Removed Stan Melax's stuff. PolyVox should compile on Linux again now.
This commit is contained in:
parent
d3ad3d985b
commit
9aee0d26d2
@ -28,7 +28,6 @@ freely, subject to the following restrictions:
|
||||
#include "GradientEstimators.h"
|
||||
#include "SurfaceExtractor.h"
|
||||
|
||||
#include "RenderDynamicMesh.h"
|
||||
#include "Mesh.h"
|
||||
|
||||
//Some namespaces we need
|
||||
|
@ -112,7 +112,6 @@ int main(int argc, char *argv[])
|
||||
|
||||
//createCubeInVolume(volData, Vector3DUint16(1, 1, 1), Vector3DUint16(maxPos-1, maxPos-1, midPos/4), 255);
|
||||
|
||||
volData.calculateSizeInChars();
|
||||
cout << "Tidying memory...";
|
||||
volData.tidyUpMemory(0);
|
||||
cout << "done." << endl;
|
||||
|
@ -11,11 +11,9 @@ SET(CORE_SRC_FILES
|
||||
source/MeshEdge.cpp
|
||||
source/MeshFace.cpp
|
||||
source/MeshVertex.cpp
|
||||
source/progmesh.cpp
|
||||
source/Region.cpp
|
||||
source/SurfaceExtractor.cpp
|
||||
source/SurfaceVertex.cpp
|
||||
source/vector.cpp
|
||||
source/VoxelFilters.cpp
|
||||
)
|
||||
|
||||
@ -23,19 +21,16 @@ SET(CORE_SRC_FILES
|
||||
SET(CORE_INC_FILES
|
||||
include/GradientEstimators.inl
|
||||
include/IndexedSurfacePatch.h
|
||||
include/list.h
|
||||
include/Log.h
|
||||
include/Mesh.h
|
||||
include/MeshEdge.h
|
||||
include/MeshFace.h
|
||||
include/MeshVertex.h
|
||||
include/PolyVoxForwardDeclarations.h
|
||||
include/progmesh.h
|
||||
include/Region.h
|
||||
include/SurfaceExtractor.h
|
||||
include/SurfaceVertex.h
|
||||
include/Vector.h
|
||||
include/vector_melax.h
|
||||
include/Vector.inl
|
||||
include/Volume.h
|
||||
include/Volume.inl
|
||||
|
@ -85,8 +85,6 @@ namespace PolyVox
|
||||
int noOfDegenerateTris(void);
|
||||
void removeDegenerateTris(void);
|
||||
|
||||
void makeProgressiveMesh(void);
|
||||
|
||||
Region m_Region;
|
||||
|
||||
int32_t m_iTimeStamp;
|
||||
|
@ -140,8 +140,6 @@ namespace PolyVox
|
||||
void setVoxelAt(const Vector3DUint16& v3dPos, VoxelType tValue);
|
||||
|
||||
void tidyUpMemory(uint32_t uNoOfBlocksToProcess = (std::numeric_limits<uint32_t>::max)());
|
||||
///Calculates roughly how much memory is used by the volume.
|
||||
uint32_t calculateSizeInChars(void);
|
||||
|
||||
private:
|
||||
POLYVOX_SHARED_PTR< Block<VoxelType> > getHomogenousBlock(VoxelType tHomogenousValue);
|
||||
|
@ -357,47 +357,6 @@ namespace PolyVox
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
/// The returned value is not precise because it is hard to say how much memory
|
||||
/// STL vectors and maps take iternally, but it accounts for all the block data
|
||||
/// which is by far the most significant contributer. The returned value is in
|
||||
/// multiples of the basic type 'char', which is equal to a byte on most systems.
|
||||
/// Important Note: The value returned by this function is only correct if there
|
||||
/// is only one volume in memory. This is because blocks are shared between volumes
|
||||
/// without any one volume being the real owner.
|
||||
/// \return The amount of memory used by the volume.
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <typename VoxelType>
|
||||
uint32_t Volume<VoxelType>::calculateSizeInChars(void)
|
||||
{
|
||||
//The easy part
|
||||
uint32_t uSize = sizeof(Volume<VoxelType>);
|
||||
|
||||
//Now determine the size of the non homogenous data.
|
||||
for(uint32_t ct = 0; ct < m_pBlocks.size(); ct++)
|
||||
{
|
||||
if(m_pBlocks[ct].unique()) //Check for non-homogenity
|
||||
{
|
||||
uSize += sizeof(POLYVOX_SHARED_PTR< Block<VoxelType> >); //The pointer
|
||||
uSize += m_pBlocks[ct]->sizeInChars(); //The data it points to.
|
||||
}
|
||||
}
|
||||
|
||||
//The size of the m_vecBlockIsPotentiallyHomogenous vector
|
||||
uSize += m_vecBlockIsPotentiallyHomogenous.size() * sizeof(bool);
|
||||
|
||||
//Now determine the size of the homogenous data.
|
||||
//We could just get the number of blocks in the map and multiply
|
||||
//by the block size, but it feels safer to do it 'properly'.
|
||||
for(std::map<VoxelType, POLYVOX_SHARED_PTR< Block<VoxelType> > >::const_iterator iter = m_pHomogenousBlock.begin(); iter != m_pHomogenousBlock.end(); iter++)
|
||||
{
|
||||
uSize += sizeof(POLYVOX_SHARED_PTR< Block<VoxelType> >); //The pointer
|
||||
uSize += iter->second->sizeInChars(); //The data it points to.
