Removed old, redundant surface extraction algorithms (FastSurfaceExtractor and DecimatedSurfaceExtractor). These are now replaced by the general SurfaceExtractor.
This commit is contained in:
parent
f5f5bcf48a
commit
69d6ad86a7
@ -8,7 +8,6 @@
|
||||
|
||||
#include "Volume.h"
|
||||
#include "IndexedSurfacePatch.h"
|
||||
#include "SurfaceExtractors.h"
|
||||
#include "PolyVoxImpl/Utility.h"
|
||||
|
||||
#include "OpenGLImmediateModeSupport.h"
|
||||
|
@ -1,7 +1,6 @@
|
||||
#include "Log.h"
|
||||
#include "Volume.h"
|
||||
#include "IndexedSurfacePatch.h"
|
||||
#include "SurfaceExtractors.h"
|
||||
#include "PolyVoxImpl/Utility.h"
|
||||
|
||||
#include "OpenGLImmediateModeSupport.h"
|
||||
|
@ -9,7 +9,6 @@ SET(CORE_SRC_FILES
|
||||
source/Log.cpp
|
||||
source/Region.cpp
|
||||
source/SurfaceExtractor.cpp
|
||||
source/SurfaceExtractors.cpp
|
||||
source/SurfaceVertex.cpp
|
||||
source/VoxelFilters.cpp
|
||||
)
|
||||
@ -22,7 +21,6 @@ SET(CORE_INC_FILES
|
||||
include/PolyVoxForwardDeclarations.h
|
||||
include/Region.h
|
||||
include/SurfaceExtractor.h
|
||||
include/SurfaceExtractors.h
|
||||
include/SurfaceVertex.h
|
||||
include/Vector.h
|
||||
include/Vector.inl
|
||||
@ -34,8 +32,6 @@ SET(CORE_INC_FILES
|
||||
)
|
||||
|
||||
SET(IMPL_SRC_FILES
|
||||
source/PolyVoxImpl/DecimatedSurfaceExtractor.cpp
|
||||
source/PolyVoxImpl/FastSurfaceExtractor.cpp
|
||||
source/PolyVoxImpl/MarchingCubesTables.cpp
|
||||
source/PolyVoxImpl/Utility.cpp
|
||||
)
|
||||
@ -44,8 +40,6 @@ SET(IMPL_INC_FILES
|
||||
include/PolyVoxImpl/Block.h
|
||||
include/PolyVoxImpl/Block.inl
|
||||
include/PolyVoxImpl/CPlusPlusZeroXSupport.h
|
||||
include/PolyVoxImpl/DecimatedSurfaceExtractor.h
|
||||
include/PolyVoxImpl/FastSurfaceExtractor.h
|
||||
include/PolyVoxImpl/MarchingCubesTables.h
|
||||
include/PolyVoxImpl/TypeDef.h
|
||||
include/PolyVoxImpl/Utility.h
|
||||
|
@ -1,42 +0,0 @@
|
||||
#pragma region License
|
||||
/******************************************************************************
|
||||
This file is part of the PolyVox library
|
||||
Copyright (C) 2006 David Williams
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
******************************************************************************/
|
||||
#pragma endregion
|
||||
|
||||
#ifndef __PolyVoxImpl_DecimatedSurfaceExtractor_H__
|
||||
#define __PolyVoxImpl_DecimatedSurfaceExtractor_H__
|
||||
|
||||
#pragma region Headers
|
||||
#include "../PolyVoxForwardDeclarations.h"
|
||||
#include "TypeDef.h"
|
||||
|
||||
#include "CPlusPlusZeroXSupport.h"
|
||||
#pragma endregion
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
uint32_t getDecimatedIndex(uint32_t x, uint32_t y, uint32_t regionWidth);
|
||||
|
||||
void extractDecimatedSurfaceImpl(Volume<uint8_t>* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch);
|
||||
uint32_t computeDecimatedBitmaskForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t *bitmask, uint8_t *previousBitmask);
|
||||
void generateDecimatedIndicesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[]);
|
||||
void generateDecimatedVerticesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[]);
|
||||
}
|
||||
|
||||
#endif
|
@ -1,41 +0,0 @@
|
||||
#pragma region License
|
||||
/******************************************************************************
|
||||
This file is part of the PolyVox library
|
||||
Copyright (C) 2006 David Williams
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
