Removing class version of AmbientOcclusionCalculator.

This commit is contained in:
David Williams 2012-10-05 16:28:03 +02:00
parent b86a3552e6
commit bcea851f2c
2 changed files with 24 additions and 188 deletions

View File

@ -41,33 +41,6 @@ freely, subject to the following restrictions:
namespace PolyVox
{
template<typename VolumeType>
class AmbientOcclusionCalculator
{
public:
AmbientOcclusionCalculator(VolumeType* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, polyvox_function<bool(const typename VolumeType::VoxelType& voxel)> funcIsTransparent);
~AmbientOcclusionCalculator();
void execute(void);
private:
bool raycastCallback(const typename VolumeType::Sampler& sampler);
Region m_region;
typename VolumeType::Sampler m_sampVolume;
VolumeType* m_volInput;
Array<3, uint8_t>* m_arrayResult;
float m_fRayLength;
uint8_t m_uNoOfSamplesPerOutputElement;
uint16_t mRandomUnitVectorIndex;
uint16_t mRandomVectorIndex;
uint16_t mIndexIncreament;
polyvox_function<bool(const typename VolumeType::VoxelType& voxel)> m_funcIsTransparent;
};
template<typename IsVoxelTransparentCallback>
class AmbientOcclusionCalculatorRaycastCallback
{
@ -94,37 +67,29 @@ namespace PolyVox
template<typename VolumeType, typename IsVoxelTransparentCallback>
void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, IsVoxelTransparentCallback isVoxelTransparentCallback)
{
Region m_region = region;
typename VolumeType::Sampler m_sampVolume(volInput);
VolumeType* m_volInput = volInput;
Array<3, uint8_t>* m_arrayResult = arrayResult;
float m_fRayLength = fRayLength;
uint8_t m_uNoOfSamplesPerOutputElement = uNoOfSamplesPerOutputElement;
uint16_t mRandomUnitVectorIndex = 0;
uint16_t mRandomVectorIndex = 0;
uint16_t mIndexIncreament;
//polyvox_function<bool(const typename VolumeType::VoxelType& voxel)> m_funcIsTransparent = funcIsTransparent;
uint16_t uRandomUnitVectorIndex = 0;
uint16_t uRandomVectorIndex = 0;
uint16_t uIndexIncreament;
//Make sure that the size of the volume is an exact multiple of the size of the array.
assert(m_volInput->getWidth() % arrayResult->getDimension(0) == 0);
assert(m_volInput->getHeight() % arrayResult->getDimension(1) == 0);
assert(m_volInput->getDepth() % arrayResult->getDimension(2) == 0);
assert(volInput->getWidth() % arrayResult->getDimension(0) == 0);
assert(volInput->getHeight() % arrayResult->getDimension(1) == 0);
assert(volInput->getDepth() % arrayResult->getDimension(2) == 0);
//Our initial indices. It doesn't matter exactly what we set here, but the code below makes
//sure they are different for different regions which helps reduce tiling patterns in the results.
mRandomUnitVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
mRandomVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
uRandomUnitVectorIndex += region.getLowerCorner().getX() + region.getLowerCorner().getY() + region.getLowerCorner().getZ();
uRandomVectorIndex += region.getLowerCorner().getX() + region.getLowerCorner().getY() + region.getLowerCorner().getZ();
//This value helps us jump around in the array a bit more, so the
//nth 'random' value isn't always followed by the n+1th 'random' value.
mIndexIncreament = 1;
uIndexIncreament = 1;
const int iRatioX = m_volInput->getWidth() / m_arrayResult->getDimension(0);
const int iRatioY = m_volInput->getHeight() / m_arrayResult->getDimension(1);
const int iRatioZ = m_volInput->getDepth() / m_arrayResult->getDimension(2);
const int iRatioX = volInput->getWidth() / arrayResult->getDimension(0);
const int iRatioY = volInput->getHeight() / arrayResult->getDimension(1);
const int iRatioZ = volInput->getDepth() / arrayResult->getDimension(2);
const float fRatioX = iRatioX;
const float fRatioY = iRatioY;