|
||||
}
|
||||
|
||||
return uSize;
|
||||
}
|
||||
#pragma endregion
|
||||
|
||||
#pragma region Private Implementation
|
||||
|
@ -1,128 +0,0 @@
|
||||
/*
|
||||
* A generic template list class.
|
||||
* Fairly typical of the list example you would
|
||||
* find in any c++ book.
|
||||
*/
|
||||
#ifndef GENERIC_LIST_H
|
||||
#define GENERIC_LIST_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
template <class Type> class List {
|
||||
public:
|
||||
List(int s=0);
|
||||
~List();
|
||||
void allocate(int s);
|
||||
void SetSize(int s);
|
||||
void Pack();
|
||||
void Add(Type);
|
||||
void AddUnique(Type);
|
||||
int Contains(Type);
|
||||
void Remove(Type);
|
||||
void DelIndex(int i);
|
||||
Type * element;
|
||||
int num;
|
||||
int array_size;
|
||||
Type &operator[](int i){assert(i>=0 && i<num); return element[i];}
|
||||
};
|
||||
|
||||
|
||||
template <class Type>
|
||||
List<Type>::List(int s){
|
||||
num=0;
|
||||
array_size = 0;
|
||||
element = NULL;
|
||||
if(s) {
|
||||
allocate(s);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Type>
|
||||
List<Type>::~List<Type>(){
|
||||
delete element;
|
||||
}
|
||||
|
||||
template <class Type>
|
||||
void List<Type>::allocate(int s){
|
||||
assert(s>0);
|
||||
assert(s>=num);
|
||||
Type *old = element;
|
||||
array_size =s;
|
||||
element = new Type[array_size];
|
||||
assert(element);
|
||||
for(int i=0;i<num;i++){
|
||||
element[i]=old[i];
|
||||
}
|
||||
if(old) delete old;
|
||||
}
|
||||
template <class Type>
|
||||
void List<Type>::SetSize(int s){
|
||||
if(s==0) { if(element) delete element;}
|
||||
else { allocate(s); }
|
||||
num=s;
|
||||
}
|
||||
template <class Type>
|
||||
void List<Type>::Pack(){
|
||||
allocate(num);
|
||||
}
|
||||
|
||||
template <class Type>
|
||||
void List<Type>::Add(Type t){
|
||||
assert(num<=array_size);
|
||||
if(num==array_size) {
|
||||
allocate((array_size)?array_size *2:16);
|
||||
}
|
||||
//int i;
|
||||
//for(i=0;i<num;i++) {
|
||||
// dissallow duplicates
|
||||
// assert(element[i] != t);
|
||||
//}
|
||||
element[num++] = t;
|
||||
}
|
||||
|
||||
template <class Type>
|
||||
int List<Type>::Contains(Type t){
|
||||
int i;
|
||||
int count=0;
|
||||
for(i=0;i<num;i++) {
|
||||
if(element[i] == t) count++;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
template <class Type>
|
||||
void List<Type>::AddUnique(Type t){
|
||||
if(!Contains(t)) Add(t);
|
||||
}
|
||||
|
||||
|
||||
template <class Type>
|
||||
void List<Type>::DelIndex(int i){
|
||||
assert(i<num);
|
||||
num--;
|
||||
while(i<num){
|
||||
element[i] = element[i+1];
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
template <class Type>
|
||||
void List<Type>::Remove(Type t){
|
||||
int i;
|
||||
for(i=0;i<num;i++) {
|
||||
if(element[i] == t) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
DelIndex(i);
|
||||
for(i=0;i<num;i++) {
|
||||
assert(element[i] != t);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif
|
@ -1,35 +0,0 @@
|
||||
/*
|
||||
* Progressive Mesh type Polygon Reduction Algorithm
|
||||
* by Stan Melax (c) 1998
|
||||
*
|
||||
* The function ProgressiveMesh() takes a model in an "indexed face
|
||||
* set" sort of way. i.e. list of vertices and list of triangles.
|
||||
* The function then does the polygon reduction algorithm
|
||||
* internally and reduces the model all the way down to 0
|
||||
* vertices and then returns the order in which the
|
||||
* vertices are collapsed and to which neighbor each vertex
|
||||
* is collapsed to. More specifically the returned "permutation"
|
||||
* indicates how to reorder your vertices so you can render
|
||||
* an object by using the first n vertices (for the n
|
||||
* vertex version). After permuting your vertices, the
|
||||
* map list indicates to which vertex each vertex is collapsed to.
|
||||
*/
|
||||
|
||||
#ifndef PROGRESSIVE_MESH_H
|
||||
#define PROGRESSIVE_MESH_H
|
||||
|
||||
#include "PolyVoxImpl/TypeDef.h"
|
||||
|
||||
#include "vector_melax.h"
|
||||
#include "list.h"
|
||||
|
||||
class tridata {
|
||||
public:
|
||||
int v[3]; // indices to vertex list
|
||||
// texture and vertex normal info removed for this demo
|
||||
};
|
||||
|
||||
void POLYVOXCORE_API ProgressiveMesh(List<VectorM> &vert, List<tridata> &tri,
|
||||
List<int> &map, List<int> &permutation );
|
||||
|
||||
#endif
|
@ -1,68 +0,0 @@
|
||||
//
|
||||
// This module contains a bunch of well understood functions
|
||||
// I apologise if the conventions used here are slightly
|
||||
// different than what you are used to.
