Removed Stan Melax's stuff. PolyVox should compile on Linux again now.

This commit is contained in:
David Williams
2010-02-19 21:24:35 +00:00
parent d3ad3d985b
commit 9aee0d26d2
13 changed files with 1 additions and 960 deletions

View File

@ -25,8 +25,6 @@ freely, subject to the following restrictions:
#include "IndexedSurfacePatch.h"
#include "progmesh.h"
#include <cstdlib>
#include <list>
@ -825,233 +823,4 @@ namespace PolyVox
m_vecTriangleIndices.resize(noOfNonDegenerate * 3);
}
void IndexedSurfacePatch::makeProgressiveMesh(void)
{
//Build the mesh using Stan Melax's code
List<VectorM> vecList;
for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
{
VectorM vec;
vec.x = m_vecVertices[vertCt].getPosition().getX();
vec.y = m_vecVertices[vertCt].getPosition().getY();
vec.z = m_vecVertices[vertCt].getPosition().getZ();
if(m_vecVertices[vertCt].isOnEdge())
{
vec.fBoundaryCost = 1.0f;
}
else
{
vec.fBoundaryCost = 0.0f;
}
vecList.Add(vec);
}
List<tridata> triList;
for(int triCt = 0; triCt < m_vecTriangleIndices.size(); )
{
tridata tri;
tri.v[0] = m_vecTriangleIndices[triCt];
triCt++;
tri.v[1] = m_vecTriangleIndices[triCt];
triCt++;
tri.v[2] = m_vecTriangleIndices[triCt];
triCt++;
triList.Add(tri);
}
List<int> map;
List<int> permutation;
ProgressiveMesh(vecList, triList, map, permutation);
//Apply the permutation to our vertices
std::vector<SurfaceVertex> vecNewVertices(m_vecVertices.size());
for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
{
vecNewVertices[permutation[vertCt]]= m_vecVertices[vertCt];
}
std::vector<uint32_t> vecNewTriangleIndices(m_vecTriangleIndices.size());
for(int triCt = 0; triCt < m_vecTriangleIndices.size(); triCt++)
{
vecNewTriangleIndices[triCt] = permutation[m_vecTriangleIndices[triCt]];
}
m_vecVertices = vecNewVertices;
m_vecTriangleIndices = vecNewTriangleIndices;
////////////////////////////////////////////////////////////////////////////////
//Check for unused vertices?
//int usedVertices = 0;
//int unusedVertices = 0;
/*usedVertices = 0;
unusedVertices = 0;
for(int vertCt = 0; vertCt < isp->m_vecVertices.size(); vertCt++)
{
bool found = false;
for(int triCt = 0; triCt < isp->m_vecTriangleIndices.size(); triCt++)
{
if(vertCt == isp->m_vecTriangleIndices[triCt])
{
found = true;
break;
}
}
if(found)
{
usedVertices++;
}
else
{
unusedVertices++;
}
}
std::cout << "Used = " << usedVertices << std::endl;
std::cout << "Unused = " << unusedVertices << std::endl;*/
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//switch triangle order?