******************************************************************************/
|
||||
#pragma endregion
|
||||
|
||||
#ifndef __PolyVoxImpl_FastSurfaceExtractor_H__
|
||||
#define __PolyVoxImpl_FastSurfaceExtractor_H__
|
||||
|
||||
#pragma region Headers
|
||||
#include "../PolyVoxForwardDeclarations.h"
|
||||
#include "TypeDef.h"
|
||||
|
||||
#include "CPlusPlusZeroXSupport.h"
|
||||
#pragma endregion
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
void extractFastSurfaceImpl(Volume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch);
|
||||
uint32_t getIndex(uint32_t x, uint32_t y, uint32_t regionWidth);
|
||||
uint32_t computeRoughBitmaskForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t *bitmask, uint8_t *previousBitmask);
|
||||
void generateRoughIndicesForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[]);
|
||||
void generateRoughVerticesForSlice(VolumeSampler<uint8_t>& volIter, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[]);
|
||||
}
|
||||
|
||||
#endif
|
@ -1,40 +0,0 @@
|
||||
#pragma region License
|
||||
/******************************************************************************
|
||||
This file is part of the PolyVox library
|
||||
Copyright (C) 2006 David Williams
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
******************************************************************************/
|
||||
#pragma endregion
|
||||
|
||||
#ifndef __PolyVox_SurfaceExtractors_H__
|
||||
#define __PolyVox_SurfaceExtractors_H__
|
||||
|
||||
#pragma region Headers
|
||||
#include "PolyVoxForwardDeclarations.h"
|
||||
#include "PolyVoxImpl/TypeDef.h"
|
||||
|
||||
#include "PolyVoxImpl/CPlusPlusZeroXSupport.h"
|
||||
|
||||
#include <list>
|
||||
#pragma endregion
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
POLYVOXCORE_API void extractSurface(Volume<uint8_t>* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch);
|
||||
POLYVOXCORE_API void extractReferenceSurface(Volume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch);
|
||||
}
|
||||
|
||||
#endif
|
@ -1,542 +0,0 @@
|
||||
#pragma region License
|
||||
/******************************************************************************
|
||||
This file is part of the PolyVox library
|
||||
Copyright (C) 2006 David Williams
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
******************************************************************************/
|
||||
#pragma endregion
|
||||
|
||||
#include "PolyVoxImpl/DecimatedSurfaceExtractor.h"
|
||||
|
||||
#include "Volume.h"
|
||||
#include "GradientEstimators.h"
|
||||
#include "IndexedSurfacePatch.h"
|
||||
#include "PolyVoxImpl/MarchingCubesTables.h"
|
||||
#include "Region.h"
|
||||
#include "VolumeSampler.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
uint32_t getDecimatedIndex(uint32_t x, uint32_t y , uint32_t regionWidth)
|
||||
{
|
||||
return x + (y * (regionWidth+1));
|
||||
}
|
||||
|
||||
void extractDecimatedSurfaceImpl(Volume<uint8_t>* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch)
|
||||
{
|
||||
singleMaterialPatch->clear();
|
||||
|
||||
//For edge indices
|
||||
//FIXME - do the slices need to be this big? Surely for a decimated mesh they can be smaller?
|
||||
//FIXME - Instead of region.width()+2 we used to use POLYVOX_REGION_SIDE_LENGTH+1
|
||||
//Normally POLYVOX_REGION_SIDE_LENGTH is the same as region.width() (often 32) but at the
|
||||
//edges of the volume it is 1 smaller. Need to think what values really belong here.
