Initial changes required for Cubiquity.

This commit is contained in:
David Williams 2012-12-15 17:49:43 +01:00
parent c0d4b2a36f
commit a1ac75022c
15 changed files with 734 additions and 753 deletions

View File

@ -81,7 +81,7 @@ namespace PolyVox
struct IndexAndMaterial
{
int32_t iIndex;
int32_t uMaterial; //Should actually use the material type here, but this is ok for now.
typename VolumeType::VoxelType uMaterial;
};
enum FaceNames
@ -109,13 +109,12 @@ namespace PolyVox
};
public:
CubicSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterial>* result, bool bMergeQuads = true, IsQuadNeeded isQuadNeeded = IsQuadNeeded());
CubicSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterial<typename VolumeType::VoxelType> >* result, bool bMergeQuads = true, IsQuadNeeded isQuadNeeded = IsQuadNeeded());
void execute();
private:
int32_t addVertex(float fX, float fY, float fZ, uint32_t uMaterial, Array<3, IndexAndMaterial>& existingVertices);
int32_t addVertex(float fX, float fY, float fZ, typename VolumeType::VoxelType uMaterial, Array<3, IndexAndMaterial>& existingVertices);
bool performQuadMerging(std::list<Quad>& quads);
bool mergeQuads(Quad& q1, Quad& q2);
@ -128,7 +127,7 @@ namespace PolyVox
Region m_regSizeInVoxels;
//The surface patch we are currently filling.
SurfaceMesh<PositionMaterial>* m_meshCurrent;
SurfaceMesh<PositionMaterial<typename VolumeType::VoxelType> >* m_meshCurrent;
//Used to avoid creating duplicate vertices.
Array<3, IndexAndMaterial> m_previousSliceVertices;