@ -138,15 +103,12 @@ namespace PolyVox
const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
//RaycastResult raycastResult;
//Raycast<VolumeType> raycast(m_volInput, Vector3DFloat(0.0f,0.0f,0.0f), Vector3DFloat(1.0f,1.0f,1.0f), raycastResult, polyvox_bind(&PolyVox::AmbientOcclusionCalculator<VolumeType>::raycastCallback, this, std::placeholders::_1));
//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
for(uint16_t z = m_region.getLowerCorner().getZ(); z <= m_region.getUpperCorner().getZ(); z += iRatioZ)
for(uint16_t z = region.getLowerCorner().getZ(); z <= region.getUpperCorner().getZ(); z += iRatioZ)
{
for(uint16_t y = m_region.getLowerCorner().getY(); y <= m_region.getUpperCorner().getY(); y += iRatioY)
for(uint16_t y = region.getLowerCorner().getY(); y <= region.getUpperCorner().getY(); y += iRatioY)
{
for(uint16_t x = m_region.getLowerCorner().getX(); x <= m_region.getUpperCorner().getX(); x += iRatioX)
for(uint16_t x = region.getLowerCorner().getX(); x <= region.getUpperCorner().getX(); x += iRatioX)
{
//Compute a start position corresponding to
//the centre of the cell in the output array.
@ -157,31 +119,20 @@ namespace PolyVox
//Keep track of how many rays did not hit anything
uint8_t uVisibleDirections = 0;
for(int ct = 0; ct < m_uNoOfSamplesPerOutputElement; ct++)
for(int ct = 0; ct < uNoOfSamplesPerOutputElement; ct++)
{
//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
//This jitter value moves our sample point from the center of the array cell to somewhere else in the array cell
Vector3DFloat v3dJitter = randomVectors[(mRandomVectorIndex += (++mIndexIncreament)) % 1019]; //Prime number helps avoid repetition on sucessive loops.
Vector3DFloat v3dJitter = randomVectors[(uRandomVectorIndex += (++uIndexIncreament)) % 1019]; //Prime number helps avoid repetition on sucessive loops.
v3dJitter *= v3dHalfRatio;
const Vector3DFloat v3dRayStart = v3dStart + v3dJitter;
Vector3DFloat v3dRayDirection = randomUnitVectors[(mRandomUnitVectorIndex += (++mIndexIncreament)) % 1021]; //Differenct prime number.
v3dRayDirection *= m_fRayLength;
Vector3DFloat v3dRayDirection = randomUnitVectors[(uRandomUnitVectorIndex += (++uIndexIncreament)) % 1021]; //Differenct prime number.
v3dRayDirection *= fRayLength;
/*raycast.setStart(v3dRayStart);
raycast.setDirection(v3dRayDirection);
raycast.execute();
if(raycastResult.foundIntersection == false)
{
++uVisibleDirections;
}*/
//IsVoxelTransparent isVoxelTransparent;
AmbientOcclusionCalculatorRaycastCallback<IsVoxelTransparentCallback> ambientOcclusionCalculatorRaycastCallback(isVoxelTransparentCallback);
MyRaycastResult result = raycastWithDirection(volInput, v3dRayStart, v3dRayDirection, ambientOcclusionCalculatorRaycastCallback);
MyRaycastResult result = raycastWithDirection(m_volInput, v3dRayStart, v3dRayDirection, ambientOcclusionCalculatorRaycastCallback);
if(result == MyRaycastResults::Completed)
{
++uVisibleDirections;
@ -189,7 +140,7 @@ namespace PolyVox
}
float fVisibility;
if(m_uNoOfSamplesPerOutputElement == 0)
if(uNoOfSamplesPerOutputElement == 0)
{
//The user might request zero samples (I've done this in the past while debugging - I don't want to
//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.
@ -197,11 +148,11 @@ namespace PolyVox
}
else
{
fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(m_uNoOfSamplesPerOutputElement);
fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(uNoOfSamplesPerOutputElement);
assert((fVisibility >= 0.0f) && (fVisibility <= 1.0f));
}
(*m_arrayResult)[z / iRatioZ][y / iRatioY][x / iRatioX] = static_cast<uint8_t>(255.0f * fVisibility);
(*arrayResult)[z / iRatioZ][y / iRatioY][x / iRatioX] = static_cast<uint8_t>(255.0f * fVisibility);
}
}
}

