Just tidying up the MeshDecimator stuff a bit...

This commit is contained in:
David Williams 2011-01-05 22:05:53 +00:00
parent d0e4b06051
commit a7828995d9
4 changed files with 106 additions and 74 deletions

View File

@ -32,6 +32,7 @@ freely, subject to the following restrictions:
#include "MeshDecimator.h"
#include <QApplication>
#include <QTime>
//Use the PolyVox namespace
using namespace PolyVox;
@ -41,7 +42,7 @@ void createSphereInVolume(Volume<MaterialDensityPair44>& volData, float fRadius)
//This vector hold the position of the center of the volume
//Vector3DFloat v3dVolCenter(volData.getWidth() / 2, volData.getHeight() / 2, volData.getDepth() / 2);
Vector3DFloat v3dVolCenter(16, 16, 16);
Vector3DFloat v3dVolCenter(16, 16, 1);
//This three-level for loop iterates over every voxel in the volume
for (int z = 0; z < volData.getWidth(); z++)
@ -155,25 +156,35 @@ int main(int argc, char *argv[])
}
}*/
createSphereInVolume(volData, 10);
createSphereInVolume(volData, 24);
//Extract the surface
Region region(Vector3DInt16(0,0,0), Vector3DInt16(20,20,20));
Region region(Vector3DInt16(-1,-1,-1), Vector3DInt16(32,32,32));
SurfaceMesh<PositionMaterial> mesh;
//CubicSurfaceExtractor<MaterialDensityPair44> surfaceExtractor(&volData, volData.getEnclosingRegion(), &mesh);
QTime t;
t.start();
CubicSurfaceExtractor<MaterialDensityPair44> surfaceExtractor(&volData, region, &mesh);
surfaceExtractor.execute();
cout << "E: " << t.elapsed();
t.restart();
/*SurfaceMesh<PositionMaterialNormal> meshWithNormals;
addNormals(mesh, meshWithNormals);
meshWithNormals.decimate(0.99);*/
MeshDecimator<PositionMaterial> decimator(&mesh);
SurfaceMesh<PositionMaterial> decimatedMesh;
MeshDecimator<PositionMaterial> decimator(&mesh, &decimatedMesh);
decimator.execute();
cout << "D: " << t.elapsed();
SurfaceMesh<PositionMaterialNormal> meshWithNormals;
addNormals(mesh, meshWithNormals);
addNormals(decimatedMesh, meshWithNormals);
//Pass the surface to the OpenGL window
openGLWidget.setSurfaceMeshToRender(meshWithNormals);

View File

@ -126,7 +126,8 @@ void OpenGLWidget::setVolume(PolyVox::Volume<MaterialDensityPair44>* volData)
//mesh->decimate(0.999f);
MeshDecimator<PositionMaterialNormal> decimator(mesh.get());
polyvox_shared_ptr< SurfaceMesh<PositionMaterialNormal> > decimatedMesh(new SurfaceMesh<PositionMaterialNormal>);
MeshDecimator<PositionMaterialNormal> decimator(mesh.get(), decimatedMesh.get());
decimator.execute();
//mesh->generateAveragedFaceNormals(true);
@ -143,12 +144,12 @@ void OpenGLWidget::setVolume(PolyVox::Volume<MaterialDensityPair44>* volData)
Vector3DUint8 v3dRegPos(uRegionX,uRegionY,uRegionZ);
if(m_bUseOpenGLVertexBufferObjects)
{
OpenGLSurfaceMesh openGLSurfaceMesh = BuildOpenGLSurfaceMesh(*(mesh.get()));
OpenGLSurfaceMesh openGLSurfaceMesh = BuildOpenGLSurfaceMesh(*(decimatedMesh.get()));
m_mapOpenGLSurfaceMeshes.insert(make_pair(v3dRegPos, openGLSurfaceMesh));
}
//else
//{
m_mapSurfaceMeshes.insert(make_pair(v3dRegPos, mesh));
m_mapSurfaceMeshes.insert(make_pair(v3dRegPos, decimatedMesh));
//}
//delete meshCurrent;
}
@ -216,8 +217,8 @@ void OpenGLWidget::paintGL()
//Moves the camera back so we can see the volume
glTranslatef(0.0f, 0.0f, -m_volData->getDiagonalLength());
glRotatef(m_xRotation, 1.0f, 0.0f, 0.0f);
glRotatef(m_yRotation, 0.0f, 1.0f, 0.0f);
glRotatef(10, 1.0f, 0.0f, 0.0f);
glRotatef(20, 0.0f, 1.0f, 0.0f);
//Centre the volume on the origin
glTranslatef(-g_uVolumeSideLength/2,-g_uVolumeSideLength/2,-g_uVolumeSideLength/2);