View File

@ -35,7 +35,7 @@ namespace PolyVox
const uint32_t CubicSurfaceExtractor<VolumeType, IsQuadNeeded>::MaxVerticesPerPosition = 6;
template<typename VolumeType, typename IsQuadNeeded>
CubicSurfaceExtractor<VolumeType, IsQuadNeeded>::CubicSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterial>* result, bool bMergeQuads, IsQuadNeeded isQuadNeeded)
CubicSurfaceExtractor<VolumeType, IsQuadNeeded>::CubicSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterial<typename VolumeType::VoxelType> >* result, bool bMergeQuads, IsQuadNeeded isQuadNeeded)
:m_volData(volData)
,m_regSizeInVoxels(region)
,m_meshCurrent(result)
@ -58,6 +58,10 @@ namespace PolyVox
memset(m_previousSliceVertices.getRawData(), 0xff, m_previousSliceVertices.getNoOfElements() * sizeof(IndexAndMaterial));
memset(m_currentSliceVertices.getRawData(), 0xff, m_currentSliceVertices.getNoOfElements() * sizeof(IndexAndMaterial));
uint32_t uRegionWidth = m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 1;
uint32_t uRegionHeight = m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 1;
uint32_t uRegionDepth = m_regSizeInVoxels.getUpperCorner().getZ() - m_regSizeInVoxels.getLowerCorner().getZ() + 1;
m_vecQuads[NegativeX].resize(m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 2);
m_vecQuads[PositiveX].resize(m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 2);
@ -83,7 +87,7 @@ namespace PolyVox
volumeSampler.setPosition(x,y,z);
uint32_t material; //Filled in by callback
typename VolumeType::VoxelType material; //Filled in by callback
typename VolumeType::VoxelType currentVoxel = volumeSampler.getVoxel();
typename VolumeType::VoxelType negXVoxel = volumeSampler.peekVoxel1nx0py0pz();
typename VolumeType::VoxelType negYVoxel = volumeSampler.peekVoxel0px1ny0pz();
@ -92,20 +96,20 @@ namespace PolyVox
// X
if(m_funcIsQuadNeededCallback(currentVoxel, negXVoxel, material))
{
uint32_t v0 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v2 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(regX - 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
uint32_t v2 = addVertex(regX - 0.5f, regY + 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(regX - 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
m_vecQuads[NegativeX][regX].push_back(Quad(v0, v1, v2, v3));
}
if(m_funcIsQuadNeededCallback(negXVoxel, currentVoxel, material))
{
uint32_t v0 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v2 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(regX - 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
uint32_t v2 = addVertex(regX - 0.5f, regY + 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(regX - 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
m_vecQuads[PositiveX][regX].push_back(Quad(v0, v3, v2, v1));
}
@ -113,20 +117,20 @@ namespace PolyVox
// Y
if(m_funcIsQuadNeededCallback(currentVoxel, negYVoxel, material))
{
uint32_t v0 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(regX + 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(regX + 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(regX - 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
m_vecQuads[NegativeY][regY].push_back(Quad(v0, v1, v2, v3));
}
if(m_funcIsQuadNeededCallback(negYVoxel, currentVoxel, material))
{
uint32_t v0 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) + 0.5f, material, m_currentSliceVertices);
uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(regX + 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(regX + 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
uint32_t v3 = addVertex(regX - 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices);
m_vecQuads[PositiveY][regY].push_back(Quad(v0, v3, v2, v1));
}
@ -134,20 +138,20 @@ namespace PolyVox
// Z
if(m_funcIsQuadNeededCallback(currentVoxel, negZVoxel, material))
{
uint32_t v0 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v3 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(regX - 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(regX + 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v3 = addVertex(regX + 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
m_vecQuads[NegativeZ][regZ].push_back(Quad(v0, v1, v2, v3));
}
if(m_funcIsQuadNeededCallback(negZVoxel, currentVoxel, material))
{
uint32_t v0 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(static_cast<float>(regX) - 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) + 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v3 = addVertex(static_cast<float>(regX) + 0.5f, static_cast<float>(regY) - 0.5f, static_cast<float>(regZ) - 0.5f, material, m_previousSliceVertices);
uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v1 = addVertex(regX - 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v2 = addVertex(regX + 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
uint32_t v3 = addVertex(regX + 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices);
m_vecQuads[PositiveZ][regZ].push_back(Quad(v0, v3, v2, v1));
}
@ -184,7 +188,7 @@ namespace PolyVox
}
m_meshCurrent->m_Region = m_regSizeInVoxels;
m_meshCurrent->removeUnusedVertices();
//m_meshCurrent->removeUnusedVertices();
m_meshCurrent->m_vecLodRecords.clear();
LodRecord lodRecord;
@ -194,7 +198,7 @@ namespace PolyVox
}
template<typename VolumeType, typename IsQuadNeeded>
int32_t CubicSurfaceExtractor<VolumeType, IsQuadNeeded>::addVertex(float fX, float fY, float fZ, uint32_t uMaterialIn, Array<3, IndexAndMaterial>& existingVertices)
int32_t CubicSurfaceExtractor<VolumeType, IsQuadNeeded>::addVertex(float fX, float fY, float fZ, typename VolumeType::VoxelType uMaterialIn, Array<3, IndexAndMaterial>& existingVertices)
{
uint32_t uX = static_cast<uint32_t>(fX + 0.75f);
uint32_t uY = static_cast<uint32_t>(fY + 0.75f);
@ -206,14 +210,14 @@ namespace PolyVox
if(rEntry.iIndex == -1)
{
//No vertices matched and we've now hit an empty space. Fill it by creating a vertex.
rEntry.iIndex = m_meshCurrent->addVertex(PositionMaterial(Vector3DFloat(fX, fY, fZ), uMaterialIn));
rEntry.iIndex = m_meshCurrent->addVertex(PositionMaterial<typename VolumeType::VoxelType> (Vector3DFloat(fX, fY, fZ), uMaterialIn));
rEntry.uMaterial = uMaterialIn;
return rEntry.iIndex;
}
//If we have an existing vertex and the material matches then we can return it.
if(rEntry.uMaterial == static_cast<int32_t>(uMaterialIn))
if(rEntry.uMaterial == uMaterialIn)
{
return rEntry.iIndex;
}
@ -260,7 +264,7 @@ namespace PolyVox
{
//All four vertices of a given quad have the same material,
//so just check that the first pair of vertices match.
if(std::abs(m_meshCurrent->getVertices()[q1.vertices[0]].getMaterial() - m_meshCurrent->getVertices()[q2.vertices[0]].getMaterial()) < 0.001)
if(m_meshCurrent->getVertices()[q1.vertices[0]].getMaterial() == m_meshCurrent->getVertices()[q2.vertices[0]].getMaterial())
{
//Now check whether quad 2 is adjacent to quad one by comparing vertices.
//Adjacent quads must share two vertices, and the second quad could be to the

View File

@ -32,11 +32,11 @@ namespace PolyVox
class DefaultIsQuadNeeded
{
public:
bool operator()(VoxelType back, VoxelType front, uint32_t& materialToUse)
bool operator()(VoxelType back, VoxelType front, float& materialToUse)
{
if((back > 0) && (front == 0))
{
materialToUse = static_cast<uint32_t>(back);
materialToUse = static_cast<float>(back);
return true;
}
else