|
||||
int32_t* vertexIndicesX0 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesY0 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesZ0 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesX1 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesY1 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesZ1 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
|
||||
//Cell bitmasks
|
||||
uint8_t* bitmask0 = new uint8_t[(region.width()+2) * (region.height()+2)];
|
||||
uint8_t* bitmask1 = new uint8_t[(region.width()+2) * (region.height()+2)];
|
||||
|
||||
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
||||
|
||||
//When generating the mesh for a region we actually look outside it in the
|
||||
// back, bottom, right direction. Protect against access violations by cropping region here
|
||||
Region regVolume = volumeData->getEnclosingRegion();
|
||||
regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(2*uStepSize-1,2*uStepSize-1,2*uStepSize-1));
|
||||
region.cropTo(regVolume);
|
||||
|
||||
//Offset from volume corner
|
||||
const Vector3DFloat offset = static_cast<Vector3DFloat>(region.getLowerCorner());
|
||||
|
||||
//Create a region corresponding to the first slice
|
||||
Region regSlice0(region);
|
||||
Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner();
|
||||
v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
|
||||
regSlice0.setUpperCorner(v3dUpperCorner);
|
||||
|
||||
//Iterator to access the volume data
|
||||
VolumeSampler<uint8_t> volIter(*volumeData);
|
||||
|
||||
//Compute bitmask for initial slice
|
||||
uint32_t uNoOfNonEmptyCellsForSlice0 = computeDecimatedBitmaskForSlice(volIter, uLevel, regSlice0, offset, bitmask0, 0);
|
||||
if(uNoOfNonEmptyCellsForSlice0 != 0)
|
||||
{
|
||||
//If there were some non-empty cells then generate initial slice vertices for them
|
||||
generateDecimatedVerticesForSlice(volIter, uLevel, regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0);
|
||||
}
|
||||
|
||||
for(uint32_t uSlice = 1; ((uSlice <= region.depth()) && (uSlice + offset.getZ() <= regVolume.getUpperCorner().getZ())); uSlice += uStepSize)
|
||||
{
|
||||
Region regSlice1(regSlice0);
|
||||
regSlice1.shift(Vector3DInt32(0,0,uStepSize));
|
||||
|
||||
uint32_t uNoOfNonEmptyCellsForSlice1 = computeDecimatedBitmaskForSlice(volIter, uLevel, regSlice1, offset, bitmask1, bitmask0);
|
||||
|
||||
if(uNoOfNonEmptyCellsForSlice1 != 0)
|
||||
{
|
||||
generateDecimatedVerticesForSlice(volIter, uLevel, regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
|
||||
}
|
||||
|
||||
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
|
||||
{
|
||||
generateDecimatedIndicesForSlice(volIter, uLevel, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
|
||||
}
|
||||
|
||||
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
|
||||
std::swap(bitmask0, bitmask1);
|
||||
std::swap(vertexIndicesX0, vertexIndicesX1);
|
||||
std::swap(vertexIndicesY0, vertexIndicesY1);
|
||||
std::swap(vertexIndicesZ0, vertexIndicesZ1);
|
||||
|
||||
regSlice0 = regSlice1;
|
||||
}
|
||||
|
||||
delete[] bitmask0;
|
||||
delete[] bitmask1;
|
||||
delete[] vertexIndicesX0;
|
||||
delete[] vertexIndicesX1;
|
||||
delete[] vertexIndicesY0;
|
||||
delete[] vertexIndicesY1;
|
||||
delete[] vertexIndicesZ0;
|
||||
delete[] vertexIndicesZ1;
|
||||
|
||||
|
||||
/*std::vector<SurfaceVertex>::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin();
|
||||
while(iterSurfaceVertex != singleMaterialPatch->getVertices().end())
|
||||
{
|
||||
Vector3DFloat tempNormal = computeDecimatedNormal(volumeData, static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
|
||||
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
|
||||
++iterSurfaceVertex;
|
||||
}*/
|
||||
}
|
||||
|
||||
uint32_t computeDecimatedBitmaskForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask)
|
||||
{
|
||||
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
||||
uint32_t uNoOfNonEmptyCells = 0;
|
||||
|
||||
//Iterate over each cell in the region
|
||||
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace += uStepSize)
|
||||
{
|
||||
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace += uStepSize)
|
||||
{
|
||||
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
||||
//Current position
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
||||
|
||||
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
|
||||
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
|
||||
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
uint8_t iCubeIndex = 0;
|
||||
|
||||
bool isPrevXAvail = uXRegSpace > 0;
|
||||
bool isPrevYAvail = uYRegSpace > 0;
|
||||
bool isPrevZAvail = previousBitmask != 0;
|
||||
|
||||
if(isPrevZAvail)
|
||||
{
|
||||
if(isPrevYAvail)
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexZ >>= 4;
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 128;
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
||||
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexZ >>= 4;
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
||||
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
else //previous Y not available
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
||||
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexZ >>= 4;
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 160; //160 = 128+32
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
|
||||
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+uStepSize);
|
||||
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
||||