|
||||
//
|
||||
|
||||
#ifndef GENERIC_VECTOR_H
|
||||
#define GENERIC_VECTOR_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
|
||||
class VectorM {
|
||||
public:
|
||||
float x,y,z;
|
||||
VectorM(float _x=0.0,float _y=0.0,float _z=0.0){x=_x;y=_y;z=_z;};
|
||||
operator float *() { return &x;};
|
||||
|
||||
float fBoundaryCost;
|
||||
};
|
||||
|
||||
float magnitude(VectorM v);
|
||||
VectorM normalize(VectorM v);
|
||||
|
||||
VectorM operator+(VectorM v1,VectorM v2);
|
||||
VectorM operator-(VectorM v);
|
||||
VectorM operator-(VectorM v1,VectorM v2);
|
||||
VectorM operator*(VectorM v1,float s) ;
|
||||
VectorM operator*(float s,VectorM v1) ;
|
||||
VectorM operator/(VectorM v1,float s) ;
|
||||
float operator^(VectorM v1,VectorM v2); // DOT product
|
||||
VectorM operator*(VectorM v1,VectorM v2); // CROSS product
|
||||
VectorM planelineintersection(VectorM n,float d,VectorM p1,VectorM p2);
|
||||
|
||||
class matrix{
|
||||
public:
|
||||
VectorM x,y,z;
|
||||
matrix(){x=VectorM(1.0f,0.0f,0.0f);
|
||||
y=VectorM(0.0f,1.0f,0.0f);
|
||||
z=VectorM(0.0f,0.0f,1.0f);};
|
||||
matrix(VectorM _x,VectorM _y,VectorM _z){x=_x;y=_y;z=_z;};
|
||||
};
|
||||
matrix transpose(matrix m);
|
||||
VectorM operator*(matrix m,VectorM v);
|
||||
matrix operator*(matrix m1,matrix m2);
|
||||
|
||||
class Quaternion{
|
||||
public:
|
||||
float r,x,y,z;
|
||||
Quaternion(){x=y=z=0.0f;r=1.0f;};
|
||||
Quaternion(VectorM v,float t){v=normalize(v);r=(float)cos(t/2.0);v=v*(float)sin(t/2.0);x=v.x;y=v.y;z=v.z;};
|
||||
Quaternion(float _r,float _x,float _y,float _z){r=_r;x=_x;y=_y;z=_z;};
|
||||
float angle(){return (float)(acos(r)*2.0);}
|
||||
VectorM axis(){VectorM a(x,y,z); return a*(float)(1/sin(angle()/2.0));}
|
||||
VectorM xdir(){return VectorM(1-2*(y*y+z*z), 2*(x*y+r*z), 2*(x*z-r*y));}
|
||||
VectorM ydir(){return VectorM( 2*(x*y-r*z),1-2*(x*x+z*z), 2*(y*z+r*x));}
|
||||
VectorM zdir(){return VectorM( 2*(x*z+r*y), 2*(y*z-r*x),1-2*(x*x+y*y));}
|
||||
matrix getmatrix(){return matrix(xdir(),ydir(),zdir());}
|
||||
//operator matrix(){return getmatrix();}
|
||||
};
|
||||
Quaternion operator-(Quaternion q);
|
||||
Quaternion operator*(Quaternion a,Quaternion b);
|
||||
VectorM operator*(Quaternion q,VectorM v);
|
||||
VectorM operator*(VectorM v,Quaternion q);
|
||||
Quaternion slerp(Quaternion a,Quaternion b,float interp);
|
||||
|
||||
#endif
|
@ -25,8 +25,6 @@ freely, subject to the following restrictions:
|
||||
|
||||
#include "IndexedSurfacePatch.h"
|
||||
|
||||
#include "progmesh.h"
|
||||
|
||||
#include <cstdlib>
|
||||
#include <list>
|
||||
|
||||
@ -825,233 +823,4 @@ namespace PolyVox
|
||||
|
||||
m_vecTriangleIndices.resize(noOfNonDegenerate * 3);
|
||||
}
|
||||
|
||||
void IndexedSurfacePatch::makeProgressiveMesh(void)
|
||||
{
|
||||
|
||||
//Build the mesh using Stan Melax's code
|
||||
List<VectorM> vecList;
|
||||
for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
|
||||
{
|
||||
VectorM vec;
|
||||
vec.x = m_vecVertices[vertCt].getPosition().getX();
|
||||
vec.y = m_vecVertices[vertCt].getPosition().getY();
|
||||
vec.z = m_vecVertices[vertCt].getPosition().getZ();
|
||||
|
||||
if(m_vecVertices[vertCt].isOnEdge())
|
||||
{
|
||||
vec.fBoundaryCost = 1.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
vec.fBoundaryCost = 0.0f;
|
||||
}
|
||||
|
||||
vecList.Add(vec);
|
||||
}
|
||||
|
||||
List<tridata> triList;
|
||||
for(int triCt = 0; triCt < m_vecTriangleIndices.size(); )
|
||||
{
|
||||
tridata tri;
|
||||
tri.v[0] = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
tri.v[1] = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
tri.v[2] = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
triList.Add(tri);
|
||||
}
|
||||
|
||||
List<int> map;
|
||||
List<int> permutation;
|
||||
|
||||
ProgressiveMesh(vecList, triList, map, permutation);
|
||||
|
||||
//Apply the permutation to our vertices
|
||||
std::vector<SurfaceVertex> vecNewVertices(m_vecVertices.size());
|
||||
for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
|
||||
{
|
||||
vecNewVertices[permutation[vertCt]]= m_vecVertices[vertCt];
|
||||
}
|
||||
|
||||
std::vector<uint32_t> vecNewTriangleIndices(m_vecTriangleIndices.size());
|
||||
for(int triCt = 0; triCt < m_vecTriangleIndices.size(); triCt++)
|
||||
{
|
||||
vecNewTriangleIndices[triCt] = permutation[m_vecTriangleIndices[triCt]];
|
||||
}
|
||||
|
||||
m_vecVertices = vecNewVertices;
|
||||
m_vecTriangleIndices = vecNewTriangleIndices;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//Check for unused vertices?