View File

@ -62,7 +62,7 @@ namespace PolyVox
Vector3DFloat normal;
};
public:
MeshDecimator(SurfaceMesh<VertexType>* pInputMesh/*, SurfaceMesh<PositionMaterial>* pMeshOutput*/);
MeshDecimator(const SurfaceMesh<VertexType>* pInputMesh, SurfaceMesh<VertexType>* pOutputMesh, float fEdgeCollapseThreshold = 0.95f);
void execute();
@ -74,10 +74,10 @@ namespace PolyVox
bool attemptEdgeCollapse(uint32_t uSrc, uint32_t uDest);
SurfaceMesh<VertexType>* m_pInputMesh;
//SurfaceMesh<PositionMaterial>* pMeshOutput;
const SurfaceMesh<VertexType>* m_pInputMesh;
SurfaceMesh<VertexType>* m_pOutputMesh;
uint32_t performDecimationPass(float fMinDotProductForCollapse);
uint32_t performDecimationPass(float m_fMinDotProductForCollapse);
bool isSubset(std::bitset<RFF_NO_OF_REGION_FACE_FLAGS> a, std::bitset<RFF_NO_OF_REGION_FACE_FLAGS> b);
bool canCollapseEdge(uint32_t uSrc, uint32_t uDest);
@ -92,11 +92,11 @@ namespace PolyVox
std::vector<uint32_t> vertexMapper;
std::vector<Triangle> m_vecTriangles;
std::vector< list<uint32_t> > trianglesUsingVertex;
std::vector< list<uint32_t> > trianglesUsingVertex; //Should probably use vector of vectors, and resise in advance.
std::vector<InitialVertexMetadata> m_vecInitialVertexMetadata;
float fMinDotProductForCollapse;
float m_fMinDotProductForCollapse;
};
}

