Restructuring code.

This commit is contained in:
David Williams 2015-05-14 11:41:16 +02:00
parent e912950317
commit f53efa1d64
2 changed files with 116 additions and 120 deletions

View File

@ -166,8 +166,7 @@ namespace PolyVox
void generateVerticesForSlice(const Array3DUint8& pBitmask, void generateVerticesForSlice(const Array3DUint8& pBitmask,
Array3DInt32& pIndicesX, Array3DInt32& pIndicesX,
Array3DInt32& pIndicesY, Array3DInt32& pIndicesY,
Array3DInt32& pIndicesZ, Array3DInt32& pIndicesZ);
uint32_t uSlice);
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// NOTE: These two functions are in the .h file rather than the .inl due to an apparent bug in VC2010. // NOTE: These two functions are in the .h file rather than the .inl due to an apparent bug in VC2010.

View File

@ -70,7 +70,7 @@ namespace PolyVox
computeBitmaskForSlice<true>(pBitmask); computeBitmaskForSlice<true>(pBitmask);
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ, 0); generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ);
m_regSlicePrevious = m_regSliceCurrent; m_regSlicePrevious = m_regSliceCurrent;
m_regSliceCurrent.shift(Vector3DInt32(0,0,1)); m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
@ -78,8 +78,6 @@ namespace PolyVox
//Process the other slices (previous slice is available) //Process the other slices (previous slice is available)
for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ(); uSlice++) for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ(); uSlice++)
{ {
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ, uSlice);
generateIndicesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ); generateIndicesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ);
m_regSlicePrevious = m_regSliceCurrent; m_regSlicePrevious = m_regSliceCurrent;
@ -160,142 +158,141 @@ namespace PolyVox
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateVerticesForSlice(const Array3DUint8& pBitmask, void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateVerticesForSlice(const Array3DUint8& pBitmask,
Array3DInt32& pIndicesX, Array3DInt32& pIndicesX,
Array3DInt32& pIndicesY, Array3DInt32& pIndicesY,
Array3DInt32& pIndicesZ, Array3DInt32& pIndicesZ)
uint32_t uSlice)
{ {
const uint32_t uZRegSpace = uSlice; for (int32_t iZVolSpace = m_regSliceCurrent.getLowerZ(); iZVolSpace <= m_regSizeInVoxels.getUpperZ(); iZVolSpace++)
const int32_t iZVolSpace = m_regSizeInVoxels.getLowerZ() + uZRegSpace;
//Iterate over each cell in the region
for(int32_t iYVolSpace = m_regSliceCurrent.getLowerY(); iYVolSpace <= m_regSliceCurrent.getUpperY(); iYVolSpace++)
{ {
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY(); uint32_t uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerZ();
for(int32_t iXVolSpace = m_regSliceCurrent.getLowerX(); iXVolSpace <= m_regSliceCurrent.getUpperX(); iXVolSpace++) for (int32_t iYVolSpace = m_regSliceCurrent.getLowerY(); iYVolSpace <= m_regSizeInVoxels.getUpperY(); iYVolSpace++)
{ {
//Current position const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
//Determine the index into the edge table which tells us which vertices are inside of the surface for (int32_t iXVolSpace = m_regSliceCurrent.getLowerX(); iXVolSpace <= m_regSizeInVoxels.getUpperX(); iXVolSpace++)
const uint8_t iCubeIndex = pBitmask(uXRegSpace, uYRegSpace, uZRegSpace);
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{ {
continue; //Current position
} const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
//Check whether the generated vertex will lie on the edge of the region //Determine the index into the edge table which tells us which vertices are inside of the surface
const uint8_t iCubeIndex = pBitmask(uXRegSpace, uYRegSpace, uZRegSpace);
/* Cube is entirely in/out of the surface */
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace); if (edgeTable[iCubeIndex] == 0)
const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
m_sampVolume.movePositiveX();
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
POLYVOX_ASSERT(v000 != v100, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerZ()));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1-fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if(v3dNormal.lengthSquared() > 0.000001f)
{ {
v3dNormal.normalise(); continue;
} }
// Allow the controller to decide how the material should be derived from the voxels. //Check whether the generated vertex will lie on the edge of the region
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v100, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex); m_sampVolume.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
pIndicesX(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex; const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
m_sampVolume.moveNegativeX(); /* Find the vertices where the surface intersects the cube */
} if (edgeTable[iCubeIndex] & 1)
if (edgeTable[iCubeIndex] & 8)
{
m_sampVolume.movePositiveY();
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
POLYVOX_ASSERT(v000 != v010, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1-fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if(v3dNormal.lengthSquared() > 0.000001f)
{ {
v3dNormal.normalise(); m_sampVolume.movePositiveX();
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
POLYVOX_ASSERT(v000 != v100, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerZ()));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v100, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesX(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
m_sampVolume.moveNegativeX();
} }
if (edgeTable[iCubeIndex] & 8)
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v010, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesY(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
m_sampVolume.moveNegativeY();
}
if (edgeTable[iCubeIndex] & 256)
{
m_sampVolume.movePositiveZ();
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
POLYVOX_ASSERT(v000 != v001, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()) + fInterp);
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1-fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if(v3dNormal.lengthSquared() > 0.000001f)
{ {
v3dNormal.normalise(); m_sampVolume.movePositiveY();
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
POLYVOX_ASSERT(v000 != v010, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v010, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesY(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
m_sampVolume.moveNegativeY();
} }
if (edgeTable[iCubeIndex] & 256)
{
m_sampVolume.movePositiveZ();
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
POLYVOX_ASSERT(v000 != v001, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
// Allow the controller to decide how the material should be derived from the voxels. const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v001, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex; const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()) + fInterp);
surfaceVertex.encodedPosition = v3dScaledPosition; const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex); Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
pIndicesZ(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex; // The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
m_sampVolume.moveNegativeZ(); // Allow the controller to decide how the material should be derived from the voxels.
} const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v001, fInterp);
}//For each cell
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesZ(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
m_sampVolume.moveNegativeZ();
}
}//For each cell
}
} }
} }