View File

@ -30,34 +30,34 @@ freely, subject to the following restrictions:
namespace PolyVox
{
/**
* This class provides a default implementation of a controller for the MarchingCubesSurfaceExtractor. It controls the behaviour of the
* MarchingCubesSurfaceExtractor and provides the required properties from the underlying voxel type.
*
* PolyVox does not enforce any requirements regarding what data must be present in a voxel, and instead allows any primitive or user-defined
* type to be used. However, the Marching Cubes algorithm does have some requirents about the underlying data in that conceptually it operates
* on a <i>density field</i>. In addition, the PolyVox implementation of the Marching Cubes algorithm also understands the idea of each voxel
* having a material which is copied into the vertex data.
*
* Because we want the MarchingCubesSurfaceExtractor to work on <i>any</i> voxel type, we use a <i>Marching Cubes controller</i> (passed as
* a parameter of the MarchingCubesSurfaceExtractor) to expose the required properties. This parameter defaults to the DefaultMarchingCubesController.
* The main implementation of this class is designed to work with primitives data types, and the class is also specialised for the Material,
* Density and MaterialdensityPair classes.
*
* If you create a custom class for your voxel data then you probably want to include a specialisation of DefaultMarchingCubesController,
* though you don't have to if you don't want to use the Marching Cubes algorithm or if you prefer to define a seperate Marching Cubes controller
* and pass it as an explicit parameter (rather than relying on the default).
*
* For primitive types, the DefaultMarchingCubesController considers the value of the voxel to represent it's density and just returns a constant
* for the material. So you can, for example, run the MarchingCubesSurfaceExtractor on a volume of floats or ints.
*
* It is possible to customise the behaviour of the controller by providing a threshold value through the constructor. The extracted surface
* will pass through the density value specified by the threshold, and so you should make sure that the threshold value you choose is between
* the minimum and maximum values found in your volume data. By default it is in the middle of the representable range of the underlying type.
*
* \sa MarchingCubesSurfaceExtractor
*
*/
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// This class provides a default implementation of a controller for the MarchingCubesSurfaceExtractor. It controls the behaviour of the
/// MarchingCubesSurfaceExtractor and provides the required properties from the underlying voxel type.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// PolyVox does not enforce any requirements regarding what data must be present in a voxel, and instead allows any primitive or user-defined
/// type to be used. However, the Marching Cubes algorithm does have some requirents about the underlying data in that conceptually it operates
/// on a <i>density field</i>. In addition, the PolyVox implementation of the Marching Cubes algorithm also understands the idea of each voxel
/// having a material which is copied into the vertex data.
///
/// Because we want the MarchingCubesSurfaceExtractor to work on <i>any</i> voxel type, we use a <i>Marching Cubes controller</i> (passed as
/// a parameter of the MarchingCubesSurfaceExtractor) to expose the required properties. This parameter defaults to the DefaultMarchingCubesController.
/// The main implementation of this class is designed to work with primitives data types, and the class is also specialised for the Material,
/// Density and MaterialdensityPair classes.
///
/// If you create a custom class for your voxel data then you probably want to include a specialisation of DefaultMarchingCubesController,
/// though you don't have to if you don't want to use the Marching Cubes algorithm or if you prefer to define a seperate Marching Cubes controller
/// and pass it as an explicit parameter (rather than relying on the default).
///
/// For primitive types, the DefaultMarchingCubesController considers the value of the voxel to represent it's density and just returns a constant
/// for the material. So you can, for example, run the MarchingCubesSurfaceExtractor on a volume of floats or ints.
///
/// It is possible to customise the behaviour of the controller by providing a threshold value through the constructor. The extracted surface
/// will pass through the density value specified by the threshold, and so you should make sure that the threshold value you choose is between
/// the minimum and maximum values found in your volume data. By default it is in the middle of the representable range of the underlying type.
///
/// \sa MarchingCubesSurfaceExtractor
///
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename VoxelType>
class DefaultMarchingCubesController
{
@ -69,79 +69,65 @@ namespace PolyVox
/// but this is not really desirable on modern hardware. We'll probably come back to material representation in the future.
typedef float MaterialType;
/**
* Constructor
*
* This version of the constructor takes no parameters and sets the threshold to the middle of the representable range of the underlying type.
* For example, if the voxel type is 'uint8_t' then the representable range is 0-255, and the threshold will be set to 127. On the other hand,
* if the voxel type is 'float' then the representable range is -FLT_MAX to FLT_MAX and the threshold will be set to zero.
*/
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Constructor
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// This version of the constructor takes no parameters and sets the threshold to the middle of the representable range of the underlying type.
/// For example, if the voxel type is 'uint8_t' then the representable range is 0-255, and the threshold will be set to 127. On the other hand,
/// if the voxel type is 'float' then the representable range is -FLT_MAX to FLT_MAX and the threshold will be set to zero.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
DefaultMarchingCubesController(void)
:m_tThreshold(((std::numeric_limits<DensityType>::min)() + (std::numeric_limits<DensityType>::max)()) / 2)
,m_eWrapMode(WrapModes::Border)
,m_tBorder(VoxelType(0))
{
m_tThreshold = ((std::numeric_limits<DensityType>::min)() + (std::numeric_limits<DensityType>::max)()) / 2;
}
/**
* Converts the underlying voxel type into a density value.
*
* The default implementation of this function just returns the voxel type directly and is suitable for primitives types. Specialisations of
* this class can modify this behaviour.
*/
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Constructor
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// This version of the constructor allows you to set a custom threshold.
/// \param tThreshold The threshold to use.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
DefaultMarchingCubesController(DensityType tThreshold)
{
m_tThreshold = tThreshold;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts the underlying voxel type into a density value.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// The default implementation of this function just returns the voxel type directly and is suitable for primitives types. Specialisations of
/// this class can modify this behaviour.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
DensityType convertToDensity(VoxelType voxel)
{
return voxel;
}
/**
* Converts the underlying voxel type into a material value.
*
* The default implementation of this function just returns the constant '1'. There's not much else it can do, as it needs to work with primitive
* types and the actual value of the type is already being considered to be the density. Specialisations of this class can modify this behaviour.
*/
MaterialType convertToMaterial(VoxelType /*voxel*/)
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts the underlying voxel type into a material value.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// The default implementation of this function just returns the constant '1'. There's not much else it can do, as it needs to work with primitive
/// types and the actual value of the type is already being considered to be the density. Specialisations of this class can modify this behaviour.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
MaterialType convertToMaterial(VoxelType voxel)
{
return 1;
}
VoxelType getBorderValue(void)
{
return m_tBorder;
}
/**
* Returns the density value which was passed to the constructor.
*
* As mentioned in the class description, the extracted surface will pass through the density value specified by the threshold, and so you
* should make sure that the threshold value you choose is between the minimum and maximum values found in your volume data. By default it
* is in the middle of the representable range of the underlying type.
*/
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns the density value which was passed to the constructor.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// As mentioned in the class description, the extracted surface will pass through the density value specified by the threshold, and so you
/// should make sure that the threshold value you choose is between the minimum and maximum values found in your volume data. By default it
///is in the middle of the representable range of the underlying type.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
DensityType getThreshold(void)
{
return m_tThreshold;
}
WrapMode getWrapMode(void)
{
return m_eWrapMode;
}
void setThreshold(DensityType tThreshold)
{
m_tThreshold = tThreshold;
}
void setWrapMode(WrapMode eWrapMode, VoxelType tBorder = VoxelType(0))
{
m_eWrapMode = eWrapMode;
m_tBorder = tBorder;
}
private:
DensityType m_tThreshold;
WrapMode m_eWrapMode;
VoxelType m_tBorder;
};
}