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iCubeIndex = iPreviousCubeIndexZ >> 4;
|
||||
|
||||
if (v001 == 0) iCubeIndex |= 16;
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
}
|
||||
else //previous Z not available
|
||||
{
|
||||
if(isPrevYAvail)
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
||||
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
|
||||
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace);
|
||||
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
||||
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexY;
|
||||
|
||||
if (v010 == 0) iCubeIndex |= 4;
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
else //previous Y not available
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace);
|
||||
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
||||
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
||||
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX;
|
||||
|
||||
if (v100 == 0) iCubeIndex |= 2;
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
||||
const uint8_t v000 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace);
|
||||
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace);
|
||||
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
|
||||
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+uStepSize);
|
||||
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
|
||||
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
|
||||
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
|
||||
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
if (v000 == 0) iCubeIndex |= 1;
|
||||
if (v100 == 0) iCubeIndex |= 2;
|
||||
if (v010 == 0) iCubeIndex |= 4;
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v001 == 0) iCubeIndex |= 16;
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Save the bitmask
|
||||
bitmask[getDecimatedIndex(uXRegSpace,uYVolSpace- offset.getY(), regSlice.width()+1)] = iCubeIndex;
|
||||
|
||||
if(edgeTable[iCubeIndex] != 0)
|
||||
{
|
||||
++uNoOfNonEmptyCells;
|
||||
}
|
||||
|
||||
}//For each cell
|
||||
}
|
||||
|
||||
return uNoOfNonEmptyCells;
|
||||
}
|
||||
|
||||
void generateDecimatedVerticesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[])
|
||||
{
|
||||
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
||||
|
||||
//Iterate over each cell in the region
|
||||
for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize)
|
||||
{
|
||||
for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize)
|
||||
{
|
||||
//Current position
|
||||
const uint16_t z = regSlice.getLowerCorner().getZ();
|
||||
|
||||
volIter.setPosition(x,y,z);
|
||||
const uint8_t v000 = volIter.getSubSampledVoxel(uLevel);
|
||||
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
uint8_t iCubeIndex = bitmask[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)];
|
||||
|
||||
/* Cube is entirely in/out of the surface */
|
||||
if (edgeTable[iCubeIndex] == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (edgeTable[iCubeIndex] & 1)
|
||||
{
|
||||
if(x != regSlice.getUpperCorner().getX())
|
||||
{
|
||||
volIter.setPosition(x + uStepSize,y,z);
|
||||
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
|
||||
const Vector3DFloat v3dPosition(x - offset.getX() + 0.5f * uStepSize, y - offset.getY(), z - offset.getZ());
|
||||
const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0);
|
||||
const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max.
|
||||
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
||||
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
||||
vertexIndicesX[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
|
||||
}
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 8)
|
||||
{
|
||||
if(y != regSlice.getUpperCorner().getY())
|
||||
{
|
||||
volIter.setPosition(x,y + uStepSize,z);
|
||||
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
|
||||
const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY() + 0.5f * uStepSize, z - offset.getZ());
|
||||
const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0);
|
||||
const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max.
|
||||
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
||||
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
||||
vertexIndicesY[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
|
||||
}
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 256)
|
||||
{
|
||||
//if(z != regSlice.getUpperCorner.getZ())
|
||||
{
|
||||
volIter.setPosition(x,y,z + uStepSize);
|
||||
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
|
||||
const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY(), z - offset.getZ() + 0.5f * uStepSize);
|
||||
const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f);
|
||||
const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max.
|
||||
const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
||||
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
||||
vertexIndicesZ[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
|
||||
}
|
||||
}
|
||||
}//For each cell
|
||||
}
|
||||
}
|
||||
|
||||
void generateDecimatedIndicesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[])
|
||||
{
|
||||
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
|
||||
uint32_t indlist[12];
|
||||
|
||||
for(uint16_t y = regSlice.getLowerCorner().getY() - offset.getY(); y < regSlice.getUpperCorner().getY() - offset.getY(); y += uStepSize)
|
||||
{
|
||||
for(uint16_t x = regSlice.getLowerCorner().getX() - offset.getX(); x < regSlice.getUpperCorner().getX() - offset.getX(); x += uStepSize)