|
||||
//int usedVertices = 0;
|
||||
//int unusedVertices = 0;
|
||||
/*usedVertices = 0;
|
||||
unusedVertices = 0;
|
||||
for(int vertCt = 0; vertCt < isp->m_vecVertices.size(); vertCt++)
|
||||
{
|
||||
bool found = false;
|
||||
for(int triCt = 0; triCt < isp->m_vecTriangleIndices.size(); triCt++)
|
||||
{
|
||||
if(vertCt == isp->m_vecTriangleIndices[triCt])
|
||||
{
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(found)
|
||||
{
|
||||
usedVertices++;
|
||||
}
|
||||
else
|
||||
{
|
||||
unusedVertices++;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Used = " << usedVertices << std::endl;
|
||||
std::cout << "Unused = " << unusedVertices << std::endl;*/
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//switch triangle order?
|
||||
/*int noOfTriIndices = isp->m_vecTriangleIndices.size();
|
||||
for(int triCt = 0; triCt < noOfTriIndices; triCt++)
|
||||
{
|
||||
vecNewTriangleIndices[(noOfTriIndices - 1) - triCt] = isp->m_vecTriangleIndices[triCt];
|
||||
}
|
||||
isp->m_vecTriangleIndices = vecNewTriangleIndices;*/
|
||||
|
||||
//Now build the new index buffers
|
||||
std::vector<uint32_t> vecNewTriangles;
|
||||
std::vector<uint32_t> vecUnaffectedTriangles;
|
||||
std::vector<uint32_t> vecCollapsedTriangles;
|
||||
|
||||
vector<bool> vecCanCollapse(m_vecVertices.size());
|
||||
for(int ct = 0; ct < vecCanCollapse.size(); ct++)
|
||||
{
|
||||
vecCanCollapse[ct] = true;
|
||||
}
|
||||
|
||||
vector<bool> vecTriangleRemoved(m_vecTriangleIndices.size() / 3);
|
||||
for(int ct = 0; ct < vecTriangleRemoved.size(); ct++)
|
||||
{
|
||||
vecTriangleRemoved[ct] = false;
|
||||
}
|
||||
|
||||
int noOfCollapsed = 0;
|
||||
m_vecLodRecords.clear();
|
||||
|
||||
|
||||
for(int vertToCollapse = m_vecVertices.size() - 1; vertToCollapse > 0; vertToCollapse--)
|
||||
//int vertToCollapse = isp->m_vecVertices.size() - 1;
|
||||
{
|
||||
int vertCollapseTarget = map[vertToCollapse];
|
||||
|
||||
if((vecCanCollapse[vertToCollapse]) && (vecCanCollapse[vertCollapseTarget]))
|
||||
{
|
||||
int noOfNew = 0;
|
||||
|
||||
for(int triCt = 0; triCt < m_vecTriangleIndices.size();)
|
||||
{
|
||||
int v0 = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
int v1 = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
int v2 = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
|
||||
if(vecTriangleRemoved[(triCt - 3) / 3] == false)
|
||||
{
|
||||
if( (v0 == vertToCollapse) || (v1 == vertToCollapse) || (v2 == vertToCollapse) )
|
||||
{
|
||||
vecCollapsedTriangles.push_back(v0);
|
||||
vecCollapsedTriangles.push_back(v1);
|
||||
vecCollapsedTriangles.push_back(v2);
|
||||
|
||||
vecCanCollapse[v0] = false;
|
||||
vecCanCollapse[v1] = false;
|
||||
vecCanCollapse[v2] = false;
|
||||
|
||||
noOfCollapsed++;
|
||||
|
||||
int targetV0 = v0;
|
||||
int targetV1 = v1;
|
||||
int targetV2 = v2;
|
||||
|
||||
if(targetV0 == vertToCollapse) targetV0 = vertCollapseTarget;
|
||||
if(targetV1 == vertToCollapse) targetV1 = vertCollapseTarget;
|
||||
if(targetV2 == vertToCollapse) targetV2 = vertCollapseTarget;
|
||||
|
||||
if((targetV0 != targetV1) && (targetV1 != targetV2) && (targetV2 != targetV0))
|
||||
{
|
||||
vecNewTriangles.push_back(targetV0);
|
||||
vecNewTriangles.push_back(targetV1);
|
||||
vecNewTriangles.push_back(targetV2);
|
||||
|
||||
noOfNew++;
|
||||
|
||||
vecCanCollapse[targetV0] = false;
|
||||
vecCanCollapse[targetV1] = false;
|
||||
vecCanCollapse[targetV2] = false;
|
||||
}
|
||||
|
||||
vecTriangleRemoved[(triCt - 3) / 3] = true;
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
LodRecord lodRecord;
|
||||
lodRecord.beginIndex = vecNewTriangles.size() - (3 * noOfNew);
|
||||
lodRecord.endIndex = vecCollapsedTriangles.size();
|
||||
m_vecLodRecords.push_back(lodRecord);
|
||||
}
|
||||
}
|
||||
|
||||
//Copy triangles into unaffected list
|
||||
for(int triCt = 0; triCt < m_vecTriangleIndices.size();)
|
||||
{
|
||||
int v0 = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
int v1 = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
int v2 = m_vecTriangleIndices[triCt];
|
||||
triCt++;
|
||||
|
||||
if(vecTriangleRemoved[(triCt - 3) / 3] == false)
|
||||
{
|
||||
vecUnaffectedTriangles.push_back(v0);
|
||||