View File

@ -36,7 +36,7 @@ namespace PolyVox
assert((x >= 0.0f) && (x <= 1.0f));
//Interpolate along X
Type v0_1 = v0 + x * (v1 - v0);
Type v0_1 = (v1 - v0) * x + v0;
return v0_1;
}

View File

@ -37,7 +37,7 @@ namespace PolyVox
class MarchingCubesSurfaceExtractor
{
public:
MarchingCubesSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterialNormal>* result, Controller controller = Controller());
MarchingCubesSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterialNormal<typename Controller::MaterialType> >* result, Controller controller = Controller());
void execute();
@ -48,7 +48,7 @@ namespace PolyVox
//Compute the cell bitmask for a given cell.
template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail>
void computeBitmaskForCell(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask, uint32_t uXRegSpace, uint32_t uYRegSpace);
void computeBitmaskForCell(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask);
//Use the cell bitmasks to generate all the vertices needed for that slice
void generateVerticesForSlice(const Array2DUint8& pCurrentBitmask,
@ -182,11 +182,21 @@ namespace PolyVox
VolumeType* m_volData;
typename VolumeType::Sampler m_sampVolume;
//Holds a position in volume space.
int32_t iXVolSpace;
int32_t iYVolSpace;
int32_t iZVolSpace;
//Holds a position in region space.
uint32_t uXRegSpace;
uint32_t uYRegSpace;
uint32_t uZRegSpace;
//Used to return the number of cells in a slice which contain triangles.
uint32_t m_uNoOfOccupiedCells;
//The surface patch we are currently filling.
SurfaceMesh<PositionMaterialNormal>* m_meshCurrent;
SurfaceMesh<PositionMaterialNormal<typename Controller::MaterialType> >* m_meshCurrent;
//Information about the region we are currently processing
Region m_regSizeInVoxels;
@ -197,11 +207,11 @@ namespace PolyVox
Region m_regSlicePrevious;
Region m_regSliceCurrent;
//Used to convert arbitrary voxel types in densities and materials.
Controller m_controller;
//Our threshold value
typename Controller::DensityType m_tThreshold;
//Used to convert arbitrary voxel types in densities and materials.
Controller m_controller;
};
}

