedPosition)
|
||||
{
|
||||
Vector3DFloat result(encodedPosition.getX(), encodedPosition.getY(), encodedPosition.getZ());
|
||||
result *= (1.0f / 256.0f); // Division is compile-time constant
|
||||
return result;
|
||||
}
|
||||
|
||||
inline uint16_t encodeNormal(const Vector3DFloat& normal)
|
||||
{
|
||||
// The first part of this function is based off the code in Listing 1 of http://jcgt.org/published/0003/02/01/
|
||||
// It was rewritten in C++ and is restructued for the CPU rather than the GPU.
|
||||
|
||||
// Get the input components
|
||||
float vx = normal.getX();
|
||||
float vy = normal.getY();
|
||||
float vz = normal.getZ();
|
||||
|
||||
// Project the sphere onto the octahedron, and then onto the xy plane
|
||||
float px = vx * (1.0f / (std::abs(vx) + std::abs(vy) + std::abs(vz)));
|
||||
float py = vy * (1.0f / (std::abs(vx) + std::abs(vy) + std::abs(vz)));
|
||||
|
||||
// Reflect the folds of the lower hemisphere over the diagonals.
|
||||
if (vz <= 0.0f)
|
||||
{
|
||||
float refx = ((1.0f - std::abs(py)) * (px >= 0.0f ? +1.0f : -1.0f));
|
||||
float refy = ((1.0f - std::abs(px)) * (py >= 0.0f ? +1.0f : -1.0f));
|
||||
px = refx;
|
||||
py = refy;
|
||||
}
|
||||
|
||||
// The next part was not given in the paper. We map our two
|
||||
// floats into two bytes and store them in a single uint16_t
|
||||
|
||||
// Move from range [-1.0f, 1.0f] to [0.0f, 255.0f]
|
||||
px = (px + 1.0f) * 127.5f;
|
||||
py = (py + 1.0f) * 127.5f;
|
||||
|
||||
// Convert to uints
|
||||
uint16_t resultX = static_cast<uint16_t>(px + 0.5f);
|
||||
uint16_t resultY = static_cast<uint16_t>(py + 0.5f);
|
||||
|
||||
// Make sure only the lower bits are set. Probably
|
||||
// not necessary but we're just being careful really.
|
||||
resultX &= 0xFF;
|
||||
resultY &= 0xFF;
|
||||
|
||||
// Contatenate the bytes and return the result.
|
||||
return (resultX << 8) | resultY;
|
||||
}
|
||||
|
||||
inline Vector3DFloat decodeNormal(const uint16_t& encodedNormal)
|
||||
{
|
||||
// Extract the two bytes from the uint16_t.
|
||||
uint16_t ux = (encodedNormal >> 8) & 0xFF;
|
||||
uint16_t uy = (encodedNormal)& 0xFF;
|
||||
|
||||
// Convert to floats in the range [-1.0f, +1.0f].
|
||||
float ex = ux / 127.5f - 1.0f;
|
||||
float ey = uy / 127.5f - 1.0f;
|
||||
|
||||
// Reconstruct the origninal vector. This is a C++ implementation
|
||||
// of Listing 2 of http://jcgt.org/published/0003/02/01/
|
||||
float vx = ex;
|
||||
float vy = ey;
|
||||
float vz = 1.0f - std::abs(ex) - std::abs(ey);
|
||||
|
||||
if (vz < 0.0f)
|
||||
{
|
||||
float refX = ((1.0f - std::abs(vy)) * (vx >= 0.0f ? +1.0f : -1.0f));
|
||||
float refY = ((1.0f - std::abs(vx)) * (vy >= 0.0f ? +1.0f : -1.0f));
|
||||
vx = refX;
|
||||
vy = refY;
|
||||
}
|
||||
|
||||
// Normalise and return the result.
|
||||
Vector3DFloat v(vx, vy, vz);
|
||||
v.normalise();
|
||||
return v;
|
||||
}
|
||||
|
||||
template<typename DataType>
|
||||
Vertex<DataType> decodeVertex(const MarchingCubesVertex<DataType>& marchingCubesVertex)
|
||||
{
|
||||
Vertex<DataType> result;
|
||||
result.position = decodePosition(marchingCubesVertex.encodedPosition);
|
||||
result.normal = decodeNormal(marchingCubesVertex.encodedNormal);
|
||||
result.data = marchingCubesVertex.data; // Data is not encoded
|
||||
return result;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Gradient estimation
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template< typename Sampler, typename ControllerType>
|
||||
Vector3DFloat computeCentralDifferenceGradient(const Sampler& volIter, ControllerType& controller)
|
||||
{
|
||||
@ -140,6 +238,33 @@ namespace PolyVox
|
||||
return Vector3DFloat(-xGrad, -yGrad, -zGrad);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Surface extraction
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This is probably the version of Marching Cubes extraction which you will want to use initially, at least
|
||||
// until you determine you have a need for the extra functionality provied by extractMarchingCubesMeshCustom().
|
||||
template< typename VolumeType, typename ControllerType >
|
||||
Mesh<MarchingCubesVertex<typename VolumeType::VoxelType> > extractMarchingCubesMesh(VolumeType* volData, Region region, ControllerType controller)
|
||||
{
|
||||
Mesh<MarchingCubesVertex<typename VolumeType::VoxelType> > result;
|
||||
extractMarchingCubesMeshCustom<VolumeType, Mesh<MarchingCubesVertex<typename VolumeType::VoxelType>, DefaultIndexType > >(volData, region, &result, controller);
|
||||
return result;
|
||||
}
|
||||
|
||||
// This version of the function performs the extraction into a user-provided mesh rather than allocating a mesh automatically.
|
||||
// There are a few reasons why this might be useful to more advanced users:
|
||||
//
|
||||
// 1. It leaves the user in control of memory allocation and would allow them to implement e.g. a mesh pooling system.
|
||||
// 2. The user-provided mesh could have a different index type (e.g. 16-bit indices) to reduce memory usage.
|
||||
// 3. The user could provide a custom mesh class, e.g a thin wrapper around an OpenGL VBO to allow direct writing into this structure.
|
||||
//
|
||||
// We don't provide a default MeshType here. If the user doesn't want to provide a MeshType then it probably makes
|
||||
// more sense to use the other variant of this function where the mesh is a return value rather than a parameter.
|
||||
//
|
||||
// Note: This function is called 'extractMarchingCubesMeshCustom' rather than 'extractMarchingCubesMesh' to avoid ambiguity when only three parameters
|
||||
// are provided (would the third parameter be a controller or a mesh?). It seems this can be fixed by using enable_if/static_assert to emulate concepts,
|
||||
// but this is relatively complex and I haven't done it yet. Could always add it later as another overload.
|
||||
template< typename VolumeType, typename MeshType, typename ControllerType >
|
||||
void extractMarchingCubesMeshCustom(VolumeType* volData, Region region, MeshType* result, ControllerType controller)
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user