|
||||
{
|
||||
//Current position
|
||||
const uint16_t z = regSlice.getLowerCorner().getZ() - offset.getZ();
|
||||
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
uint8_t iCubeIndex = bitmask0[getDecimatedIndex(x,y, regSlice.width()+1)];
|
||||
|
||||
/* Cube is entirely in/out of the surface */
|
||||
if (edgeTable[iCubeIndex] == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (edgeTable[iCubeIndex] & 1)
|
||||
{
|
||||
indlist[0] = vertexIndicesX0[getDecimatedIndex(x,y, regSlice.width()+1)];
|
||||
assert(indlist[0] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 2)
|
||||
{
|
||||
indlist[1] = vertexIndicesY0[getDecimatedIndex(x+uStepSize,y, regSlice.width()+1)];
|
||||
assert(indlist[1] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 4)
|
||||
{
|
||||
indlist[2] = vertexIndicesX0[getDecimatedIndex(x,y+uStepSize, regSlice.width()+1)];
|
||||
assert(indlist[2] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 8)
|
||||
{
|
||||
indlist[3] = vertexIndicesY0[getDecimatedIndex(x,y, regSlice.width()+1)];
|
||||
assert(indlist[3] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 16)
|
||||
{
|
||||
indlist[4] = vertexIndicesX1[getDecimatedIndex(x,y, regSlice.width()+1)];
|
||||
assert(indlist[4] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 32)
|
||||
{
|
||||
indlist[5] = vertexIndicesY1[getDecimatedIndex(x+uStepSize,y, regSlice.width()+1)];
|
||||
assert(indlist[5] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 64)
|
||||
{
|
||||
indlist[6] = vertexIndicesX1[getDecimatedIndex(x,y+uStepSize, regSlice.width()+1)];
|
||||
assert(indlist[6] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 128)
|
||||
{
|
||||
indlist[7] = vertexIndicesY1[getDecimatedIndex(x,y, regSlice.width()+1)];
|
||||
assert(indlist[7] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 256)
|
||||
{
|
||||
indlist[8] = vertexIndicesZ0[getDecimatedIndex(x,y, regSlice.width()+1)];
|
||||
assert(indlist[8] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 512)
|
||||
{
|
||||
indlist[9] = vertexIndicesZ0[getDecimatedIndex(x+uStepSize,y, regSlice.width()+1)];
|
||||
assert(indlist[9] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 1024)
|
||||
{
|
||||
indlist[10] = vertexIndicesZ0[getDecimatedIndex(x+uStepSize,y+uStepSize, regSlice.width()+1)];
|
||||
assert(indlist[10] != -1);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 2048)
|
||||
{
|
||||
indlist[11] = vertexIndicesZ0[getDecimatedIndex(x,y+uStepSize, regSlice.width()+1)];
|
||||
assert(indlist[11] != -1);
|
||||
}
|
||||
|
||||
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
|
||||
{
|
||||
uint32_t ind0 = indlist[triTable[iCubeIndex][i ]];
|
||||
uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
|
||||
uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
|
||||
|
||||
singleMaterialPatch->addTriangle(ind0, ind1, ind2);
|
||||
}//For each triangle
|
||||
}//For each cell
|
||||
}
|
||||
}
|
||||
}
|
@ -1,537 +0,0 @@
|
||||
#pragma region License
|
||||
/******************************************************************************
|
||||
This file is part of the PolyVox library
|
||||
Copyright (C) 2006 David Williams
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
******************************************************************************/
|
||||
#pragma endregion
|
||||
|
||||
#include "PolyVoxImpl/FastSurfaceExtractor.h"
|
||||
|
||||
#include "VolumeSampler.h"
|
||||
#include "IndexedSurfacePatch.h"
|
||||
#include "PolyVoxImpl/MarchingCubesTables.h"
|
||||
#include "SurfaceVertex.h"
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
|
||||
void extractFastSurfaceImpl(Volume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch)
|
||||
{
|
||||
singleMaterialPatch->clear();
|
||||
|
||||
//For edge indices
|
||||
int32_t* vertexIndicesX0 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesY0 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesZ0 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesX1 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesY1 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
int32_t* vertexIndicesZ1 = new int32_t[(region.width()+2) * (region.height()+2)];
|
||||
|
||||
//Cell bitmasks
|
||||
uint8_t* bitmask0 = new uint8_t[(region.width()+2) * (region.height()+2)];
|
||||
uint8_t* bitmask1 = new uint8_t[(region.width()+2) * (region.height()+2)];
|
||||
|
||||
//When generating the mesh for a region we actually look one voxel outside it in the
|
||||
// back, bottom, right direction. Protect against access violations by cropping region here
|
||||
Region regVolume = volumeData->getEnclosingRegion();
|
||||
//regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1));
|
||||
region.cropTo(regVolume);
|
||||
|
||||
//Offset from volume corner
|
||||
const Vector3DFloat offset = static_cast<Vector3DFloat>(region.getLowerCorner());
|
||||
|
||||
//Create a region corresponding to the first slice
|
||||
Region regSlice0(region);
|
||||
regSlice0.setUpperCorner(Vector3DInt32(regSlice0.getUpperCorner().getX(),regSlice0.getUpperCorner().getY(),regSlice0.getLowerCorner().getZ()));
|
||||
|
||||
//Iterator to access the volume data
|
||||
VolumeSampler<uint8_t> volIter(*volumeData);
|
||||
|
||||
//Compute bitmask for initial slice
|
||||
uint32_t uNoOfNonEmptyCellsForSlice0 = computeRoughBitmaskForSlice(volIter, regSlice0, offset, bitmask0, 0);
|
||||
if(uNoOfNonEmptyCellsForSlice0 != 0)
|
||||
{
|
||||
//If there were some non-empty cells then generate initial slice vertices for them
