Rearranged ambient occlusion code.
This commit is contained in:
parent
bcea851f2c
commit
8c7e2671be
@ -64,99 +64,10 @@ namespace PolyVox
|
|||||||
IsVoxelTransparentCallback mIsVoxelTransparentCallback;
|
IsVoxelTransparentCallback mIsVoxelTransparentCallback;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// NOTE: The callback needs to be a functor not a function. I haven't been
|
||||||
|
// able to work the required template magic to get functions working as well.
|
||||||
template<typename VolumeType, typename IsVoxelTransparentCallback>
|
template<typename VolumeType, typename IsVoxelTransparentCallback>
|
||||||
void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, IsVoxelTransparentCallback isVoxelTransparentCallback)
|
void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, IsVoxelTransparentCallback isVoxelTransparentCallback);
|
||||||
{
|
|
||||||
typename VolumeType::Sampler m_sampVolume(volInput);
|
|
||||||
|
|
||||||
uint16_t uRandomUnitVectorIndex = 0;
|
|
||||||
uint16_t uRandomVectorIndex = 0;
|
|
||||||
uint16_t uIndexIncreament;
|
|
||||||
|
|
||||||
//Make sure that the size of the volume is an exact multiple of the size of the array.
|
|
||||||
assert(volInput->getWidth() % arrayResult->getDimension(0) == 0);
|
|
||||||
assert(volInput->getHeight() % arrayResult->getDimension(1) == 0);
|
|
||||||
assert(volInput->getDepth() % arrayResult->getDimension(2) == 0);
|
|
||||||
|
|
||||||
//Our initial indices. It doesn't matter exactly what we set here, but the code below makes
|
|
||||||
//sure they are different for different regions which helps reduce tiling patterns in the results.
|
|
||||||
uRandomUnitVectorIndex += region.getLowerCorner().getX() + region.getLowerCorner().getY() + region.getLowerCorner().getZ();
|
|
||||||
uRandomVectorIndex += region.getLowerCorner().getX() + region.getLowerCorner().getY() + region.getLowerCorner().getZ();
|
|
||||||
|
|
||||||
//This value helps us jump around in the array a bit more, so the
|
|
||||||
//nth 'random' value isn't always followed by the n+1th 'random' value.
|
|
||||||
uIndexIncreament = 1;
|
|
||||||
|
|
||||||
const int iRatioX = volInput->getWidth() / arrayResult->getDimension(0);
|
|
||||||
const int iRatioY = volInput->getHeight() / arrayResult->getDimension(1);
|
|
||||||
const int iRatioZ = volInput->getDepth() / arrayResult->getDimension(2);
|
|
||||||
|
|
||||||
const float fRatioX = iRatioX;
|
|
||||||
const float fRatioY = iRatioY;
|
|
||||||
const float fRatioZ = iRatioZ;
|
|
||||||
const Vector3DFloat v3dRatio(fRatioX, fRatioY, fRatioZ);
|
|
||||||
|
|
||||||
const float fHalfRatioX = fRatioX * 0.5f;
|
|
||||||
const float fHalfRatioY = fRatioY * 0.5f;
|
|
||||||
const float fHalfRatioZ = fRatioZ * 0.5f;
|
|
||||||
const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ);
|
|
||||||
|
|
||||||
const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
|
|
||||||
|
|
||||||
//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
|
|
||||||
for(uint16_t z = region.getLowerCorner().getZ(); z <= region.getUpperCorner().getZ(); z += iRatioZ)
|
|
||||||
{
|
|
||||||
for(uint16_t y = region.getLowerCorner().getY(); y <= region.getUpperCorner().getY(); y += iRatioY)
|
|
||||||
{
|
|
||||||
for(uint16_t x = region.getLowerCorner().getX(); x <= region.getUpperCorner().getX(); x += iRatioX)
|
|
||||||
{
|
|
||||||
//Compute a start position corresponding to
|
|
||||||
//the centre of the cell in the output array.