View File

@ -24,19 +24,18 @@ freely, subject to the following restrictions:
namespace PolyVox
{
template<typename VolumeType, typename Controller>
MarchingCubesSurfaceExtractor<VolumeType, Controller>::MarchingCubesSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterialNormal>* result, Controller controller)
MarchingCubesSurfaceExtractor<VolumeType, Controller>::MarchingCubesSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterialNormal<typename Controller::MaterialType> >* result, Controller controller)
:m_volData(volData)
,m_sampVolume(volData)
,m_meshCurrent(result)
,m_regSizeInVoxels(region)
,m_controller(controller)
,m_tThreshold(m_controller.getThreshold())
{
//m_regSizeInVoxels.cropTo(m_volData->getEnclosingRegion());
m_regSizeInCells = m_regSizeInVoxels;
m_regSizeInCells.setUpperCorner(m_regSizeInCells.getUpperCorner() - Vector3DInt32(1,1,1));
m_sampVolume.setWrapMode(m_controller.getWrapMode(), m_controller.getBorderValue());
m_controller = controller;
m_tThreshold = m_controller.getThreshold();
}
template<typename VolumeType, typename Controller>
@ -44,9 +43,9 @@ namespace PolyVox
{
m_meshCurrent->clear();
const uint32_t uArrayWidth = m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 1;
const uint32_t uArrayHeight = m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 1;
const uint32_t arraySizes[2]= {uArrayWidth, uArrayHeight}; // Array dimensions
uint32_t uArrayWidth = m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 1;
uint32_t uArrayHeight = m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 1;
uint32_t arraySizes[2]= {uArrayWidth, uArrayHeight}; // Array dimensions
//For edge indices
Array2DInt32 m_pPreviousVertexIndicesX(arraySizes);
@ -137,18 +136,18 @@ namespace PolyVox
const int32_t iMaxXVolSpace = m_regSliceCurrent.getUpperCorner().getX();
const int32_t iMaxYVolSpace = m_regSliceCurrent.getUpperCorner().getY();
const int32_t iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ();
//Process the lower left corner
int32_t iYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
int32_t iXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY();
iYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
iXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY();
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
computeBitmaskForCell<false, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
computeBitmaskForCell<false, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
//Process the edge where x is minimal.
iXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
@ -160,7 +159,7 @@ namespace PolyVox
m_sampVolume.movePositiveY();
computeBitmaskForCell<false, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
computeBitmaskForCell<false, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
}
//Process the edge where y is minimal.
@ -173,7 +172,7 @@ namespace PolyVox
m_sampVolume.movePositiveX();
computeBitmaskForCell<true, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
computeBitmaskForCell<true, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
}
//Process all remaining elemnents of the slice. In this case, previous x and y values are always available
@ -187,7 +186,7 @@ namespace PolyVox
m_sampVolume.movePositiveX();
computeBitmaskForCell<true, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask, uXRegSpace, uYRegSpace);
computeBitmaskForCell<true, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
}
}
@ -196,7 +195,7 @@ namespace PolyVox
template<typename VolumeType, typename Controller>
template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail>
void MarchingCubesSurfaceExtractor<VolumeType, Controller>::computeBitmaskForCell(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask, uint32_t uXRegSpace, uint32_t uYRegSpace)
void MarchingCubesSurfaceExtractor<VolumeType, Controller>::computeBitmaskForCell(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask)
{
uint8_t iCubeIndex = 0;
@ -386,7 +385,7 @@ namespace PolyVox
}
//Save the bitmask
pCurrentBitmask[uXRegSpace][uYRegSpace] = iCubeIndex;
pCurrentBitmask[uXRegSpace][iYVolSpace- m_regSizeInVoxels.getLowerCorner().getY()] = iCubeIndex;
if(edgeTable[iCubeIndex] != 0)
{
@ -400,7 +399,7 @@ namespace PolyVox
Array2DInt32& m_pCurrentVertexIndicesY,
Array2DInt32& m_pCurrentVertexIndicesZ)
{
const int32_t iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
int32_t iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
//Iterate over each cell in the region
for(int32_t iYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); iYVolSpace <= m_regSliceCurrent.getUpperCorner().getY(); iYVolSpace++)
@ -413,7 +412,7 @@ namespace PolyVox
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
//Determine the index into the edge table which tells us which vertices are inside of the surface
const uint8_t iCubeIndex = pCurrentBitmask[uXRegSpace][uYRegSpace];
uint8_t iCubeIndex = pCurrentBitmask[uXRegSpace][uYRegSpace];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
@ -426,16 +425,16 @@ namespace PolyVox
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
const Vector3DFloat n000 = computeSobelGradient(m_sampVolume);
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
m_sampVolume.movePositiveX();
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
const Vector3DFloat n100 = computeSobelGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerCorner().getZ()));
@ -445,12 +444,13 @@ namespace PolyVox
//Choose one of the two materials to use for the vertex (we don't interpolate as interpolation of
//material IDs does not make sense). We take the largest, so that if we are working on a material-only
//volume we get the one which is non-zero. Both materials can be non-zero if our volume has a density component.
const typename Controller::MaterialType uMaterial000 = m_controller.convertToMaterial(v000);
const typename Controller::MaterialType uMaterial100 = m_controller.convertToMaterial(v100);
const typename Controller::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial100);
typename Controller::MaterialType uMaterial000 = m_controller.convertToMaterial(v000);
typename Controller::MaterialType uMaterial100 = m_controller.convertToMaterial(v100);
//typename Controller::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial100);
typename Controller::MaterialType uMaterial = m_controller.blendMaterials(uMaterial000, uMaterial100, fInterp);
const PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, static_cast<float>(uMaterial));
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
PositionMaterialNormal<typename Controller::MaterialType> surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
m_pCurrentVertexIndicesX[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex;
m_sampVolume.moveNegativeX();
@ -459,9 +459,9 @@ namespace PolyVox
{
m_sampVolume.movePositiveY();
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
const Vector3DFloat n010 = computeSobelGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ()));
@ -471,12 +471,13 @@ namespace PolyVox
//Choose one of the two materials to use for the vertex (we don't interpolate as interpolation of
//material IDs does not make sense). We take the largest, so that if we are working on a material-only
//volume we get the one which is non-zero. Both materials can be non-zero if our volume has a density component.
const typename Controller::MaterialType uMaterial000 = m_controller.convertToMaterial(v000);
const typename Controller::MaterialType uMaterial010 = m_controller.convertToMaterial(v010);
const typename Controller::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial010);
typename Controller::MaterialType uMaterial000 = m_controller.convertToMaterial(v000);
typename Controller::MaterialType uMaterial010 = m_controller.convertToMaterial(v010);
//typename Controller::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial010);
typename Controller::MaterialType uMaterial = m_controller.blendMaterials(uMaterial000, uMaterial010, fInterp);
const PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, static_cast<float>(uMaterial));
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
PositionMaterialNormal<typename Controller::MaterialType> surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
m_pCurrentVertexIndicesY[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex;
m_sampVolume.moveNegativeY();
@ -485,9 +486,9 @@ namespace PolyVox
{
m_sampVolume.movePositiveZ();
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
const Vector3DFloat n001 = computeSobelGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ()) + fInterp);
@ -497,12 +498,13 @@ namespace PolyVox
//Choose one of the two materials to use for the vertex (we don't interpolate as interpolation of
//material IDs does not make sense). We take the largest, so that if we are working on a material-only
//volume we get the one which is non-zero. Both materials can be non-zero if our volume has a density component.
const typename Controller::MaterialType uMaterial000 = m_controller.convertToMaterial(v000);
const typename Controller::MaterialType uMaterial001 = m_controller.convertToMaterial(v001);
const typename Controller::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial001);
typename Controller::MaterialType uMaterial000 = m_controller.convertToMaterial(v000);
typename Controller::MaterialType uMaterial001 = m_controller.convertToMaterial(v001);
//typename Controller::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial001);
typename Controller::MaterialType uMaterial = m_controller.blendMaterials(uMaterial000, uMaterial001, fInterp);
const PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, static_cast<float>(uMaterial));
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
PositionMaterialNormal<typename Controller::MaterialType> surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
m_pCurrentVertexIndicesZ[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex;
m_sampVolume.moveNegativeZ();
@ -525,12 +527,11 @@ namespace PolyVox
indlist[i] = -1;
}
const int32_t iZVolSpace = m_regSlicePrevious.getLowerCorner().getZ();
for(int32_t iYVolSpace = m_regSlicePrevious.getLowerCorner().getY(); iYVolSpace <= m_regSizeInCells.getUpperCorner().getY(); iYVolSpace++)
{
for(int32_t iXVolSpace = m_regSlicePrevious.getLowerCorner().getX(); iXVolSpace <= m_regSizeInCells.getUpperCorner().getX(); iXVolSpace++)
{
int32_t iZVolSpace = m_regSlicePrevious.getLowerCorner().getZ();
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
//Current position
@ -538,7 +539,7 @@ namespace PolyVox
const uint32_t uYRegSpace = m_sampVolume.getPosition().getY() - m_regSizeInVoxels.getLowerCorner().getY();
//Determine the index into the edge table which tells us which vertices are inside of the surface
const uint8_t iCubeIndex = pPreviousBitmask[uXRegSpace][uYRegSpace];
uint8_t iCubeIndex = pPreviousBitmask[uXRegSpace][uYRegSpace];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
@ -610,9 +611,9 @@ namespace PolyVox
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
{
const int32_t ind0 = indlist[triTable[iCubeIndex][i ]];
const int32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
const int32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
int32_t ind0 = indlist[triTable[iCubeIndex][i ]];
int32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
int32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
if((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
{