View File

@ -23,120 +23,5 @@ freely, subject to the following restrictions:
namespace PolyVox
{
template<typename VolumeType>
AmbientOcclusionCalculator<VolumeType>::AmbientOcclusionCalculator(VolumeType* volInput, Array<3, uint8_t>* arrayResult, Region region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, polyvox_function<bool(const typename VolumeType::VoxelType& voxel)> funcIsTransparent)
:m_region(region)
,m_sampVolume(volInput)
,m_volInput(volInput)
,m_arrayResult(arrayResult)
,m_fRayLength(fRayLength)
,m_uNoOfSamplesPerOutputElement(uNoOfSamplesPerOutputElement)
,mRandomUnitVectorIndex(0) //Although these could be uninitialised, we
,mRandomVectorIndex(0) //initialise for consistant results in the tests.
,m_funcIsTransparent(funcIsTransparent)
{
//Make sure that the size of the volume is an exact multiple of the size of the array.
assert(m_volInput->getWidth() % arrayResult->getDimension(0) == 0);
assert(m_volInput->getHeight() % arrayResult->getDimension(1) == 0);
assert(m_volInput->getDepth() % arrayResult->getDimension(2) == 0);
//Our initial indices. It doesn't matter exactly what we set here, but the code below makes
//sure they are different for different regions which helps reduce tiling patterns in the results.
mRandomUnitVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
mRandomVectorIndex += m_region.getLowerCorner().getX() + m_region.getLowerCorner().getY() + m_region.getLowerCorner().getZ();
//This value helps us jump around in the array a bit more, so the
//nth 'random' value isn't always followed by the n+1th 'random' value.
mIndexIncreament = 1;
}
template<typename VolumeType>
AmbientOcclusionCalculator<VolumeType>::~AmbientOcclusionCalculator()
{
}
template<typename VolumeType>
void AmbientOcclusionCalculator<VolumeType>::execute(void)
{
const int iRatioX = m_volInput->getWidth() / m_arrayResult->getDimension(0);
const int iRatioY = m_volInput->getHeight() / m_arrayResult->getDimension(1);
const int iRatioZ = m_volInput->getDepth() / m_arrayResult->getDimension(2);
const float fRatioX = iRatioX;
const float fRatioY = iRatioY;
const float fRatioZ = iRatioZ;
const Vector3DFloat v3dRatio(fRatioX, fRatioY, fRatioZ);
const float fHalfRatioX = fRatioX * 0.5f;
const float fHalfRatioY = fRatioY * 0.5f;
const float fHalfRatioZ = fRatioZ * 0.5f;
const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ);
const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
RaycastResult raycastResult;
Raycast<VolumeType> raycast(m_volInput, Vector3DFloat(0.0f,0.0f,0.0f), Vector3DFloat(1.0f,1.0f,1.0f), raycastResult, polyvox_bind(&PolyVox::AmbientOcclusionCalculator<VolumeType>::raycastCallback, this, std::placeholders::_1));
//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
for(uint16_t z = m_region.getLowerCorner().getZ(); z <= m_region.getUpperCorner().getZ(); z += iRatioZ)
{
for(uint16_t y = m_region.getLowerCorner().getY(); y <= m_region.getUpperCorner().getY(); y += iRatioY)
{
for(uint16_t x = m_region.getLowerCorner().getX(); x <= m_region.getUpperCorner().getX(); x += iRatioX)
{
//Compute a start position corresponding to
//the centre of the cell in the output array.
Vector3DFloat v3dStart(x, y, z);
v3dStart -= v3dOffset;
v3dStart += v3dHalfRatio;
//Keep track of how many rays did not hit anything
uint8_t uVisibleDirections = 0;
for(int ct = 0; ct < m_uNoOfSamplesPerOutputElement; ct++)
{
//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
//This jitter value moves our sample point from the center of the array cell to somewhere else in the array cell
Vector3DFloat v3dJitter = randomVectors[(mRandomVectorIndex += (++mIndexIncreament)) % 1019]; //Prime number helps avoid repetition on sucessive loops.
v3dJitter *= v3dHalfRatio;
const Vector3DFloat v3dRayStart = v3dStart + v3dJitter;
Vector3DFloat v3dRayDirection = randomUnitVectors[(mRandomUnitVectorIndex += (++mIndexIncreament)) % 1021]; //Differenct prime number.
v3dRayDirection *= m_fRayLength;
raycast.setStart(v3dRayStart);
raycast.setDirection(v3dRayDirection);
raycast.execute();
if(raycastResult.foundIntersection == false)
{
++uVisibleDirections;
}
}
float fVisibility;
if(m_uNoOfSamplesPerOutputElement == 0)
{
//The user might request zero samples (I've done this in the past while debugging - I don't want to
//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.
fVisibility = 1.0f;
}
else
{
fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(m_uNoOfSamplesPerOutputElement);
assert((fVisibility >= 0.0f) && (fVisibility <= 1.0f));
}
(*m_arrayResult)[z / iRatioZ][y / iRatioY][x / iRatioX] = static_cast<uint8_t>(255.0f * fVisibility);
}
}
}
}
template<typename VolumeType>
bool AmbientOcclusionCalculator<VolumeType>::raycastCallback(const typename VolumeType::Sampler& sampler)
{
typename VolumeType::VoxelType voxel = sampler.getVoxel();
return m_funcIsTransparent(voxel);
}
}