|
||||
generateRoughVerticesForSlice(volIter,regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0);
|
||||
}
|
||||
|
||||
for(uint32_t uSlice = 0; ((uSlice < region.depth()) && (uSlice + offset.getZ() < region.getUpperCorner().getZ())); ++uSlice)
|
||||
{
|
||||
Region regSlice1(regSlice0);
|
||||
regSlice1.shift(Vector3DInt32(0,0,1));
|
||||
|
||||
uint32_t uNoOfNonEmptyCellsForSlice1 = computeRoughBitmaskForSlice(volIter, regSlice1, offset, bitmask1, bitmask0);
|
||||
|
||||
if(uNoOfNonEmptyCellsForSlice1 != 0)
|
||||
{
|
||||
generateRoughVerticesForSlice(volIter,regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
|
||||
}
|
||||
|
||||
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
|
||||
{
|
||||
generateRoughIndicesForSlice(volIter, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
|
||||
}
|
||||
|
||||
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
|
||||
std::swap(bitmask0, bitmask1);
|
||||
std::swap(vertexIndicesX0, vertexIndicesX1);
|
||||
std::swap(vertexIndicesY0, vertexIndicesY1);
|
||||
std::swap(vertexIndicesZ0, vertexIndicesZ1);
|
||||
|
||||
regSlice0 = regSlice1;
|
||||
}
|
||||
|
||||
delete[] bitmask0;
|
||||
delete[] bitmask1;
|
||||
delete[] vertexIndicesX0;
|
||||
delete[] vertexIndicesX1;
|
||||
delete[] vertexIndicesY0;
|
||||
delete[] vertexIndicesY1;
|
||||
delete[] vertexIndicesZ0;
|
||||
delete[] vertexIndicesZ1;
|
||||
}
|
||||
|
||||
uint32_t getIndex(uint32_t x, uint32_t y, uint32_t regionWidth)
|
||||
{
|
||||
return x + (y * (regionWidth+1));
|
||||
}
|
||||
|
||||
uint32_t computeRoughBitmaskForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask)
|
||||
{
|
||||
uint32_t uNoOfNonEmptyCells = 0;
|
||||
|
||||
//Iterate over each cell in the region
|
||||
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace++)
|
||||
{
|
||||
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace++)
|
||||
{
|
||||
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
||||
//Current position
|
||||
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
|
||||
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
|
||||
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
uint8_t iCubeIndex = 0;
|
||||
|
||||
if((uXVolSpace < volIter.getVolume().getWidth()-1) &&
|
||||
(uYVolSpace < volIter.getVolume().getHeight()-1) &&
|
||||
(uZVolSpace < volIter.getVolume().getDepth()-1))
|
||||
{
|
||||
bool isPrevXAvail = uXRegSpace > 0;
|
||||
bool isPrevYAvail = uYRegSpace > 0;
|
||||
bool isPrevZAvail = previousBitmask != 0;
|
||||
|
||||
if(isPrevZAvail)
|
||||
{
|
||||
if(isPrevYAvail)
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexZ >>= 4;
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
||||
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexZ >>= 4;
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
||||
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
else //previous Y not available
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexZ >>= 4;
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 160; //160 = 128+32
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
|
||||
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
|
||||
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
||||
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
//z
|
||||
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
iCubeIndex = iPreviousCubeIndexZ >> 4;
|
||||
|
||||
if (v001 == 0) iCubeIndex |= 16;
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
}
|
||||
else //previous Z not available
|
||||
{
|
||||
if(isPrevYAvail)
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
|
||||
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
|
||||
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
||||
|
||||
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
//y
|
||||
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
|
||||
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
||||
iPreviousCubeIndexY >>= 2;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexY;
|
||||
|
||||
if (v010 == 0) iCubeIndex |= 4;
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
else //previous Y not available
|
||||
{
|
||||
if(isPrevXAvail)
|
||||
{
|
||||
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
|
||||
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
||||
|
||||
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
//x
|
||||
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
|
||||
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
||||
iPreviousCubeIndexX >>= 1;
|
||||
|
||||
iCubeIndex = iPreviousCubeIndexX;
|
||||
|
||||
if (v100 == 0) iCubeIndex |= 2;
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
else //previous X not available
|
||||
{
|
||||
const uint8_t v000 = volIter.getVoxel();
|
||||
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
|
||||
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
|
||||
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
|
||||
|
||||
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
|
||||
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
|
||||
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
|
||||
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
|
||||
|
||||
if (v000 == 0) iCubeIndex |= 1;
|
||||
if (v100 == 0) iCubeIndex |= 2;
|
||||
if (v010 == 0) iCubeIndex |= 4;
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v001 == 0) iCubeIndex |= 16;
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else //We're at the edge of the volume - use bounds checking.