|
|
||||||
Vector3DFloat v3dStart(x, y, z);
|
|
||||||
v3dStart -= v3dOffset;
|
|
||||||
v3dStart += v3dHalfRatio;
|
|
||||||
|
|
||||||
//Keep track of how many rays did not hit anything
|
|
||||||
uint8_t uVisibleDirections = 0;
|
|
||||||
|
|
||||||
for(int ct = 0; ct < uNoOfSamplesPerOutputElement; ct++)
|
|
||||||
{
|
|
||||||
//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
|
|
||||||
//This jitter value moves our sample point from the center of the array cell to somewhere else in the array cell
|
|
||||||
Vector3DFloat v3dJitter = randomVectors[(uRandomVectorIndex += (++uIndexIncreament)) % 1019]; //Prime number helps avoid repetition on sucessive loops.
|
|
||||||
v3dJitter *= v3dHalfRatio;
|
|
||||||
const Vector3DFloat v3dRayStart = v3dStart + v3dJitter;
|
|
||||||
|
|
||||||
Vector3DFloat v3dRayDirection = randomUnitVectors[(uRandomUnitVectorIndex += (++uIndexIncreament)) % 1021]; //Differenct prime number.
|
|
||||||
v3dRayDirection *= fRayLength;
|
|
||||||
|
|
||||||
AmbientOcclusionCalculatorRaycastCallback<IsVoxelTransparentCallback> ambientOcclusionCalculatorRaycastCallback(isVoxelTransparentCallback);
|
|
||||||
MyRaycastResult result = raycastWithDirection(volInput, v3dRayStart, v3dRayDirection, ambientOcclusionCalculatorRaycastCallback);
|
|
||||||
|
|
||||||
if(result == MyRaycastResults::Completed)
|
|
||||||
{
|
|
||||||
++uVisibleDirections;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float fVisibility;
|
|
||||||
if(uNoOfSamplesPerOutputElement == 0)
|
|
||||||
{
|
|
||||||
//The user might request zero samples (I've done this in the past while debugging - I don't want to
|
|
||||||
//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.
|
|
||||||
fVisibility = 1.0f;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(uNoOfSamplesPerOutputElement);
|
|
||||||
assert((fVisibility >= 0.0f) && (fVisibility <= 1.0f));
|
|
||||||
}
|
|
||||||
|
|
||||||
(*arrayResult)[z / iRatioZ][y / iRatioY][x / iRatioX] = static_cast<uint8_t>(255.0f * fVisibility);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#include "PolyVoxCore/AmbientOcclusionCalculator.inl"
|
#include "PolyVoxCore/AmbientOcclusionCalculator.inl"
|
||||||
|
@ -23,5 +23,97 @@ freely, subject to the following restrictions:
|
|||||||
|
|
||||||
namespace PolyVox
|
namespace PolyVox
|
||||||
{
|
{
|
||||||
|
template<typename VolumeType, typename IsVoxelTransparentCallback>
|
||||||
|
void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, IsVoxelTransparentCallback isVoxelTransparentCallback)
|
||||||
|
{
|
||||||
|
typename VolumeType::Sampler m_sampVolume(volInput);
|
||||||
|
|
||||||
|
uint16_t uRandomUnitVectorIndex = 0;
|
||||||
|
uint16_t uRandomVectorIndex = 0;
|
||||||
|
uint16_t uIndexIncreament;
|
||||||
|
|
||||||
|
//Make sure that the size of the volume is an exact multiple of the size of the array.
|
||||||
|
assert(volInput->getWidth() % arrayResult->getDimension(0) == 0);
|
||||||
|
assert(volInput->getHeight() % arrayResult->getDimension(1) == 0);
|
||||||
|
assert(volInput->getDepth() % arrayResult->getDimension(2) == 0);
|
||||||
|
|
||||||
|
//Our initial indices. It doesn't matter exactly what we set here, but the code below makes
|
||||||
|
//sure they are different for different regions which helps reduce tiling patterns in the results.
|
||||||
|
uRandomUnitVectorIndex += region.getLowerCorner().getX() + region.getLowerCorner().getY() + region.getLowerCorner().getZ();
|
||||||
|
uRandomVectorIndex += region.getLowerCorner().getX() + region.getLowerCorner().getY() + region.getLowerCorner().getZ();
|
||||||
|
|
||||||
|
//This value helps us jump around in the array a bit more, so the
|
||||||
|
//nth 'random' value isn't always followed by the n+1th 'random' value.