/*int noOfTriIndices = isp->m_vecTriangleIndices.size();
for(int triCt = 0; triCt < noOfTriIndices; triCt++)
{
vecNewTriangleIndices[(noOfTriIndices - 1) - triCt] = isp->m_vecTriangleIndices[triCt];
}
isp->m_vecTriangleIndices = vecNewTriangleIndices;*/
//Now build the new index buffers
std::vector<uint32_t> vecNewTriangles;
std::vector<uint32_t> vecUnaffectedTriangles;
std::vector<uint32_t> vecCollapsedTriangles;
vector<bool> vecCanCollapse(m_vecVertices.size());
for(int ct = 0; ct < vecCanCollapse.size(); ct++)
{
vecCanCollapse[ct] = true;
}
vector<bool> vecTriangleRemoved(m_vecTriangleIndices.size() / 3);
for(int ct = 0; ct < vecTriangleRemoved.size(); ct++)
{
vecTriangleRemoved[ct] = false;
}
int noOfCollapsed = 0;
m_vecLodRecords.clear();
for(int vertToCollapse = m_vecVertices.size() - 1; vertToCollapse > 0; vertToCollapse--)
//int vertToCollapse = isp->m_vecVertices.size() - 1;
{
int vertCollapseTarget = map[vertToCollapse];
if((vecCanCollapse[vertToCollapse]) && (vecCanCollapse[vertCollapseTarget]))
{
int noOfNew = 0;
for(int triCt = 0; triCt < m_vecTriangleIndices.size();)
{
int v0 = m_vecTriangleIndices[triCt];
triCt++;
int v1 = m_vecTriangleIndices[triCt];
triCt++;
int v2 = m_vecTriangleIndices[triCt];
triCt++;
if(vecTriangleRemoved[(triCt - 3) / 3] == false)
{
if( (v0 == vertToCollapse) || (v1 == vertToCollapse) || (v2 == vertToCollapse) )
{
vecCollapsedTriangles.push_back(v0);
vecCollapsedTriangles.push_back(v1);
vecCollapsedTriangles.push_back(v2);
vecCanCollapse[v0] = false;
vecCanCollapse[v1] = false;
vecCanCollapse[v2] = false;
noOfCollapsed++;
int targetV0 = v0;
int targetV1 = v1;
int targetV2 = v2;
if(targetV0 == vertToCollapse) targetV0 = vertCollapseTarget;
if(targetV1 == vertToCollapse) targetV1 = vertCollapseTarget;
if(targetV2 == vertToCollapse) targetV2 = vertCollapseTarget;
if((targetV0 != targetV1) && (targetV1 != targetV2) && (targetV2 != targetV0))
{
vecNewTriangles.push_back(targetV0);
vecNewTriangles.push_back(targetV1);
vecNewTriangles.push_back(targetV2);
noOfNew++;
vecCanCollapse[targetV0] = false;
vecCanCollapse[targetV1] = false;
vecCanCollapse[targetV2] = false;
}
vecTriangleRemoved[(triCt - 3) / 3] = true;
}
}
}
LodRecord lodRecord;
lodRecord.beginIndex = vecNewTriangles.size() - (3 * noOfNew);
lodRecord.endIndex = vecCollapsedTriangles.size();
m_vecLodRecords.push_back(lodRecord);
}
}
//Copy triangles into unaffected list
for(int triCt = 0; triCt < m_vecTriangleIndices.size();)
{
int v0 = m_vecTriangleIndices[triCt];
triCt++;
int v1 = m_vecTriangleIndices[triCt];
triCt++;
int v2 = m_vecTriangleIndices[triCt];
triCt++;
if(vecTriangleRemoved[(triCt - 3) / 3] == false)
{
vecUnaffectedTriangles.push_back(v0);
vecUnaffectedTriangles.push_back(v1);
vecUnaffectedTriangles.push_back(v2);
}
}
//Now copy the three lists of triangles back
m_vecTriangleIndices.clear();
for(int ct = 0; ct < vecNewTriangles.size(); ct++)
{
m_vecTriangleIndices.push_back(vecNewTriangles[ct]);
}
for(int ct = 0; ct < vecUnaffectedTriangles.size(); ct++)
{
m_vecTriangleIndices.push_back(vecUnaffectedTriangles[ct]);
}
for(int ct = 0; ct < vecCollapsedTriangles.size(); ct++)
{
m_vecTriangleIndices.push_back(vecCollapsedTriangles[ct]);
}
//Adjust the lod records
for(int ct = 0; ct < m_vecLodRecords.size(); ct++)
{
m_vecLodRecords[ct].endIndex += (vecNewTriangles.size() + vecUnaffectedTriangles.size());
}
}
}

View File

@ -1,314 +0,0 @@
/*
* Progressive Mesh type Polygon Reduction Algorithm
* by Stan Melax (c) 1998
* Permission to use any of this code wherever you want is granted..
* Although, please do acknowledge authorship if appropriate.
*
* See the header file progmesh.h for a description of this module
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <windows.h>
#include <iostream>
#include "vector_melax.h"
#include "list.h"
#include "progmesh.h"
/*
* For the polygon reduction algorithm we use data structures
* that contain a little bit more information than the usual
* indexed face set type of data structure.
* From a vertex we wish to be able to quickly get the
* neighboring faces and vertices.