|
||||
{
|
||||
const uint8_t v000 = volIter.getVoxel();
|
||||
const uint8_t v100 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace );
|
||||
const uint8_t v010 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace );
|
||||
const uint8_t v110 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace );
|
||||
|
||||
const uint8_t v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace , uZVolSpace+1);
|
||||
const uint8_t v101 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace+1);
|
||||
const uint8_t v011 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace+1);
|
||||
const uint8_t v111 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1);
|
||||
|
||||
if (v000 == 0) iCubeIndex |= 1;
|
||||
if (v100 == 0) iCubeIndex |= 2;
|
||||
if (v010 == 0) iCubeIndex |= 4;
|
||||
if (v110 == 0) iCubeIndex |= 8;
|
||||
if (v001 == 0) iCubeIndex |= 16;
|
||||
if (v101 == 0) iCubeIndex |= 32;
|
||||
if (v011 == 0) iCubeIndex |= 64;
|
||||
if (v111 == 0) iCubeIndex |= 128;
|
||||
}
|
||||
|
||||
//Save the bitmask
|
||||
bitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = iCubeIndex;
|
||||
|
||||
if(edgeTable[iCubeIndex] != 0)
|
||||
{
|
||||
++uNoOfNonEmptyCells;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
return uNoOfNonEmptyCells;
|
||||
}
|
||||
|
||||
void generateRoughVerticesForSlice(VolumeSampler<uint8_t>& volIter, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[])
|
||||
{
|
||||
//Iterate over each cell in the region
|
||||
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace++)
|
||||
{
|
||||
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace++)
|
||||
{
|
||||
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
||||
|
||||
//Current position
|
||||
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
|
||||
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
|
||||
const uint16_t uZRegSpace = volIter.getPosZ() - offset.getZ();
|
||||
|
||||
const uint8_t v000 = volIter.getVoxel();
|
||||
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
uint8_t iCubeIndex = bitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
|
||||
/* Cube is entirely in/out of the surface */
|
||||
if (edgeTable[iCubeIndex] == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (edgeTable[iCubeIndex] & 1)
|
||||
{
|
||||
if((uXRegSpace + offset.getX()) != regSlice.getUpperCorner().getX())
|
||||
{
|
||||
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
|
||||
const Vector3DFloat v3dPosition(uXRegSpace + 0.5f, uYRegSpace, uZRegSpace);
|
||||
const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f, 0.0f, 0.0f);
|
||||
const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max.
|
||||
const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
||||
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
||||
vertexIndicesX[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = uLastVertexIndex;
|
||||
}
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 8)
|
||||
{
|
||||
if((uYRegSpace + offset.getY()) != regSlice.getUpperCorner().getY())
|
||||
{
|
||||
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
|
||||
const Vector3DFloat v3dPosition(uXRegSpace, uYRegSpace + 0.5f, uZRegSpace);
|
||||
const Vector3DFloat v3dNormal(0.0f, v000 > v010 ? 1.0f : -1.0f, 0.0f);
|
||||
const uint8_t uMaterial = v000 | v010;
|
||||
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
||||
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
||||
vertexIndicesY[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = uLastVertexIndex;
|
||||
}
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 256)
|
||||
{
|
||||
uint8_t v001;
|
||||
if((uZRegSpace + offset.getZ()) != regSlice.getUpperCorner().getZ())
|
||||
{
|
||||
v001 = volIter.peekVoxel0px0py1pz();
|
||||
}
|
||||
else
|
||||
{
|
||||
v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace,uYVolSpace,uZVolSpace+1);
|
||||
}
|
||||
const Vector3DFloat v3dPosition(uXRegSpace, uYRegSpace, uZRegSpace + 0.5f);
|
||||
const Vector3DFloat v3dNormal(0.0f, 0.0f, v000 > v001 ? 1.0f : -1.0f);
|
||||
const uint8_t uMaterial = v000 | v001;
|
||||
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
||||
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
|
||||
vertexIndicesZ[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = uLastVertexIndex;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void generateRoughIndicesForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[])
|
||||
{
|
||||
uint32_t indlist[12];
|
||||
|
||||
//Iterate over each cell in the region
|
||||
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace < regSlice.getUpperCorner().getY(); uYVolSpace++)
|
||||
{
|
||||
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace < regSlice.getUpperCorner().getX(); uXVolSpace++)