|
||||||
|
uIndexIncreament = 1;
|
||||||
|
|
||||||
|
const int iRatioX = volInput->getWidth() / arrayResult->getDimension(0);
|
||||||
|
const int iRatioY = volInput->getHeight() / arrayResult->getDimension(1);
|
||||||
|
const int iRatioZ = volInput->getDepth() / arrayResult->getDimension(2);
|
||||||
|
|
||||||
|
const float fRatioX = iRatioX;
|
||||||
|
const float fRatioY = iRatioY;
|
||||||
|
const float fRatioZ = iRatioZ;
|
||||||
|
const Vector3DFloat v3dRatio(fRatioX, fRatioY, fRatioZ);
|
||||||
|
|
||||||
|
const float fHalfRatioX = fRatioX * 0.5f;
|
||||||
|
const float fHalfRatioY = fRatioY * 0.5f;
|
||||||
|
const float fHalfRatioZ = fRatioZ * 0.5f;
|
||||||
|
const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ);
|
||||||
|
|
||||||
|
const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
|
||||||
|
|
||||||
|
//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
|
||||||
|
for(uint16_t z = region.getLowerCorner().getZ(); z <= region.getUpperCorner().getZ(); z += iRatioZ)
|
||||||
|
{
|
||||||
|
for(uint16_t y = region.getLowerCorner().getY(); y <= region.getUpperCorner().getY(); y += iRatioY)
|
||||||
|
{
|
||||||
|
for(uint16_t x = region.getLowerCorner().getX(); x <= region.getUpperCorner().getX(); x += iRatioX)
|
||||||
|
{
|
||||||
|
//Compute a start position corresponding to
|
||||||
|
//the centre of the cell in the output array.
|
||||||
|
Vector3DFloat v3dStart(x, y, z);
|
||||||
|
v3dStart -= v3dOffset;
|
||||||
|
v3dStart += v3dHalfRatio;
|
||||||
|
|
||||||
|
//Keep track of how many rays did not hit anything
|
||||||
|
uint8_t uVisibleDirections = 0;
|
||||||
|
|
||||||
|
for(int ct = 0; ct < uNoOfSamplesPerOutputElement; ct++)
|
||||||
|
{
|
||||||
|
//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
|
||||||
|
//This jitter value moves our sample point from the center of the array cell to somewhere else in the array cell
|
||||||
|
Vector3DFloat v3dJitter = randomVectors[(uRandomVectorIndex += (++uIndexIncreament)) % 1019]; //Prime number helps avoid repetition on sucessive loops.
|
||||||
|
v3dJitter *= v3dHalfRatio;
|
||||||
|
const Vector3DFloat v3dRayStart = v3dStart + v3dJitter;
|
||||||
|
|
||||||
|
Vector3DFloat v3dRayDirection = randomUnitVectors[(uRandomUnitVectorIndex += (++uIndexIncreament)) % 1021]; //Differenct prime number.
|
||||||
|
v3dRayDirection *= fRayLength;
|
||||||
|
|
||||||
|
AmbientOcclusionCalculatorRaycastCallback<IsVoxelTransparentCallback> ambientOcclusionCalculatorRaycastCallback(isVoxelTransparentCallback);
|
||||||
|
MyRaycastResult result = raycastWithDirection(volInput, v3dRayStart, v3dRayDirection, ambientOcclusionCalculatorRaycastCallback);
|
||||||
|
|
||||||
|
if(result == MyRaycastResults::Completed)
|
||||||
|
{
|
||||||
|
++uVisibleDirections;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float fVisibility;
|
||||||
|
if(uNoOfSamplesPerOutputElement == 0)
|
||||||
|
{
|
||||||
|
//The user might request zero samples (I've done this in the past while debugging - I don't want to
|
||||||
|
//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.
|
||||||
|
fVisibility = 1.0f;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(uNoOfSamplesPerOutputElement);
|
||||||
|
assert((fVisibility >= 0.0f) && (fVisibility <= 1.0f));
|
||||||
|
}
|
||||||
|
|
||||||
|
(*arrayResult)[z / iRatioZ][y / iRatioY][x / iRatioX] = static_cast<uint8_t>(255.0f * fVisibility);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user