*/
class Triangle;
class Vertex;
class Triangle {
public:
Vertex * vertex[3]; // the 3 points that make this tri
VectorM normal; // unit vector othogonal to this face
Triangle(Vertex *v0,Vertex *v1,Vertex *v2);
~Triangle();
void ComputeNormal();
void ReplaceVertex(Vertex *vold,Vertex *vnew);
int HasVertex(Vertex *v);
};
class Vertex {
public:
VectorM position; // location of point in euclidean space
int id; // place of vertex in original list
List<Vertex *> neighbor; // adjacent vertices
List<Triangle *> face; // adjacent triangles
float objdist; // cached cost of collapsing edge
Vertex * collapse; // candidate vertex for collapse
Vertex(VectorM v,int _id);
~Vertex();
void RemoveIfNonNeighbor(Vertex *n);
};
List<Vertex *> vertices;
List<Triangle *> triangles;
Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){
assert(v0!=v1 && v1!=v2 && v2!=v0);
vertex[0]=v0;
vertex[1]=v1;
vertex[2]=v2;
ComputeNormal();
triangles.Add(this);
for(int i=0;i<3;i++) {
vertex[i]->face.Add(this);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
}
Triangle::~Triangle(){
int i;
triangles.Remove(this);
for(i=0;i<3;i++) {
if(vertex[i]) vertex[i]->face.Remove(this);
}
for(i=0;i<3;i++) {
int i2 = (i+1)%3;
if(!vertex[i] || !vertex[i2]) continue;
vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
}
}
int Triangle::HasVertex(Vertex *v) {
return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
}
void Triangle::ComputeNormal(){
VectorM v0=vertex[0]->position;
VectorM v1=vertex[1]->position;
VectorM v2=vertex[2]->position;
normal = (v1-v0)*(v2-v1);
if(magnitude(normal)==0)return;
normal = normalize(normal);
}
void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) {
assert(vold && vnew);
assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
if(vold==vertex[0]){
vertex[0]=vnew;
}
else if(vold==vertex[1]){
vertex[1]=vnew;
}
else {
assert(vold==vertex[2]);
vertex[2]=vnew;
}
int i;
vold->face.Remove(this);
assert(!vnew->face.Contains(this));
vnew->face.Add(this);
for(i=0;i<3;i++) {
vold->RemoveIfNonNeighbor(vertex[i]);
vertex[i]->RemoveIfNonNeighbor(vold);
}
for(i=0;i<3;i++) {
assert(vertex[i]->face.Contains(this)==1);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
ComputeNormal();
}
Vertex::Vertex(VectorM v,int _id) {
position =v;
id=_id;
vertices.Add(this);
}
Vertex::~Vertex(){
assert(face.num==0);
while(neighbor.num) {
neighbor[0]->neighbor.Remove(this);
neighbor.Remove(neighbor[0]);
}
vertices.Remove(this);
}
void Vertex::RemoveIfNonNeighbor(Vertex *n) {
// removes n from neighbor list if n isn't a neighbor.
if(!neighbor.Contains(n)) return;
for(int i=0;i<face.num;i++) {
if(face[i]->HasVertex(n)) return;
}
neighbor.Remove(n);
}
float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {
// if we collapse edge uv by moving u to v then how
// much different will the model change, i.e. how much "error".
// Texture, vertex normal, and border vertex code was removed
// to keep this demo as simple as possible.
// The method of determining cost was designed in order
// to exploit small and coplanar regions for
// effective polygon reduction.
// Is is possible to add some checks here to see if "folds"
// would be generated. i.e. normal of a remaining face gets
// flipped. I never seemed to run into this problem and
// therefore never added code to detect this case.
int i;
float edgelength = magnitude(v->position - u->position);
float curvature=0;
// find the "sides" triangles that are on the edge uv
List<Triangle *> sides;
for(i=0;i<u->face.num;i++) {
if(u->face[i]->HasVertex(v)){
sides.Add(u->face[i]);
}
}
// use the triangle facing most away from the sides
// to determine our curvature term
for(i=0;i<u->face.num;i++) {
float mincurv=1; // curve for face i and closer side to it
for(int j=0;j<sides.num;j++) {
// use dot product of face normals. '^' defined in vector
float dotprod = u->face[i]->normal ^ sides[j]->normal;
mincurv = min(mincurv,(1-dotprod)/2.0f);
}
curvature = max(curvature,mincurv);
}
float boundaryCost = u->position.fBoundaryCost + v->position.fBoundaryCost;
// the more coplanar the lower the curvature term
return edgelength * curvature + boundaryCost;
}
void ComputeEdgeCostAtVertex(Vertex *v) {
// compute the edge collapse cost for all edges that start
// from vertex v. Since we are only interested in reducing
// the object by selecting the min cost edge at each step, we
// only cache the cost of the least cost edge at this vertex
// (in member variable collapse) as well as the value of the
// cost (in member variable objdist).