View File

@ -24,55 +24,64 @@ freely, subject to the following restrictions:
namespace PolyVox
{
template <typename VertexType>
MeshDecimator<VertexType>::MeshDecimator(SurfaceMesh<VertexType>* pInputMesh/*, SurfaceMesh<PositionMaterial>* pMeshOutput*/)
MeshDecimator<VertexType>::MeshDecimator(const SurfaceMesh<VertexType>* pInputMesh, SurfaceMesh<VertexType>* pOutputMesh, float fEdgeCollapseThreshold)
:m_pInputMesh(pInputMesh)
//,m_pOutputMesh(pOutputMesh)
,m_pOutputMesh(pOutputMesh)
,m_fMinDotProductForCollapse(fEdgeCollapseThreshold)
{
fMinDotProductForCollapse = 0.999;
*m_pOutputMesh = *m_pInputMesh;
}
template <typename VertexType>
void MeshDecimator<VertexType>::execute()
{
//Sanity check.
if((m_pOutputMesh->m_vecVertices.empty()) || (m_pOutputMesh->m_vecTriangleIndices.empty()))
{
return;
}
buildConnectivityData();
fillInitialVertexMetadata(m_vecInitialVertexMetadata);
uint32_t noOfEdgesCollapsed;
do
{
noOfEdgesCollapsed = performDecimationPass(fMinDotProductForCollapse);
m_pInputMesh->removeDegenerateTris();
noOfEdgesCollapsed = performDecimationPass(m_fMinDotProductForCollapse);
m_pOutputMesh->removeDegenerateTris();
if(noOfEdgesCollapsed > 0)
{
//Build the connectivity data for the next pass. If this is slow, then look
//at adjusting it (based on vertex mapper?) rather than bulding from scratch.
buildConnectivityData();
}
//m_pInputMesh->removeUnusedVertices();
}while(noOfEdgesCollapsed > 0);
m_pOutputMesh->removeUnusedVertices();
//Decimation will have invalidated LOD levels.
m_pInputMesh->m_vecLodRecords.clear();
m_pOutputMesh->m_vecLodRecords.clear();
LodRecord lodRecord;
lodRecord.beginIndex = 0;
lodRecord.endIndex = m_pInputMesh->getNoOfIndices();
m_pInputMesh->m_vecLodRecords.push_back(lodRecord);
lodRecord.endIndex = m_pOutputMesh->getNoOfIndices();
m_pOutputMesh->m_vecLodRecords.push_back(lodRecord);
}
template <typename VertexType>
void MeshDecimator<VertexType>::buildConnectivityData(void)
{
//Build a list of all the triangles, complete with face normals.
m_vecTriangles.clear();
m_vecTriangles.resize(m_pInputMesh->m_vecTriangleIndices.size() / 3);
m_vecTriangles.resize(m_pOutputMesh->m_vecTriangleIndices.size() / 3);
for(int triCt = 0; triCt < m_vecTriangles.size(); triCt++)
{
m_vecTriangles[triCt].v0 = m_pInputMesh->m_vecTriangleIndices[triCt * 3 + 0];
m_vecTriangles[triCt].v1 = m_pInputMesh->m_vecTriangleIndices[triCt * 3 + 1];
m_vecTriangles[triCt].v2 = m_pInputMesh->m_vecTriangleIndices[triCt * 3 + 2];
m_vecTriangles[triCt].v0 = m_pOutputMesh->m_vecTriangleIndices[triCt * 3 + 0];
m_vecTriangles[triCt].v1 = m_pOutputMesh->m_vecTriangleIndices[triCt * 3 + 1];
m_vecTriangles[triCt].v2 = m_pOutputMesh->m_vecTriangleIndices[triCt * 3 + 2];
Vector3DFloat v0Pos = m_pInputMesh->m_vecVertices[m_vecTriangles[triCt].v0].position;
Vector3DFloat v1Pos = m_pInputMesh->m_vecVertices[m_vecTriangles[triCt].v1].position;
Vector3DFloat v2Pos = m_pInputMesh->m_vecVertices[m_vecTriangles[triCt].v2].position;
Vector3DFloat v0Pos = m_pOutputMesh->m_vecVertices[m_vecTriangles[triCt].v0].position;
Vector3DFloat v1Pos = m_pOutputMesh->m_vecVertices[m_vecTriangles[triCt].v1].position;
Vector3DFloat v2Pos = m_pOutputMesh->m_vecVertices[m_vecTriangles[triCt].v2].position;
Vector3DFloat v0v1 = v1Pos - v0Pos;
Vector3DFloat v0v2 = v2Pos - v0Pos;
@ -82,8 +91,9 @@ namespace PolyVox
m_vecTriangles[triCt].normal = normal;
}
//For each vertex, determine which triangles are using it.
trianglesUsingVertex.clear();
trianglesUsingVertex.resize(m_pInputMesh->m_vecVertices.size());
trianglesUsingVertex.resize(m_pOutputMesh->m_vecVertices.size());
for(int ct = 0; ct < m_vecTriangles.size(); ct++)
{
trianglesUsingVertex[m_vecTriangles[ct].v0].push_back(ct);
@ -95,7 +105,7 @@ namespace PolyVox
void MeshDecimator<PositionMaterial>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
{
vecVertexMetadata.clear();
vecVertexMetadata.resize(m_pInputMesh->m_vecVertices.size());
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
//Initialise the metadata
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
@ -104,11 +114,15 @@ namespace PolyVox
vecVertexMetadata[ct].isOnRegionFace.reset();
}
for(int outerCt = 0; outerCt < m_pInputMesh->m_vecVertices.size()-1; outerCt++)
//Identify duplicate vertices, as they lie on the material edge. Note that this is a particularly slow way of