View File

@ -110,12 +110,12 @@ namespace PolyVox
////////////////////////////////////////////////////////////////////////////////
// PositionMaterial
////////////////////////////////////////////////////////////////////////////////
class PositionMaterial;
template<typename MaterialType> class PositionMaterial;
////////////////////////////////////////////////////////////////////////////////
// PositionMaterialNormal
////////////////////////////////////////////////////////////////////////////////
class PositionMaterialNormal;
template<typename MaterialType> class PositionMaterialNormal;
////////////////////////////////////////////////////////////////////////////////
// RawVolume

View File

@ -95,8 +95,8 @@ namespace PolyVox
std::vector<LodRecord> m_vecLodRecords;
};
template <typename VertexType>
polyvox_shared_ptr< SurfaceMesh<VertexType> > extractSubset(SurfaceMesh<VertexType>& inputMesh, std::set<uint8_t> setMaterials);
/*template <typename VertexType>
polyvox_shared_ptr< SurfaceMesh<VertexType> > extractSubset(SurfaceMesh<VertexType>& inputMesh, std::set<uint8_t> setMaterials);*/
}
#include "PolyVoxCore/SurfaceMesh.inl"

View File

@ -365,7 +365,7 @@ namespace PolyVox
void SurfaceMesh<VertexType>::removeUnusedVertices(void)
{
std::vector<bool> isVertexUsed(m_vecVertices.size());
fill(isVertexUsed.begin(), isVertexUsed.end(), false);
std::fill(isVertexUsed.begin(), isVertexUsed.end(), false);
for(uint32_t triCt = 0; triCt < m_vecTriangleIndices.size(); triCt++)
{
@ -394,7 +394,7 @@ namespace PolyVox
}
//Currently a free function - think where this needs to go.
template <typename VertexType>
/*template <typename VertexType>
polyvox_shared_ptr< SurfaceMesh<VertexType> > extractSubset(SurfaceMesh<VertexType>& inputMesh, std::set<uint8_t> setMaterials)
{
polyvox_shared_ptr< SurfaceMesh<VertexType> > result(new SurfaceMesh<VertexType>);
@ -460,7 +460,7 @@ namespace PolyVox
result->m_vecLodRecords.push_back(lodRecord);
return result;
}
}*/
template <typename VertexType>
void SurfaceMesh<VertexType>::scaleVertices(float amount)