if(v->neighbor.num==0) {
// v doesn't have neighbors so it costs nothing to collapse
v->collapse=NULL;
v->objdist=-0.01f;
return;
}
v->objdist = 1000000;
v->collapse=NULL;
// search all neighboring edges for "least cost" edge
for(int i=0;i<v->neighbor.num;i++) {
float dist;
dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
//std::cout << "Cost: " << dist << std::endl;
if(dist<v->objdist) {
v->collapse=v->neighbor[i]; // candidate for edge collapse
v->objdist=dist; // cost of the collapse
}
}
}
void ComputeAllEdgeCollapseCosts() {
// For all the edges, compute the difference it would make
// to the model if it was collapsed. The least of these
// per vertex is cached in each vertex object.
for(int i=0;i<vertices.num;i++) {
ComputeEdgeCostAtVertex(vertices[i]);
}
}
void Collapse(Vertex *u,Vertex *v){
// Collapse the edge uv by moving vertex u onto v
// Actually remove tris on uv, then update tris that
// have u to have v, and then remove u.
if(!v) {
// u is a vertex all by itself so just delete it
delete u;
return;
}
int i;
List<Vertex *>tmp;
// make tmp a list of all the neighbors of u
for(i=0;i<u->neighbor.num;i++) {
tmp.Add(u->neighbor[i]);
}
// delete triangles on edge uv:
for(i=u->face.num-1;i>=0;i--) {
if(u->face[i]->HasVertex(v)) {
delete(u->face[i]);
}
}
// update remaining triangles to have v instead of u
for(i=u->face.num-1;i>=0;i--) {
u->face[i]->ReplaceVertex(u,v);
}
delete u;
// recompute the edge collapse costs for neighboring vertices
for(i=0;i<tmp.num;i++) {
ComputeEdgeCostAtVertex(tmp[i]);
}
}
void AddVertex(List<VectorM> &vert){
for(int i=0;i<vert.num;i++) {
Vertex *v = new Vertex(vert[i],i);
}
}
void AddFaces(List<tridata> &tri){
for(int i=0;i<tri.num;i++) {
Triangle *t=new Triangle(
vertices[tri[i].v[0]],
vertices[tri[i].v[1]],
vertices[tri[i].v[2]] );
}
}
Vertex *MinimumCostEdge(){
// Find the edge that when collapsed will affect model the least.
// This funtion actually returns a Vertex, the second vertex
// of the edge (collapse candidate) is stored in the vertex data.
// Serious optimization opportunity here: this function currently
// does a sequential search through an unsorted list :-(
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
Vertex *mn=vertices[0];
for(int i=0;i<vertices.num;i++) {
if(vertices[i]->objdist < mn->objdist) {
mn = vertices[i];
}
}
return mn;
}
void ProgressiveMesh(List<VectorM> &vert, List<tridata> &tri,
List<int> &map, List<int> &permutation)
{
AddVertex(vert); // put input data into our data structures
AddFaces(tri);
ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs
permutation.SetSize(vertices.num); // allocate space
map.SetSize(vertices.num); // allocate space
// reduce the object down to nothing:
while(vertices.num > 0) {
// get the next vertex to collapse
Vertex *mn = MinimumCostEdge();
// keep track of this vertex, i.e. the collapse ordering
permutation[mn->id]=vertices.num-1;
// keep track of vertex to which we collapse to
map[vertices.num-1] = (mn->collapse)?mn->collapse->id:-1;
// Collapse this edge
Collapse(mn,mn->collapse);
}
// reorder the map list based on the collapse ordering
for(int i=0;i<map.num;i++) {
map[i] = (map[i]==-1)?0:permutation[map[i]];
}
// The caller of this function should reorder their vertices
// according to the returned "permutation".