vecUnaffectedTriangles.push_back(v1);
|
||||
vecUnaffectedTriangles.push_back(v2);
|
||||
}
|
||||
}
|
||||
|
||||
//Now copy the three lists of triangles back
|
||||
m_vecTriangleIndices.clear();
|
||||
|
||||
for(int ct = 0; ct < vecNewTriangles.size(); ct++)
|
||||
{
|
||||
m_vecTriangleIndices.push_back(vecNewTriangles[ct]);
|
||||
}
|
||||
|
||||
for(int ct = 0; ct < vecUnaffectedTriangles.size(); ct++)
|
||||
{
|
||||
m_vecTriangleIndices.push_back(vecUnaffectedTriangles[ct]);
|
||||
}
|
||||
|
||||
for(int ct = 0; ct < vecCollapsedTriangles.size(); ct++)
|
||||
{
|
||||
m_vecTriangleIndices.push_back(vecCollapsedTriangles[ct]);
|
||||
}
|
||||
|
||||
//Adjust the lod records
|
||||
for(int ct = 0; ct < m_vecLodRecords.size(); ct++)
|
||||
{
|
||||
m_vecLodRecords[ct].endIndex += (vecNewTriangles.size() + vecUnaffectedTriangles.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,314 +0,0 @@
|
||||
/*
|
||||
* Progressive Mesh type Polygon Reduction Algorithm
|
||||
* by Stan Melax (c) 1998
|
||||
* Permission to use any of this code wherever you want is granted..
|
||||
* Although, please do acknowledge authorship if appropriate.
|
||||
*
|
||||
* See the header file progmesh.h for a description of this module
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <windows.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "vector_melax.h"
|
||||
#include "list.h"
|
||||
#include "progmesh.h"
|
||||
|
||||
/*
|
||||
* For the polygon reduction algorithm we use data structures
|
||||
* that contain a little bit more information than the usual
|
||||
* indexed face set type of data structure.
|
||||
* From a vertex we wish to be able to quickly get the
|
||||
* neighboring faces and vertices.
|
||||
*/
|
||||
class Triangle;
|
||||
class Vertex;
|
||||
|
||||
class Triangle {
|
||||
public:
|
||||
Vertex * vertex[3]; // the 3 points that make this tri
|
||||
VectorM normal; // unit vector othogonal to this face
|
||||
Triangle(Vertex *v0,Vertex *v1,Vertex *v2);
|
||||
~Triangle();
|
||||
void ComputeNormal();
|
||||
void ReplaceVertex(Vertex *vold,Vertex *vnew);
|
||||
int HasVertex(Vertex *v);
|
||||
};
|
||||
|
||||
class Vertex {
|
||||
public:
|
||||
VectorM position; // location of point in euclidean space
|
||||
int id; // place of vertex in original list
|
||||
List<Vertex *> neighbor; // adjacent vertices
|
||||
List<Triangle *> face; // adjacent triangles
|
||||
float objdist; // cached cost of collapsing edge
|
||||
Vertex * collapse; // candidate vertex for collapse
|
||||
Vertex(VectorM v,int _id);
|
||||
~Vertex();
|
||||
void RemoveIfNonNeighbor(Vertex *n);
|
||||
};
|
||||
List<Vertex *> vertices;
|
||||
List<Triangle *> triangles;
|
||||
|
||||
|
||||
Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){
|
||||
assert(v0!=v1 && v1!=v2 && v2!=v0);
|
||||
vertex[0]=v0;
|
||||
vertex[1]=v1;
|
||||
vertex[2]=v2;
|
||||
ComputeNormal();
|
||||
triangles.Add(this);
|
||||
for(int i=0;i<3;i++) {
|
||||
vertex[i]->face.Add(this);
|
||||
for(int j=0;j<3;j++) if(i!=j) {
|
||||
vertex[i]->neighbor.AddUnique(vertex[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
Triangle::~Triangle(){
|
||||
int i;
|
||||
triangles.Remove(this);
|
||||
for(i=0;i<3;i++) {
|
||||
if(vertex[i]) vertex[i]->face.Remove(this);
|
||||
}
|
||||
for(i=0;i<3;i++) {
|
||||
int i2 = (i+1)%3;
|
||||
if(!vertex[i] || !vertex[i2]) continue;
|
||||
vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
|
||||
vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
|
||||
}
|
||||
}
|
||||
int Triangle::HasVertex(Vertex *v) {
|
||||
return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
|
||||
}
|
||||
void Triangle::ComputeNormal(){
|
||||
VectorM v0=vertex[0]->position;
|
||||
VectorM v1=vertex[1]->position;
|
||||
VectorM v2=vertex[2]->position;
|
||||
normal = (v1-v0)*(v2-v1);
|
||||
if(magnitude(normal)==0)return;
|
||||
normal = normalize(normal);
|
||||
}
|
||||
void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) {
|
||||
assert(vold && vnew);
|
||||
assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
|
||||
assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
|
||||
if(vold==vertex[0]){
|
||||
vertex[0]=vnew;
|
||||
}
|
||||
else if(vold==vertex[1]){
|