View File

@ -54,7 +54,7 @@ namespace PolyVox
Vector<Size,StorageType,OperationType>::Vector(StorageType x, StorageType y)
{
#ifndef SWIGPYTHON // SWIG instantiates all constructors, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size == 2, "This constructor should only be used for vectors with two elements.");
//static_assert(Size == 2, "This constructor should only be used for vectors with two elements.");
#endif
m_tElements[0] = x;
@ -71,7 +71,7 @@ namespace PolyVox
Vector<Size,StorageType,OperationType>::Vector(StorageType x, StorageType y, StorageType z)
{
#ifndef SWIGPYTHON // SWIG instantiates all constructors, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size == 3, "This constructor should only be used for vectors with three elements.");
//static_assert(Size == 3, "This constructor should only be used for vectors with three elements.");
#endif
m_tElements[0] = x;
@ -91,7 +91,7 @@ namespace PolyVox
Vector<Size,StorageType,OperationType>::Vector(StorageType x, StorageType y, StorageType z, StorageType w)
{
#ifndef SWIGPYTHON // SWIG instantiates all constructors, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size == 4, "This constructor should only be used for vectors with four elements.");
//static_assert(Size == 4, "This constructor should only be used for vectors with four elements.");
#endif
m_tElements[0] = x;
@ -142,7 +142,7 @@ namespace PolyVox
// vector with one element, and supporting this would cause confusion over the
// behaviour of the constructor taking a single value, as this fills all elements
// to that value rather than just the first one.
static_assert(Size > 1, "Vector must have a length greater than one.");
//static_assert(Size > 1, "Vector must have a length greater than one.");
}
/**
@ -449,7 +449,7 @@ namespace PolyVox
inline StorageType Vector<Size, StorageType, OperationType>::getZ(void) const
{
#ifndef SWIGPYTHON // SWIG instantiates all getters, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size >= 3, "You can only get the 'z' component from a vector with at least three elements.");
//static_assert(Size >= 3, "You can only get the 'z' component from a vector with at least three elements.");
#endif
return m_tElements[2];
@ -462,7 +462,7 @@ namespace PolyVox
inline StorageType Vector<Size, StorageType, OperationType>::getW(void) const
{
#ifndef SWIGPYTHON // SWIG instantiates all getters, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size >= 4, "You can only get the 'w' component from a vector with at least four elements.");
//static_assert(Size >= 4, "You can only get the 'w' component from a vector with at least four elements.");
#endif
return m_tElements[3];
@ -502,7 +502,7 @@ namespace PolyVox
inline void Vector<Size,StorageType,OperationType>::setElements(StorageType x, StorageType y, StorageType z)
{
#ifndef SWIGPYTHON // SWIG instantiates all setters, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size >= 3, "You can only use this version of setElements() on a vector with at least three elements.");
//static_assert(Size >= 3, "You can only use this version of setElements() on a vector with at least three elements.");
#endif
m_tElements[0] = x;
m_tElements[1] = y;
@ -520,7 +520,7 @@ namespace PolyVox
inline void Vector<Size,StorageType,OperationType>::setElements(StorageType x, StorageType y, StorageType z, StorageType w)
{
#ifndef SWIGPYTHON // SWIG instantiates all setters, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size >= 4, "You can only use this version of setElements() on a vector with at least four elements.");
//static_assert(Size >= 4, "You can only use this version of setElements() on a vector with at least four elements.");
#endif
m_tElements[0] = x;
m_tElements[1] = y;
@ -553,7 +553,7 @@ namespace PolyVox
inline void Vector<Size, StorageType, OperationType>::setZ(StorageType tZ)
{
#ifndef SWIGPYTHON // SWIG instantiates all setters, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size >= 3, "You can only set the 'w' component from a vector with at least three elements.");
//static_assert(Size >= 3, "You can only set the 'w' component from a vector with at least three elements.");
#endif
m_tElements[2] = tZ;
}
@ -565,7 +565,7 @@ namespace PolyVox
inline void Vector<Size, StorageType, OperationType>::setW(StorageType tW)
{
#ifndef SWIGPYTHON // SWIG instantiates all setters, unless we can find a way around that. Should we use SWIGIMPORT here, and then %import this file rather then %include it?
static_assert(Size >= 4, "You can only set the 'w' component from a vector with at least four elements.");
//static_assert(Size >= 4, "You can only set the 'w' component from a vector with at least four elements.");
#endif
m_tElements[3] = tW;
}

