Restructuring code.
This commit is contained in:
parent
e912950317
commit
f53efa1d64
@ -166,8 +166,7 @@ namespace PolyVox
|
||||
void generateVerticesForSlice(const Array3DUint8& pBitmask,
|
||||
Array3DInt32& pIndicesX,
|
||||
Array3DInt32& pIndicesY,
|
||||
Array3DInt32& pIndicesZ,
|
||||
uint32_t uSlice);
|
||||
Array3DInt32& pIndicesZ);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// NOTE: These two functions are in the .h file rather than the .inl due to an apparent bug in VC2010.
|
||||
|
@ -70,7 +70,7 @@ namespace PolyVox
|
||||
|
||||
computeBitmaskForSlice<true>(pBitmask);
|
||||
|
||||
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ, 0);
|
||||
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ);
|
||||
|
||||
m_regSlicePrevious = m_regSliceCurrent;
|
||||
m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
|
||||
@ -78,8 +78,6 @@ namespace PolyVox
|
||||
//Process the other slices (previous slice is available)
|
||||
for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ(); uSlice++)
|
||||
{
|
||||
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ, uSlice);
|
||||
|
||||
generateIndicesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ);
|
||||
|
||||
m_regSlicePrevious = m_regSliceCurrent;
|
||||
@ -160,142 +158,141 @@ namespace PolyVox
|
||||
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateVerticesForSlice(const Array3DUint8& pBitmask,
|
||||
Array3DInt32& pIndicesX,
|
||||
Array3DInt32& pIndicesY,
|
||||
Array3DInt32& pIndicesZ,
|
||||
uint32_t uSlice)
|
||||
Array3DInt32& pIndicesZ)
|
||||
{
|
||||
const uint32_t uZRegSpace = uSlice;
|
||||
|
||||
const int32_t iZVolSpace = m_regSizeInVoxels.getLowerZ() + uZRegSpace;
|
||||
|
||||
//Iterate over each cell in the region
|
||||
for(int32_t iYVolSpace = m_regSliceCurrent.getLowerY(); iYVolSpace <= m_regSliceCurrent.getUpperY(); iYVolSpace++)
|
||||
for (int32_t iZVolSpace = m_regSliceCurrent.getLowerZ(); iZVolSpace <= m_regSizeInVoxels.getUpperZ(); iZVolSpace++)
|
||||
{
|
||||
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
||||
uint32_t uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerZ();
|
||||
|
||||
for(int32_t iXVolSpace = m_regSliceCurrent.getLowerX(); iXVolSpace <= m_regSliceCurrent.getUpperX(); iXVolSpace++)
|
||||
{
|
||||
//Current position
|
||||
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
||||
for (int32_t iYVolSpace = m_regSliceCurrent.getLowerY(); iYVolSpace <= m_regSizeInVoxels.getUpperY(); iYVolSpace++)
|
||||
{
|
||||
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
||||
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
const uint8_t iCubeIndex = pBitmask(uXRegSpace, uYRegSpace, uZRegSpace);
|
||||
|
||||
/* Cube is entirely in/out of the surface */
|
||||
if (edgeTable[iCubeIndex] == 0)
|
||||
for (int32_t iXVolSpace = m_regSliceCurrent.getLowerX(); iXVolSpace <= m_regSizeInVoxels.getUpperX(); iXVolSpace++)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
//Current position
|
||||
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
||||
|
||||
//Check whether the generated vertex will lie on the edge of the region
|
||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||
const uint8_t iCubeIndex = pBitmask(uXRegSpace, uYRegSpace, uZRegSpace);
|
||||
|
||||
|
||||
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
||||
const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
|
||||
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (edgeTable[iCubeIndex] & 1)
|
||||
{
|
||||
m_sampVolume.movePositiveX();
|
||||
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
|
||||
POLYVOX_ASSERT(v000 != v100, "Attempting to insert vertex between two voxels with the same value");
|
||||
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
|
||||
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerZ()));
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
|
||||
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1-fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if(v3dNormal.lengthSquared() > 0.000001f)
|
||||
/* Cube is entirely in/out of the surface */
|
||||
if (edgeTable[iCubeIndex] == 0)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v100, fInterp);
|
||||
//Check whether the generated vertex will lie on the edge of the region
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||
pIndicesX(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||
m_sampVolume.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
|
||||
const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
|
||||
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
m_sampVolume.moveNegativeX();
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 8)
|
||||
{
|
||||
m_sampVolume.movePositiveY();
|
||||
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
|
||||
POLYVOX_ASSERT(v000 != v010, "Attempting to insert vertex between two voxels with the same value");
|
||||
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
|
||||
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()));
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
|
||||
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1-fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if(v3dNormal.lengthSquared() > 0.000001f)
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (edgeTable[iCubeIndex] & 1)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
m_sampVolume.movePositiveX();
|
||||
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
|
||||
POLYVOX_ASSERT(v000 != v100, "Attempting to insert vertex between two voxels with the same value");
|
||||
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
|
||||
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerZ()));
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
|
||||
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v100, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||
pIndicesX(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||
|
||||
m_sampVolume.moveNegativeX();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v010, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||
pIndicesY(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||
|
||||
m_sampVolume.moveNegativeY();
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 256)
|
||||
{
|
||||
m_sampVolume.movePositiveZ();
|
||||
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
|
||||
POLYVOX_ASSERT(v000 != v001, "Attempting to insert vertex between two voxels with the same value");
|
||||
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
|
||||
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()) + fInterp);
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
|
||||
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1-fInterp));
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if(v3dNormal.lengthSquared() > 0.000001f)
|
||||
if (edgeTable[iCubeIndex] & 8)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
m_sampVolume.movePositiveY();
|
||||
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
|
||||
POLYVOX_ASSERT(v000 != v010, "Attempting to insert vertex between two voxels with the same value");
|
||||
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
|
||||
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()));
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
|
||||
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v010, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||
pIndicesY(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||
|
||||
m_sampVolume.moveNegativeY();
|
||||
}
|
||||
if (edgeTable[iCubeIndex] & 256)
|
||||
{
|
||||
m_sampVolume.movePositiveZ();
|
||||
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
|
||||
POLYVOX_ASSERT(v000 != v001, "Attempting to insert vertex between two voxels with the same value");
|
||||
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v001, fInterp);
|
||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()) + fInterp);
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
|
||||
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||
pIndicesZ(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
m_sampVolume.moveNegativeZ();
|
||||
}
|
||||
}//For each cell
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v001, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||
pIndicesZ(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||
|
||||
m_sampVolume.moveNegativeZ();
|
||||
}
|
||||
}//For each cell
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user