||||
vertex[1]=vnew;
|
||||
}
|
||||
else {
|
||||
assert(vold==vertex[2]);
|
||||
vertex[2]=vnew;
|
||||
}
|
||||
int i;
|
||||
vold->face.Remove(this);
|
||||
assert(!vnew->face.Contains(this));
|
||||
vnew->face.Add(this);
|
||||
for(i=0;i<3;i++) {
|
||||
vold->RemoveIfNonNeighbor(vertex[i]);
|
||||
vertex[i]->RemoveIfNonNeighbor(vold);
|
||||
}
|
||||
for(i=0;i<3;i++) {
|
||||
assert(vertex[i]->face.Contains(this)==1);
|
||||
for(int j=0;j<3;j++) if(i!=j) {
|
||||
vertex[i]->neighbor.AddUnique(vertex[j]);
|
||||
}
|
||||
}
|
||||
ComputeNormal();
|
||||
}
|
||||
|
||||
Vertex::Vertex(VectorM v,int _id) {
|
||||
position =v;
|
||||
id=_id;
|
||||
vertices.Add(this);
|
||||
}
|
||||
|
||||
Vertex::~Vertex(){
|
||||
assert(face.num==0);
|
||||
while(neighbor.num) {
|
||||
neighbor[0]->neighbor.Remove(this);
|
||||
neighbor.Remove(neighbor[0]);
|
||||
}
|
||||
vertices.Remove(this);
|
||||
}
|
||||
void Vertex::RemoveIfNonNeighbor(Vertex *n) {
|
||||
// removes n from neighbor list if n isn't a neighbor.
|
||||
if(!neighbor.Contains(n)) return;
|
||||
for(int i=0;i<face.num;i++) {
|
||||
if(face[i]->HasVertex(n)) return;
|
||||
}
|
||||
neighbor.Remove(n);
|
||||
}
|
||||
|
||||
|
||||
float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {
|
||||
// if we collapse edge uv by moving u to v then how
|
||||
// much different will the model change, i.e. how much "error".
|
||||
// Texture, vertex normal, and border vertex code was removed
|
||||
// to keep this demo as simple as possible.
|
||||
// The method of determining cost was designed in order
|
||||
// to exploit small and coplanar regions for
|
||||
// effective polygon reduction.
|
||||
// Is is possible to add some checks here to see if "folds"
|
||||
// would be generated. i.e. normal of a remaining face gets
|
||||
// flipped. I never seemed to run into this problem and
|
||||
// therefore never added code to detect this case.
|
||||
int i;
|
||||
float edgelength = magnitude(v->position - u->position);
|
||||
float curvature=0;
|
||||
|
||||
// find the "sides" triangles that are on the edge uv
|
||||
List<Triangle *> sides;
|
||||
for(i=0;i<u->face.num;i++) {
|
||||
if(u->face[i]->HasVertex(v)){
|
||||
sides.Add(u->face[i]);
|
||||
}
|
||||
}
|
||||
// use the triangle facing most away from the sides
|
||||
// to determine our curvature term
|
||||
for(i=0;i<u->face.num;i++) {
|
||||
float mincurv=1; // curve for face i and closer side to it
|
||||
for(int j=0;j<sides.num;j++) {
|
||||
// use dot product of face normals. '^' defined in vector
|
||||
float dotprod = u->face[i]->normal ^ sides[j]->normal;
|
||||
mincurv = min(mincurv,(1-dotprod)/2.0f);
|
||||
}
|
||||
curvature = max(curvature,mincurv);
|
||||
}
|
||||
float boundaryCost = u->position.fBoundaryCost + v->position.fBoundaryCost;
|
||||
// the more coplanar the lower the curvature term
|
||||
return edgelength * curvature + boundaryCost;
|
||||
}
|
||||
|
||||
void ComputeEdgeCostAtVertex(Vertex *v) {
|
||||
// compute the edge collapse cost for all edges that start
|
||||
// from vertex v. Since we are only interested in reducing
|
||||
// the object by selecting the min cost edge at each step, we
|
||||
// only cache the cost of the least cost edge at this vertex
|
||||
// (in member variable collapse) as well as the value of the
|
||||
// cost (in member variable objdist).
|
||||
if(v->neighbor.num==0) {
|
||||
// v doesn't have neighbors so it costs nothing to collapse
|
||||
v->collapse=NULL;
|
||||
v->objdist=-0.01f;
|
||||
return;
|
||||
}
|
||||
v->objdist = 1000000;
|
||||
v->collapse=NULL;
|
||||
// search all neighboring edges for "least cost" edge
|
||||
for(int i=0;i<v->neighbor.num;i++) {
|
||||
float dist;
|
||||
dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
|
||||
//std::cout << "Cost: " << dist << std::endl;
|
||||
if(dist<v->objdist) {
|
||||
v->collapse=v->neighbor[i]; // candidate for edge collapse
|
||||
v->objdist=dist; // cost of the collapse
|
||||
}
|
||||
}
|
||||
}
|
||||
void ComputeAllEdgeCollapseCosts() {
|
||||
// For all the edges, compute the difference it would make
|
||||
// to the model if it was collapsed. The least of these
|
||||
// per vertex is cached in each vertex object.