//findong the duplicates. Better to hash into integer (with upper bits being z and lower bits being x) and sort
//the resulting integers. The should be mostly in order as this is the order they come out of the
//CubicSurfaceExtractor in. Duplicates are now neighbours in the resulting list so just scan through for pairs.
for(int outerCt = 0; outerCt < m_pOutputMesh->m_vecVertices.size()-1; outerCt++)
{
for(int innerCt = outerCt+1; innerCt < m_pInputMesh->m_vecVertices.size(); innerCt++)
for(int innerCt = outerCt+1; innerCt < m_pOutputMesh->m_vecVertices.size(); innerCt++)
{
if((m_pInputMesh->m_vecVertices[innerCt].position - m_pInputMesh->m_vecVertices[outerCt].position).lengthSquared() < 0.001f)
if((m_pOutputMesh->m_vecVertices[innerCt].position - m_pOutputMesh->m_vecVertices[outerCt].position).lengthSquared() < 0.001f)
{
vecVertexMetadata[innerCt].isOnMaterialEdge = true;
vecVertexMetadata[outerCt].isOnMaterialEdge = true;
@ -116,7 +130,8 @@ namespace PolyVox
}
}
for(int ct = 0; ct < m_pInputMesh->m_vecVertices.size(); ct++)
//Compute an approcimation to the normal, used when deciding if an edge can collapse.
for(int ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
{
Vector3DFloat sumOfNormals(0.0f,0.0f,0.0f);
for(list<uint32_t>::const_iterator iter = trianglesUsingVertex[ct].cbegin(); iter != trianglesUsingVertex[ct].cend(); iter++)
@ -128,50 +143,52 @@ namespace PolyVox
vecVertexMetadata[ct].normal.normalise();
}
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
Region regTransformed = m_pInputMesh->m_Region;
Region regTransformed = m_pOutputMesh->m_Region;
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int16_t>(-1));
//Plus and minus X
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pInputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pInputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
//Plus and minus Y
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pInputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pInputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
//Plus and minus Z
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pInputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pInputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
}
}
void MeshDecimator<PositionMaterialNormal>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
{
vecVertexMetadata.clear();
vecVertexMetadata.resize(m_pInputMesh->m_vecVertices.size());
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
//Initialise the metadata
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
vecVertexMetadata[ct].isOnRegionFace.reset();
vecVertexMetadata[ct].isOnMaterialEdge = false;
vecVertexMetadata[ct].normal = m_pInputMesh->m_vecVertices[ct].normal;
vecVertexMetadata[ct].normal = m_pOutputMesh->m_vecVertices[ct].normal;
}
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
{
Region regTransformed = m_pInputMesh->m_Region;
Region regTransformed = m_pOutputMesh->m_Region;
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int16_t>(-1));
//Plus and minus X
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pInputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pInputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
//Plus and minus Y
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pInputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pInputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
//Plus and minus Z
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pInputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pInputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
}
//If all three vertices have the same material then we are not on a material edge. If any vertex has a different
@ -184,8 +201,8 @@ namespace PolyVox
uint32_t v2 = m_vecTriangles[ct].v2;
bool allMatch =
(m_pInputMesh->m_vecVertices[v0].material == m_pInputMesh->m_vecVertices[v1].material) &&
(m_pInputMesh->m_vecVertices[v1].material == m_pInputMesh->m_vecVertices[v2].material);
(m_pOutputMesh->m_vecVertices[v0].material == m_pOutputMesh->m_vecVertices[v1].material) &&
(m_pOutputMesh->m_vecVertices[v1].material == m_pOutputMesh->m_vecVertices[v2].material);
if(!allMatch)
{
@ -197,24 +214,24 @@ namespace PolyVox
}
template <typename VertexType>
uint32_t MeshDecimator<VertexType>::performDecimationPass(float fMinDotProductForCollapse)
