Documentation formatting.

This commit is contained in:
Daviw Williams 2012-12-14 16:12:24 +01:00
parent 1f6cbb79a9
commit d32d692810

View File

@ -31,31 +31,31 @@ freely, subject to the following restrictions:
namespace PolyVox namespace PolyVox
{ {
/** /**
* This class provides a default implementation of a controller for the MarchingCubesSurfaceExtractor. It controls the behaviour of the * This class provides a default implementation of a controller for the MarchingCubesSurfaceExtractor. It controls the behaviour of the
* MarchingCubesSurfaceExtractor and provides the required properties from the underlying voxel type. * MarchingCubesSurfaceExtractor and provides the required properties from the underlying voxel type.
* *
* PolyVox does not enforce any requirements regarding what data must be present in a voxel, and instead allows any primitive or user-defined * PolyVox does not enforce any requirements regarding what data must be present in a voxel, and instead allows any primitive or user-defined
* type to be used. However, the Marching Cubes algorithm does have some requirents about the underlying data in that conceptually it operates * type to be used. However, the Marching Cubes algorithm does have some requirents about the underlying data in that conceptually it operates
* on a <i>density field</i>. In addition, the PolyVox implementation of the Marching Cubes algorithm also understands the idea of each voxel * on a <i>density field</i>. In addition, the PolyVox implementation of the Marching Cubes algorithm also understands the idea of each voxel
* having a material which is copied into the vertex data. * having a material which is copied into the vertex data.
* *
* Because we want the MarchingCubesSurfaceExtractor to work on <i>any</i> voxel type, we use a <i>Marching Cubes controller</i> (passed as * Because we want the MarchingCubesSurfaceExtractor to work on <i>any</i> voxel type, we use a <i>Marching Cubes controller</i> (passed as
* a parameter of the MarchingCubesSurfaceExtractor) to expose the required properties. This parameter defaults to the DefaultMarchingCubesController. * a parameter of the MarchingCubesSurfaceExtractor) to expose the required properties. This parameter defaults to the DefaultMarchingCubesController.
* The main implementation of this class is designed to work with primitives data types, and the class is also specialised for the Material, * The main implementation of this class is designed to work with primitives data types, and the class is also specialised for the Material,
* Density and MaterialdensityPair classes. * Density and MaterialdensityPair classes.
* *
* If you create a custom class for your voxel data then you probably want to include a specialisation of DefaultMarchingCubesController, * If you create a custom class for your voxel data then you probably want to include a specialisation of DefaultMarchingCubesController,
* though you don't have to if you don't want to use the Marching Cubes algorithm or if you prefer to define a seperate Marching Cubes controller * though you don't have to if you don't want to use the Marching Cubes algorithm or if you prefer to define a seperate Marching Cubes controller
* and pass it as an explicit parameter (rather than relying on the default). * and pass it as an explicit parameter (rather than relying on the default).
* *
* For primitive types, the DefaultMarchingCubesController considers the value of the voxel to represent it's density and just returns a constant * For primitive types, the DefaultMarchingCubesController considers the value of the voxel to represent it's density and just returns a constant
* for the material. So you can, for example, run the MarchingCubesSurfaceExtractor on a volume of floats or ints. * for the material. So you can, for example, run the MarchingCubesSurfaceExtractor on a volume of floats or ints.
* *
* It is possible to customise the behaviour of the controller by providing a threshold value through the constructor. The extracted surface * It is possible to customise the behaviour of the controller by providing a threshold value through the constructor. The extracted surface
* will pass through the density value specified by the threshold, and so you should make sure that the threshold value you choose is between * will pass through the density value specified by the threshold, and so you should make sure that the threshold value you choose is between
* the minimum and maximum values found in your volume data. By default it is in the middle of the representable range of the underlying type. * the minimum and maximum values found in your volume data. By default it is in the middle of the representable range of the underlying type.
* *
* \sa MarchingCubesSurfaceExtractor * \sa MarchingCubesSurfaceExtractor
* *
*/ */
template<typename VoxelType> template<typename VoxelType>
@ -70,11 +70,11 @@ namespace PolyVox
typedef float MaterialType; typedef float MaterialType;
/** /**
* Constructor * Constructor
* *
* This version of the constructor takes no parameters and sets the threshold to the middle of the representable range of the underlying type. * This version of the constructor takes no parameters and sets the threshold to the middle of the representable range of the underlying type.
* For example, if the voxel type is 'uint8_t' then the representable range is 0-255, and the threshold will be set to 127. On the other hand, * For example, if the voxel type is 'uint8_t' then the representable range is 0-255, and the threshold will be set to 127. On the other hand,
* if the voxel type is 'float' then the representable range is -FLT_MAX to FLT_MAX and the threshold will be set to zero. * if the voxel type is 'float' then the representable range is -FLT_MAX to FLT_MAX and the threshold will be set to zero.
*/ */
DefaultMarchingCubesController(void) DefaultMarchingCubesController(void)
:m_tThreshold(((std::numeric_limits<DensityType>::min)() + (std::numeric_limits<DensityType>::max)()) / 2) :m_tThreshold(((std::numeric_limits<DensityType>::min)() + (std::numeric_limits<DensityType>::max)()) / 2)
@ -84,10 +84,10 @@ namespace PolyVox
} }
/** /**
* Converts the underlying voxel type into a density value. * Converts the underlying voxel type into a density value.
* *
* The default implementation of this function just returns the voxel type directly and is suitable for primitives types. Specialisations of * The default implementation of this function just returns the voxel type directly and is suitable for primitives types. Specialisations of
* this class can modify this behaviour. * this class can modify this behaviour.
*/ */
DensityType convertToDensity(VoxelType voxel) DensityType convertToDensity(VoxelType voxel)
{ {
@ -95,10 +95,10 @@ namespace PolyVox
} }
/** /**
* Converts the underlying voxel type into a material value. * Converts the underlying voxel type into a material value.
* *
* The default implementation of this function just returns the constant '1'. There's not much else it can do, as it needs to work with primitive * The default implementation of this function just returns the constant '1'. There's not much else it can do, as it needs to work with primitive
* types and the actual value of the type is already being considered to be the density. Specialisations of this class can modify this behaviour. * types and the actual value of the type is already being considered to be the density. Specialisations of this class can modify this behaviour.
*/ */
MaterialType convertToMaterial(VoxelType /*voxel*/) MaterialType convertToMaterial(VoxelType /*voxel*/)
{ {
@ -111,10 +111,10 @@ namespace PolyVox
} }
/** /**
* Returns the density value which was passed to the constructor. * Returns the density value which was passed to the constructor.
* *
* As mentioned in the class description, the extracted surface will pass through the density value specified by the threshold, and so you * As mentioned in the class description, the extracted surface will pass through the density value specified by the threshold, and so you
* should make sure that the threshold value you choose is between the minimum and maximum values found in your volume data. By default it * should make sure that the threshold value you choose is between the minimum and maximum values found in your volume data. By default it
* is in the middle of the representable range of the underlying type. * is in the middle of the representable range of the underlying type.
*/ */
DensityType getThreshold(void) DensityType getThreshold(void)