|
||||
for(int i=0;i<vertices.num;i++) {
|
||||
ComputeEdgeCostAtVertex(vertices[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void Collapse(Vertex *u,Vertex *v){
|
||||
// Collapse the edge uv by moving vertex u onto v
|
||||
// Actually remove tris on uv, then update tris that
|
||||
// have u to have v, and then remove u.
|
||||
if(!v) {
|
||||
// u is a vertex all by itself so just delete it
|
||||
delete u;
|
||||
return;
|
||||
}
|
||||
int i;
|
||||
List<Vertex *>tmp;
|
||||
// make tmp a list of all the neighbors of u
|
||||
for(i=0;i<u->neighbor.num;i++) {
|
||||
tmp.Add(u->neighbor[i]);
|
||||
}
|
||||
// delete triangles on edge uv:
|
||||
for(i=u->face.num-1;i>=0;i--) {
|
||||
if(u->face[i]->HasVertex(v)) {
|
||||
delete(u->face[i]);
|
||||
}
|
||||
}
|
||||
// update remaining triangles to have v instead of u
|
||||
for(i=u->face.num-1;i>=0;i--) {
|
||||
u->face[i]->ReplaceVertex(u,v);
|
||||
}
|
||||
delete u;
|
||||
// recompute the edge collapse costs for neighboring vertices
|
||||
for(i=0;i<tmp.num;i++) {
|
||||
ComputeEdgeCostAtVertex(tmp[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void AddVertex(List<VectorM> &vert){
|
||||
for(int i=0;i<vert.num;i++) {
|
||||
Vertex *v = new Vertex(vert[i],i);
|
||||
}
|
||||
}
|
||||
void AddFaces(List<tridata> &tri){
|
||||
for(int i=0;i<tri.num;i++) {
|
||||
Triangle *t=new Triangle(
|
||||
vertices[tri[i].v[0]],
|
||||
vertices[tri[i].v[1]],
|
||||
vertices[tri[i].v[2]] );
|
||||
}
|
||||
}
|
||||
|
||||
Vertex *MinimumCostEdge(){
|
||||
// Find the edge that when collapsed will affect model the least.
|
||||
// This funtion actually returns a Vertex, the second vertex
|
||||
// of the edge (collapse candidate) is stored in the vertex data.
|
||||
// Serious optimization opportunity here: this function currently
|
||||
// does a sequential search through an unsorted list :-(
|
||||
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
|
||||
Vertex *mn=vertices[0];
|
||||
for(int i=0;i<vertices.num;i++) {
|
||||
if(vertices[i]->objdist < mn->objdist) {
|
||||
mn = vertices[i];
|
||||
}
|
||||
}
|
||||
return mn;
|
||||
}
|
||||
|
||||
void ProgressiveMesh(List<VectorM> &vert, List<tridata> &tri,
|
||||
List<int> &map, List<int> &permutation)
|
||||
{
|
||||
AddVertex(vert); // put input data into our data structures
|
||||
AddFaces(tri);
|
||||
ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs
|
||||
permutation.SetSize(vertices.num); // allocate space
|
||||
map.SetSize(vertices.num); // allocate space
|
||||
// reduce the object down to nothing:
|
||||
while(vertices.num > 0) {
|
||||
// get the next vertex to collapse
|
||||
Vertex *mn = MinimumCostEdge();
|
||||
// keep track of this vertex, i.e. the collapse ordering
|
||||
permutation[mn->id]=vertices.num-1;
|
||||
// keep track of vertex to which we collapse to
|
||||
map[vertices.num-1] = (mn->collapse)?mn->collapse->id:-1;
|
||||
// Collapse this edge
|
||||
Collapse(mn,mn->collapse);
|
||||
}
|
||||
// reorder the map list based on the collapse ordering
|
||||
for(int i=0;i<map.num;i++) {
|
||||
map[i] = (map[i]==-1)?0:permutation[map[i]];
|
||||
}
|
||||
// The caller of this function should reorder their vertices
|
||||
// according to the returned "permutation".
|
||||
}
|
||||
|
@ -1,131 +0,0 @@
|
||||
/*******************************************************************************
|
||||
Copyright (c) 2005-2009 David Williams
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
|
||||
3. This notice may not be removed or altered from any source
|
||||
distribution.