uint32_t MeshDecimator<VertexType>::performDecimationPass(float m_fMinDotProductForCollapse)
{
// Count how many edges we have collapsed
uint32_t noOfEdgesCollapsed = 0;
// The vertex mapper track whick vertices collapse onto which.
vertexMapper.clear();
vertexMapper.resize(m_pInputMesh->m_vecVertices.size());
vertexMapper.resize(m_pOutputMesh->m_vecVertices.size());
// Once a vertex is involved in a collapse (either because it
// moves onto a different vertex, or because a different vertex
// moves onto it) it is forbidden to take part in another collapse
// this pass. We enforce this by setting the vertex locked flag.
vertexLocked.clear();
vertexLocked.resize(m_pInputMesh->m_vecVertices.size());
vertexLocked.resize(m_pOutputMesh->m_vecVertices.size());
// Initialise the vectors
for(uint32_t ct = 0; ct < m_pInputMesh->m_vecVertices.size(); ct++)
for(uint32_t ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
{
// Initiall all vertices points to themselves
vertexMapper[ct] = ct;
@ -244,13 +261,13 @@ namespace PolyVox
if(noOfEdgesCollapsed > 0)
{
//Fix up the indices
for(int triCt = 0; triCt < m_pInputMesh->m_vecTriangleIndices.size(); triCt++)
for(int triCt = 0; triCt < m_pOutputMesh->m_vecTriangleIndices.size(); triCt++)
{
uint32_t before = m_pInputMesh->m_vecTriangleIndices[triCt];
uint32_t after = vertexMapper[m_pInputMesh->m_vecTriangleIndices[triCt]];
uint32_t before = m_pOutputMesh->m_vecTriangleIndices[triCt];
uint32_t after = vertexMapper[m_pOutputMesh->m_vecTriangleIndices[triCt]];
if(before != after)
{
m_pInputMesh->m_vecTriangleIndices[triCt] = vertexMapper[m_pInputMesh->m_vecTriangleIndices[triCt]];
m_pOutputMesh->m_vecTriangleIndices[triCt] = vertexMapper[m_pOutputMesh->m_vecTriangleIndices[triCt]];
}
}
}
@ -307,12 +324,15 @@ namespace PolyVox
template<>
bool MeshDecimator<PositionMaterialNormal>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
{
return !collapseChangesFaceNormals(uSrc, uDst, fMinDotProductForCollapse);
//With the marching cubes surface we honour the user specified threshold
return !collapseChangesFaceNormals(uSrc, uDst, m_fMinDotProductForCollapse);
}
template<>
bool MeshDecimator<PositionMaterial>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
{
//User specified threshold is not used for cubic surface, any
//movement is too much (but allow for floating point error).
return !collapseChangesFaceNormals(uSrc, uDst, 0.999f);
}
@ -355,9 +375,9 @@ namespace PolyVox
{
uint32_t tri = *triIter;
uint32_t v0Old = m_pInputMesh->m_vecTriangleIndices[tri * 3];
uint32_t v1Old = m_pInputMesh->m_vecTriangleIndices[tri * 3 + 1];
uint32_t v2Old = m_pInputMesh->m_vecTriangleIndices[tri * 3 + 2];
uint32_t v0Old = m_pOutputMesh->m_vecTriangleIndices[tri * 3];
uint32_t v1Old = m_pOutputMesh->m_vecTriangleIndices[tri * 3 + 1];
uint32_t v2Old = m_pOutputMesh->m_vecTriangleIndices[tri * 3 + 2];
//Check if degenerate
if((v0Old == v1Old) || (v1Old == v2Old) || (v2Old == v0Old))
@ -382,13 +402,13 @@ namespace PolyVox
continue;
}
Vector3DFloat v0OldPos = m_pInputMesh->m_vecVertices[vertexMapper[v0Old]].getPosition(); //Note: we need the vertex mapper here. These neighbouring vertices may have been moved.
Vector3DFloat v1OldPos = m_pInputMesh->m_vecVertices[vertexMapper[v1Old]].getPosition();
Vector3DFloat v2OldPos = m_pInputMesh->m_vecVertices[vertexMapper[v2Old]].getPosition();
Vector3DFloat v0OldPos = m_pOutputMesh->m_vecVertices[vertexMapper[v0Old]].getPosition(); //Note: we need the vertex mapper here. These neighbouring vertices may have been moved.
Vector3DFloat v1OldPos = m_pOutputMesh->m_vecVertices[vertexMapper[v1Old]].getPosition();
Vector3DFloat v2OldPos = m_pOutputMesh->m_vecVertices[vertexMapper[v2Old]].getPosition();
Vector3DFloat v0NewPos = m_pInputMesh->m_vecVertices[vertexMapper[v0New]].getPosition();
Vector3DFloat v1NewPos = m_pInputMesh->m_vecVertices[vertexMapper[v1New]].getPosition();
Vector3DFloat v2NewPos = m_pInputMesh->m_vecVertices[vertexMapper[v2New]].getPosition();
Vector3DFloat v0NewPos = m_pOutputMesh->m_vecVertices[vertexMapper[v0New]].getPosition();
Vector3DFloat v1NewPos = m_pOutputMesh->m_vecVertices[vertexMapper[v1New]].getPosition();
Vector3DFloat v2NewPos = m_pOutputMesh->m_vecVertices[vertexMapper[v2New]].getPosition();
/*Vector3DFloat v0OldPos = m_vecVertices[v0Old].getPosition();
Vector3DFloat v1OldPos = m_vecVertices[v1Old].getPosition();