Optimising SurfaceExtractor.

This commit is contained in:
David Williams 2009-06-01 22:30:17 +00:00
parent f6ffe950f7
commit e4ae262f96
2 changed files with 89 additions and 75 deletions

View File

@ -50,14 +50,25 @@ namespace PolyVox
Volume<uint8_t> m_volData;
VolumeSampler<uint8_t> m_iterVolume;
uint8_t* m_pPreviousBitmask;
uint8_t* m_pCurrentBitmask;
int32_t* m_pPreviousVertexIndicesX;
int32_t* m_pPreviousVertexIndicesY;
int32_t* m_pPreviousVertexIndicesZ;
int32_t* m_pCurrentVertexIndicesX;
int32_t* m_pCurrentVertexIndicesY;
int32_t* m_pCurrentVertexIndicesZ;
uint32_t getIndex(uint32_t x, uint32_t y, uint32_t regionWidth);
//void extractSurfaceForRegionLevel0(Volume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch);
void extractSurfaceImpl(Volume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch);
uint32_t computeBitmaskForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t *bitmask, uint8_t *previousBitmask);
void generateIndicesForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[]);
void generateVerticesForSlice(VolumeSampler<uint8_t>& volIter, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[]);
uint32_t computeBitmaskForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset);
void generateIndicesForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset);
void generateVerticesForSlice(VolumeSampler<uint8_t>& volIter, Region& regSlice, const Vector3DFloat& offset, IndexedSurfacePatch* singleMaterialPatch);
};
}