|
||||
{
|
||||
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
|
||||
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
|
||||
|
||||
//Current position
|
||||
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
|
||||
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
|
||||
const uint16_t uZRegSpace = volIter.getPosZ() - offset.getZ();
|
||||
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
uint8_t iCubeIndex = bitmask0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
|
||||
/* Cube is entirely in/out of the surface */
|
||||
if (edgeTable[iCubeIndex] == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (edgeTable[iCubeIndex] & 1)
|
||||
{
|
||||
indlist[0] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[0] != -1);
|
||||
assert(indlist[0] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 2)
|
||||
{
|
||||
indlist[1] = vertexIndicesY0[getIndex(uXRegSpace+1,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[1] != -1);
|
||||
assert(indlist[1] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 4)
|
||||
{
|
||||
indlist[2] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace+1, regSlice.width()+1)];
|
||||
assert(indlist[2] != -1);
|
||||
assert(indlist[2] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 8)
|
||||
{
|
||||
indlist[3] = vertexIndicesY0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[3] != -1);
|
||||
assert(indlist[3] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 16)
|
||||
{
|
||||
indlist[4] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[4] != -1);
|
||||
assert(indlist[4] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 32)
|
||||
{
|
||||
indlist[5] = vertexIndicesY1[getIndex(uXRegSpace+1,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[5] != -1);
|
||||
assert(indlist[5] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 64)
|
||||
{
|
||||
indlist[6] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace+1, regSlice.width()+1)];
|
||||
assert(indlist[6] != -1);
|
||||
assert(indlist[6] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 128)
|
||||
{
|
||||
indlist[7] = vertexIndicesY1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[7] != -1);
|
||||
assert(indlist[7] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 256)
|
||||
{
|
||||
indlist[8] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[8] != -1);
|
||||
assert(indlist[8] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 512)
|
||||
{
|
||||
indlist[9] = vertexIndicesZ0[getIndex(uXRegSpace+1,uYRegSpace, regSlice.width()+1)];
|
||||
assert(indlist[9] != -1);
|
||||
assert(indlist[9] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 1024)
|
||||
{
|
||||
indlist[10] = vertexIndicesZ0[getIndex(uXRegSpace+1,uYRegSpace+1, regSlice.width()+1)];
|
||||
assert(indlist[10] != -1);
|
||||
assert(indlist[10] < 10000);
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 2048)
|
||||
{
|
||||
indlist[11] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace+1, regSlice.width()+1)];
|
||||
assert(indlist[11] != -1);
|
||||
assert(indlist[11] < 10000);
|
||||
}
|
||||
|
||||
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
|
||||
{
|
||||
uint32_t ind0 = indlist[triTable[iCubeIndex][i ]];
|
||||
uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
|
||||
uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
|
||||
|
||||
singleMaterialPatch->addTriangle(ind0, ind1, ind2);
|
||||
}//For each triangle
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,32 +0,0 @@
|
||||
#include "SurfaceExtractors.h"
|
||||
|
||||
#include "Volume.h"
|
||||
#include "GradientEstimators.h"
|
||||
#include "IndexedSurfacePatch.h"
|
||||
#include "PolyVoxImpl/MarchingCubesTables.h"
|
||||
#include "Region.h"
|
||||
#include "VolumeSampler.h"
|
||||
|
||||
#include "PolyVoxImpl/DecimatedSurfaceExtractor.h"
|
||||
#include "PolyVoxImpl/FastSurfaceExtractor.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
void extractSurface(Volume<uint8_t>* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch)
|
||||
{
|
||||
if(uLevel == 0)
|
||||
{
|
||||
extractFastSurfaceImpl(volumeData, region, singleMaterialPatch);
|
||||
}
|
||||
else
|
||||
{
|
||||
extractDecimatedSurfaceImpl(volumeData, uLevel, region, singleMaterialPatch);
|
||||
}
|
||||
|
||||
singleMaterialPatch->m_Region = region;
|
||||
}
|
||||
}
|
@ -24,7 +24,6 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
#include "GradientEstimators.h"
|
||||
#include "IndexedSurfacePatch.h"
|
||||
#include "PolyVoxImpl/MarchingCubesTables.h"
|
||||
#include "SurfaceExtractors.h"
|
||||
#include "SurfaceVertex.h"
|
||||
#include "PolyVoxImpl/Utility.h"
|
||||
#include "Vector.h"
|
||||
|
Loading…
x
Reference in New Issue
Block a user