|
||||
*******************************************************************************/
|
||||
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "vector_melax.h"
|
||||
|
||||
float sqr(float a) {return a*a;}
|
||||
|
||||
// vector (floating point) implementation
|
||||
|
||||
float magnitude(VectorM v) {
|
||||
return (float)sqrt(sqr(v.x) + sqr( v.y)+ sqr(v.z));
|
||||
}
|
||||
VectorM normalize(VectorM v) {
|
||||
float d=magnitude(v);
|
||||
if (d==0) {
|
||||
printf("Cant normalize ZERO vector\n");
|
||||
assert(0);
|
||||
d=0.1f;
|
||||
}
|
||||
v.x/=d;
|
||||
v.y/=d;
|
||||
v.z/=d;
|
||||
return v;
|
||||
}
|
||||
|
||||
VectorM operator+(VectorM v1,VectorM v2) {return VectorM(v1.x+v2.x,v1.y+v2.y,v1.z+v2.z);}
|
||||
VectorM operator-(VectorM v1,VectorM v2) {return VectorM(v1.x-v2.x,v1.y-v2.y,v1.z-v2.z);}
|
||||
VectorM operator-(VectorM v) {return VectorM(-v.x,-v.y,-v.z);}
|
||||
VectorM operator*(VectorM v1,float s) {return VectorM(v1.x*s,v1.y*s,v1.z*s);}
|
||||
VectorM operator*(float s, VectorM v1) {return VectorM(v1.x*s,v1.y*s,v1.z*s);}
|
||||
VectorM operator/(VectorM v1,float s) {return v1*(1.0f/s);}
|
||||
float operator^(VectorM v1,VectorM v2) {return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;}
|
||||
VectorM operator*(VectorM v1,VectorM v2) {
|
||||
return VectorM(
|
||||
v1.y * v2.z - v1.z*v2.y,
|
||||
v1.z * v2.x - v1.x*v2.z,
|
||||
v1.x * v2.y - v1.y*v2.x);
|
||||
}
|
||||
VectorM planelineintersection(VectorM n,float d,VectorM p1,VectorM p2){
|
||||
// returns the point where the line p1-p2 intersects the plane n&d
|
||||
VectorM dif = p2-p1;
|
||||
float dn= n^dif;
|
||||
float t = -(d+(n^p1) )/dn;
|
||||
return p1 + (dif*t);
|
||||
}
|
||||
int concurrent(VectorM a,VectorM b) {
|
||||
return(a.x==b.x && a.y==b.y && a.z==b.z);
|
||||
}
|
||||
|
||||
|
||||
// Matrix Implementation
|
||||
matrix transpose(matrix m) {
|
||||
return matrix( VectorM(m.x.x,m.y.x,m.z.x),
|
||||
VectorM(m.x.y,m.y.y,m.z.y),
|
||||
VectorM(m.x.z,m.y.z,m.z.z));
|
||||
}
|
||||
VectorM operator*(matrix m,VectorM v){
|
||||
m=transpose(m); // since column ordered
|
||||
return VectorM(m.x^v,m.y^v,m.z^v);
|
||||
}
|
||||
matrix operator*(matrix m1,matrix m2){
|
||||
m1=transpose(m1);
|
||||
return matrix(m1*m2.x,m1*m2.y,m1*m2.z);
|
||||
}
|
||||
|
||||
//Quaternion Implementation
|
||||
Quaternion operator*(Quaternion a,Quaternion b) {
|
||||
Quaternion c;
|
||||
c.r = a.r*b.r - a.x*b.x - a.y*b.y - a.z*b.z;
|
||||
c.x = a.r*b.x + a.x*b.r + a.y*b.z - a.z*b.y;
|
||||
c.y = a.r*b.y - a.x*b.z + a.y*b.r + a.z*b.x;
|
||||
c.z = a.r*b.z + a.x*b.y - a.y*b.x + a.z*b.r;
|
||||
return c;
|
||||
}
|
||||
Quaternion operator-(Quaternion q) {
|
||||
return Quaternion(q.r*-1,q.x,q.y,q.z);
|
||||
}
|
||||
Quaternion operator*(Quaternion a,float b) {
|
||||
return Quaternion(a.r*b, a.x*b, a.y*b, a.z*b);
|
||||
}
|
||||
VectorM operator*(Quaternion q,VectorM v) {
|
||||
return q.getmatrix() * v;
|
||||
}
|
||||
VectorM operator*(VectorM v,Quaternion q){
|
||||
assert(0); // must multiply with the quat on the left
|
||||
return VectorM(0.0f,0.0f,0.0f);
|
||||
}
|
||||
|
||||
Quaternion operator+(Quaternion a,Quaternion b) {
|
||||
return Quaternion(a.r+b.r, a.x+b.x, a.y+b.y, a.z+b.z);
|
||||
}
|
||||
float operator^(Quaternion a,Quaternion b) {
|
||||
return (a.r*b.r + a.x*b.x + a.y*b.y + a.z*b.z);
|
||||
}
|
||||
Quaternion slerp(Quaternion a,Quaternion b,float interp){
|
||||
if((a^b) <0.0) {
|
||||
a.r=-a.r;
|
||||
a.x=-a.x;
|
||||
a.y=-a.y;
|
||||
a.z=-a.z;
|
||||
}
|
||||
float theta = (float)acos(a^b);
|
||||
if(theta==0.0f) { return(a);}
|
||||
return a*(float)(sin(theta-interp*theta)/sin(theta)) + b*(float)(sin(interp*theta)/sin(theta));
|
||||
}
|
||||
|
@ -57,7 +57,7 @@ namespace PolyVox
|
||||
void unlockRegion(void);
|
||||
//void markRegionChanged(uint16_t firstX, uint16_t firstY, uint16_t firstZ, uint16_t lastX, uint16_t lastY, uint16_t lastZ);
|
||||
|
||||
private:
|
||||
public:
|
||||
void incrementCurrentTime(void);
|
||||
bool m_bIsLocked;
|
||||
Region m_regLastLocked;
|
||||
|
Loading…
x
Reference in New Issue
Block a user