View File

@ -297,16 +297,16 @@ namespace PolyVox
//FIXME - Instead of region.width()+2 we used to use POLYVOX_REGION_SIDE_LENGTH+1
//Normally POLYVOX_REGION_SIDE_LENGTH is the same as region.width() (often 32) but at the
//edges of the volume it is 1 smaller. Need to think what values really belong here.
int32_t* vertexIndicesX0 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesY0 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesZ0 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesX1 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesY1 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesZ1 = new int32_t[(region.width()+8) * (region.height()+8)];
m_pPreviousVertexIndicesX = new int32_t[(region.width()+8) * (region.height()+8)];
m_pPreviousVertexIndicesY = new int32_t[(region.width()+8) * (region.height()+8)];
m_pPreviousVertexIndicesZ = new int32_t[(region.width()+8) * (region.height()+8)];
m_pCurrentVertexIndicesX = new int32_t[(region.width()+8) * (region.height()+8)];
m_pCurrentVertexIndicesY = new int32_t[(region.width()+8) * (region.height()+8)];
m_pCurrentVertexIndicesZ = new int32_t[(region.width()+8) * (region.height()+8)];
//Cell bitmasks
uint8_t* bitmask0 = new uint8_t[(region.width()+8) * (region.height()+8)];
uint8_t* bitmask1 = new uint8_t[(region.width()+8) * (region.height()+8)];
m_pPreviousBitmask = new uint8_t[(region.width()+8) * (region.height()+8)];
m_pCurrentBitmask = new uint8_t[(region.width()+8) * (region.height()+8)];
//When generating the mesh for a region we actually look outside it in the
// back, bottom, right direction. Protect against access violations by cropping region here
@ -325,55 +325,57 @@ namespace PolyVox
Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner();
v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
regSlice0.setUpperCorner(v3dUpperCorner);
Region regSlice1 = regSlice0;
//Iterator to access the volume data
VolumeSampler<uint8_t> volIter(*volumeData);
VolumeSampler<uint8_t> volIter(*volumeData);
//Compute bitmask for initial slice
uint32_t uNoOfNonEmptyCellsForSlice0 = computeBitmaskForSlice(volIter, regSlice0, offset, bitmask0, 0);
if(uNoOfNonEmptyCellsForSlice0 != 0)
uint32_t uNoOfNonEmptyCellsForSlice0 = 0;
uint32_t uNoOfNonEmptyCellsForSlice1 = 0;
bool isFirstSliceDone = false;
for(uint32_t uSlice = 0; ((uSlice <= region.depth()) && (uSlice + offset.getZ() <= regVolume.getUpperCorner().getZ())); uSlice += m_uStepSize)
{
//If there were some non-empty cells then generate initial slice vertices for them
generateVerticesForSlice(volIter, regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0);
}
for(uint32_t uSlice = 1; ((uSlice <= region.depth()) && (uSlice + offset.getZ() <= regVolume.getUpperCorner().getZ())); uSlice += m_uStepSize)
{
Region regSlice1(regSlice0);
regSlice1.shift(Vector3DInt32(0,0,m_uStepSize));
uint32_t uNoOfNonEmptyCellsForSlice1 = computeBitmaskForSlice(volIter, regSlice1, offset, bitmask1, bitmask0);
uNoOfNonEmptyCellsForSlice1 = computeBitmaskForSlice(volIter, regSlice1, offset);
if(uNoOfNonEmptyCellsForSlice1 != 0)
{
generateVerticesForSlice(volIter, regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
generateVerticesForSlice(volIter, regSlice1, offset, singleMaterialPatch);
}
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
if(isFirstSliceDone)
{
generateIndicesForSlice(volIter, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
{
generateIndicesForSlice(volIter, regSlice0, singleMaterialPatch, offset);
}
}
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
std::swap(bitmask0, bitmask1);
std::swap(vertexIndicesX0, vertexIndicesX1);
std::swap(vertexIndicesY0, vertexIndicesY1);
std::swap(vertexIndicesZ0, vertexIndicesZ1);
std::swap(m_pPreviousBitmask, m_pCurrentBitmask);
std::swap(m_pPreviousVertexIndicesX, m_pCurrentVertexIndicesX);
std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY);
std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ);
regSlice0 = regSlice1;
regSlice1.shift(Vector3DInt32(0,0,m_uStepSize));
isFirstSliceDone = true;
}
delete[] bitmask0;
delete[] bitmask1;
delete[] vertexIndicesX0;
delete[] vertexIndicesX1;
delete[] vertexIndicesY0;
delete[] vertexIndicesY1;
delete[] vertexIndicesZ0;
delete[] vertexIndicesZ1;
delete[] m_pPreviousBitmask;
delete[] m_pCurrentBitmask;
delete[] m_pPreviousVertexIndicesX;
delete[] m_pCurrentVertexIndicesX;
delete[] m_pPreviousVertexIndicesY;
delete[] m_pCurrentVertexIndicesY;
delete[] m_pPreviousVertexIndicesZ;
delete[] m_pCurrentVertexIndicesZ;
}
uint32_t SurfaceExtractor::computeBitmaskForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask)
uint32_t SurfaceExtractor::computeBitmaskForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset)
{
uint32_t uNoOfNonEmptyCells = 0;
@ -388,6 +390,7 @@ namespace PolyVox
const uint16_t uXRegSpace = uXVolSpace - offset.getX();
const uint16_t uYRegSpace = uYVolSpace - offset.getY();
const uint16_t uZRegSpace = uZVolSpace - offset.getZ();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = 0;
@ -398,7 +401,7 @@ namespace PolyVox
{
bool isPrevXAvail = uXRegSpace > 0;
bool isPrevYAvail = uYRegSpace > 0;
bool isPrevZAvail = previousBitmask != 0;
bool isPrevZAvail = uZRegSpace > 0;
if(isPrevZAvail)
{
@ -410,16 +413,16 @@ namespace PolyVox
const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 192; //192 = 128 + 64
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 128;
iPreviousCubeIndexX >>= 1;
@ -435,11 +438,11 @@ namespace PolyVox
const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 192; //192 = 128 + 64
iPreviousCubeIndexY >>= 2;
@ -459,11 +462,11 @@ namespace PolyVox
const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 160; //160 = 128+32
iPreviousCubeIndexX >>= 1;