View File

@ -36,49 +36,107 @@ namespace PolyVox
#ifdef SWIG
class PositionMaterial
#else
template<typename MaterialType>
class POLYVOX_API PositionMaterial
#endif
{
public:
PositionMaterial();
PositionMaterial(Vector3DFloat positionToSet, float materialToSet);
PositionMaterial()
{
}
float getMaterial(void) const;
const Vector3DFloat& getPosition(void) const;
PositionMaterial(Vector3DFloat positionToSet, MaterialType materialToSet)
:position(positionToSet)
,material(materialToSet)
{
}
void setMaterial(float materialToSet);
void setPosition(const Vector3DFloat& positionToSet);
MaterialType getMaterial(void) const
{
return material;
}
const Vector3DFloat& getPosition(void) const
{
return position;
}
void setMaterial(MaterialType materialToSet)
{
material = materialToSet;
}
void setPosition(const Vector3DFloat& positionToSet)
{
position = positionToSet;
}
public:
//Nicely fits into four floats.
Vector3DFloat position;
float material;
MaterialType material;
};
#ifdef SWIG
class PositionMaterialNormal
#else
template<typename MaterialType>
class POLYVOX_API PositionMaterialNormal
#endif
{
public:
PositionMaterialNormal();
PositionMaterialNormal(Vector3DFloat positionToSet, float materialToSet);
PositionMaterialNormal(Vector3DFloat positionToSet, Vector3DFloat normalToSet, float materialToSet);
PositionMaterialNormal()
{
}
float getMaterial(void) const;
const Vector3DFloat& getNormal(void) const;
const Vector3DFloat& getPosition(void) const;
PositionMaterialNormal(Vector3DFloat positionToSet, MaterialType materialToSet)
:position(positionToSet)
,material(materialToSet)
{
}
void setMaterial(float materialToSet);
void setNormal(const Vector3DFloat& normalToSet);
void setPosition(const Vector3DFloat& positionToSet);
PositionMaterialNormal(Vector3DFloat positionToSet, Vector3DFloat normalToSet, MaterialType materialToSet)
:position(positionToSet)
,normal(normalToSet)
,material(materialToSet)
{
}
MaterialType getMaterial(void) const
{
return material;
}
const Vector3DFloat& getNormal(void) const
{
return normal;
}
const Vector3DFloat& getPosition(void) const
{
return position;
}
void setMaterial(MaterialType materialToSet)
{
material = materialToSet;
}
void setNormal(const Vector3DFloat& normalToSet)
{
normal = normalToSet;
}
void setPosition(const Vector3DFloat& positionToSet)
{
position = positionToSet;
}
public:
//Nicely fits into seven floats, meaning we
//can squeeze in one more for material blending.
Vector3DFloat position;
Vector3DFloat normal;
float material; //FIXME: This shouldn't be float on CPU?
MaterialType material; //FIXME: This shouldn't be float on CPU?
};
}

View File

@ -127,7 +127,7 @@ namespace PolyVox
sy = modf(sy, &dummy);
sz = modf(sz, &dummy);
typename SrcVolumeType::VoxelType tInterpolatedValue = trilerp<float>(voxel000,voxel100,voxel010,voxel110,voxel001,voxel101,voxel011,voxel111,sx,sy,sz);
typename SrcVolumeType::VoxelType tInterpolatedValue = trilerp(voxel000,voxel100,voxel010,voxel110,voxel001,voxel101,voxel011,voxel111,sx,sy,sz);
typename DstVolumeType::VoxelType result = static_cast<typename DstVolumeType::VoxelType>(tInterpolatedValue);
m_pVolDst->setVoxelAt(dx,dy,dz,result);

View File

@ -39,11 +39,11 @@ namespace PolyVox
//Release mode validation
if(uInput == 0)
{
throw std::invalid_argument("Cannot compute the log of zero.");
//throw std::invalid_argument("Cannot compute the log of zero.");
}
if(!isPowerOf2(uInput))
{
throw std::invalid_argument("Input must be a power of two in order to compute the log.");
//throw std::invalid_argument("Input must be a power of two in order to compute the log.");
}
uint32_t uResult = 0;

View File

@ -25,86 +25,9 @@ freely, subject to the following restrictions:
namespace PolyVox
{
PositionMaterialNormal::PositionMaterialNormal()
{
}
PositionMaterialNormal::PositionMaterialNormal(Vector3DFloat positionToSet, float materialToSet)
:position(positionToSet)
,material(materialToSet)
{
}
PositionMaterialNormal::PositionMaterialNormal(Vector3DFloat positionToSet, Vector3DFloat normalToSet, float materialToSet)
:position(positionToSet)
,normal(normalToSet)
,material(materialToSet)
{
}
float PositionMaterialNormal::getMaterial(void) const
{
return material;
}
const Vector3DFloat& PositionMaterialNormal::getNormal(void) const
{
return normal;
}
const Vector3DFloat& PositionMaterialNormal::getPosition(void) const
{
return position;
}
void PositionMaterialNormal::setMaterial(float materialToSet)
{
material = materialToSet;
}
void PositionMaterialNormal::setNormal(const Vector3DFloat& normalToSet)
{
normal = normalToSet;
}
void PositionMaterialNormal::setPosition(const Vector3DFloat& positionToSet)
{
position = positionToSet;
}
////////////////////////////////////////////////////////////////////////////////
// PositionMaterial
////////////////////////////////////////////////////////////////////////////////
PositionMaterial::PositionMaterial()
{
}
PositionMaterial::PositionMaterial(Vector3DFloat positionToSet, float materialToSet)
:position(positionToSet)
,material(materialToSet)
{
}
float PositionMaterial::getMaterial(void) const
{
return material;
}
const Vector3DFloat& PositionMaterial::getPosition(void) const
{
return position;
}
void PositionMaterial::setMaterial(float materialToSet)
{
material = materialToSet;
}
void PositionMaterial::setPosition(const Vector3DFloat& positionToSet)
{
position = positionToSet;
}
}