}

View File

@ -1,131 +0,0 @@
/*******************************************************************************
Copyright (c) 2005-2009 David Williams
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*******************************************************************************/
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include "vector_melax.h"
float sqr(float a) {return a*a;}
// vector (floating point) implementation
float magnitude(VectorM v) {
return (float)sqrt(sqr(v.x) + sqr( v.y)+ sqr(v.z));
}
VectorM normalize(VectorM v) {
float d=magnitude(v);
if (d==0) {
printf("Cant normalize ZERO vector\n");
assert(0);
d=0.1f;
}
v.x/=d;
v.y/=d;
v.z/=d;
return v;
}
VectorM operator+(VectorM v1,VectorM v2) {return VectorM(v1.x+v2.x,v1.y+v2.y,v1.z+v2.z);}
VectorM operator-(VectorM v1,VectorM v2) {return VectorM(v1.x-v2.x,v1.y-v2.y,v1.z-v2.z);}
VectorM operator-(VectorM v) {return VectorM(-v.x,-v.y,-v.z);}
VectorM operator*(VectorM v1,float s) {return VectorM(v1.x*s,v1.y*s,v1.z*s);}
VectorM operator*(float s, VectorM v1) {return VectorM(v1.x*s,v1.y*s,v1.z*s);}
VectorM operator/(VectorM v1,float s) {return v1*(1.0f/s);}
float operator^(VectorM v1,VectorM v2) {return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;}
VectorM operator*(VectorM v1,VectorM v2) {
return VectorM(
v1.y * v2.z - v1.z*v2.y,
v1.z * v2.x - v1.x*v2.z,
v1.x * v2.y - v1.y*v2.x);
}
VectorM planelineintersection(VectorM n,float d,VectorM p1,VectorM p2){
// returns the point where the line p1-p2 intersects the plane n&d
VectorM dif = p2-p1;
float dn= n^dif;
float t = -(d+(n^p1) )/dn;
return p1 + (dif*t);
}
int concurrent(VectorM a,VectorM b) {
return(a.x==b.x && a.y==b.y && a.z==b.z);
}
// Matrix Implementation
matrix transpose(matrix m) {
return matrix( VectorM(m.x.x,m.y.x,m.z.x),
VectorM(m.x.y,m.y.y,m.z.y),
VectorM(m.x.z,m.y.z,m.z.z));
}
VectorM operator*(matrix m,VectorM v){
m=transpose(m); // since column ordered
return VectorM(m.x^v,m.y^v,m.z^v);
}
matrix operator*(matrix m1,matrix m2){
m1=transpose(m1);
return matrix(m1*m2.x,m1*m2.y,m1*m2.z);
}
//Quaternion Implementation
Quaternion operator*(Quaternion a,Quaternion b) {
Quaternion c;
c.r = a.r*b.r - a.x*b.x - a.y*b.y - a.z*b.z;
c.x = a.r*b.x + a.x*b.r + a.y*b.z - a.z*b.y;
c.y = a.r*b.y - a.x*b.z + a.y*b.r + a.z*b.x;
c.z = a.r*b.z + a.x*b.y - a.y*b.x + a.z*b.r;
return c;
}
Quaternion operator-(Quaternion q) {
return Quaternion(q.r*-1,q.x,q.y,q.z);
}
Quaternion operator*(Quaternion a,float b) {
return Quaternion(a.r*b, a.x*b, a.y*b, a.z*b);
}
VectorM operator*(Quaternion q,VectorM v) {
return q.getmatrix() * v;
}
VectorM operator*(VectorM v,Quaternion q){
assert(0); // must multiply with the quat on the left
return VectorM(0.0f,0.0f,0.0f);
}
Quaternion operator+(Quaternion a,Quaternion b) {
return Quaternion(a.r+b.r, a.x+b.x, a.y+b.y, a.z+b.z);
}
float operator^(Quaternion a,Quaternion b) {
return (a.r*b.r + a.x*b.x + a.y*b.y + a.z*b.z);
}
Quaternion slerp(Quaternion a,Quaternion b,float interp){
if((a^b) <0.0) {
a.r=-a.r;
a.x=-a.x;
a.y=-a.y;
a.z=-a.z;
}
float theta = (float)acos(a^b);
if(theta==0.0f) { return(a);}
return a*(float)(sin(theta-interp*theta)/sin(theta)) + b*(float)(sin(interp*theta)/sin(theta));
}