@ -484,7 +487,7 @@ namespace PolyVox
const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iCubeIndex = iPreviousCubeIndexZ >> 4;
if (v001 == 0) iCubeIndex |= 16;
@ -507,12 +510,12 @@ namespace PolyVox
const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel);
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
@ -534,7 +537,7 @@ namespace PolyVox
const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel);
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
@ -561,7 +564,7 @@ namespace PolyVox
const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel);
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
@ -665,7 +668,7 @@ namespace PolyVox
}
//Save the bitmask
bitmask[getIndex(uXRegSpace,uYVolSpace- offset.getY(), regSlice.width()+1)] = iCubeIndex;
m_pCurrentBitmask[getIndex(uXRegSpace,uYVolSpace- offset.getY(), regSlice.width()+1)] = iCubeIndex;
if(edgeTable[iCubeIndex] != 0)
{
@ -678,7 +681,7 @@ namespace PolyVox
return uNoOfNonEmptyCells;
}
void SurfaceExtractor::generateVerticesForSlice(VolumeSampler<uint8_t>& volIter, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[])
void SurfaceExtractor::generateVerticesForSlice(VolumeSampler<uint8_t>& volIter, Region& regSlice, const Vector3DFloat& offset, IndexedSurfacePatch* singleMaterialPatch)
{
//Iterate over each cell in the region
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace += m_uStepSize)
@ -699,7 +702,7 @@ namespace PolyVox
const uint8_t v000 = volIter.getSubSampledVoxel(m_uLodLevel);
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = bitmask[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)];
uint8_t iCubeIndex = m_pCurrentBitmask[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
@ -719,7 +722,7 @@ namespace PolyVox
const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max.
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesX[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
m_pCurrentVertexIndicesX[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
}
}
if (edgeTable[iCubeIndex] & 8)
@ -733,7 +736,7 @@ namespace PolyVox
const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max.
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesY[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
m_pCurrentVertexIndicesY[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
}
}
if (edgeTable[iCubeIndex] & 256)
@ -747,14 +750,14 @@ namespace PolyVox
const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max.
const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesZ[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
m_pCurrentVertexIndicesZ[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
}
}
}//For each cell
}
}
void SurfaceExtractor::generateIndicesForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[])
void SurfaceExtractor::generateIndicesForSlice(VolumeSampler<uint8_t>& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset)
{
uint32_t indlist[12];
@ -771,7 +774,7 @@ namespace PolyVox
const uint16_t uZRegSpace = volIter.getPosZ() - offset.getZ();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = bitmask0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
uint8_t iCubeIndex = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
@ -782,62 +785,62 @@ namespace PolyVox
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
indlist[0] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
indlist[0] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[0] != -1);
}
if (edgeTable[iCubeIndex] & 2)
{
indlist[1] = vertexIndicesY0[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)];
indlist[1] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)];
assert(indlist[1] != -1);
}
if (edgeTable[iCubeIndex] & 4)
{
indlist[2] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)];
indlist[2] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)];
assert(indlist[2] != -1);
}
if (edgeTable[iCubeIndex] & 8)
{
indlist[3] = vertexIndicesY0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
indlist[3] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[3] != -1);
}
if (edgeTable[iCubeIndex] & 16)
{
indlist[4] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
indlist[4] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[4] != -1);
}
if (edgeTable[iCubeIndex] & 32)
{
indlist[5] = vertexIndicesY1[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)];
indlist[5] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)];
assert(indlist[5] != -1);
}
if (edgeTable[iCubeIndex] & 64)
{
indlist[6] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)];
indlist[6] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)];
assert(indlist[6] != -1);
}
if (edgeTable[iCubeIndex] & 128)
{
indlist[7] = vertexIndicesY1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
indlist[7] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[7] != -1);
}
if (edgeTable[iCubeIndex] & 256)
{
indlist[8] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
indlist[8] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[8] != -1);
}
if (edgeTable[iCubeIndex] & 512)
{
indlist[9] = vertexIndicesZ0[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)];
indlist[9] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)];
assert(indlist[9] != -1);
}
if (edgeTable[iCubeIndex] & 1024)
{
indlist[10] = vertexIndicesZ0[getIndex(uXRegSpace+m_uStepSize,uYRegSpace+m_uStepSize, regSlice.width()+1)];
indlist[10] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace+m_uStepSize, regSlice.width()+1)];
assert(indlist[10] != -1);
}
if (edgeTable[iCubeIndex] & 2048)
{
indlist[11] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)];
indlist[11] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)];
assert(indlist[11] != -1);
}