Restructuring code.
This commit is contained in:
parent
e912950317
commit
f53efa1d64
@ -166,8 +166,7 @@ namespace PolyVox
|
|||||||
void generateVerticesForSlice(const Array3DUint8& pBitmask,
|
void generateVerticesForSlice(const Array3DUint8& pBitmask,
|
||||||
Array3DInt32& pIndicesX,
|
Array3DInt32& pIndicesX,
|
||||||
Array3DInt32& pIndicesY,
|
Array3DInt32& pIndicesY,
|
||||||
Array3DInt32& pIndicesZ,
|
Array3DInt32& pIndicesZ);
|
||||||
uint32_t uSlice);
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
// NOTE: These two functions are in the .h file rather than the .inl due to an apparent bug in VC2010.
|
// NOTE: These two functions are in the .h file rather than the .inl due to an apparent bug in VC2010.
|
||||||
|
@ -70,7 +70,7 @@ namespace PolyVox
|
|||||||
|
|
||||||
computeBitmaskForSlice<true>(pBitmask);
|
computeBitmaskForSlice<true>(pBitmask);
|
||||||
|
|
||||||
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ, 0);
|
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ);
|
||||||
|
|
||||||
m_regSlicePrevious = m_regSliceCurrent;
|
m_regSlicePrevious = m_regSliceCurrent;
|
||||||
m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
|
m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
|
||||||
@ -78,8 +78,6 @@ namespace PolyVox
|
|||||||
//Process the other slices (previous slice is available)
|
//Process the other slices (previous slice is available)
|
||||||
for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ(); uSlice++)
|
for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ(); uSlice++)
|
||||||
{
|
{
|
||||||
generateVerticesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ, uSlice);
|
|
||||||
|
|
||||||
generateIndicesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ);
|
generateIndicesForSlice(pBitmask, pIndicesX, pIndicesY, pIndicesZ);
|
||||||
|
|
||||||
m_regSlicePrevious = m_regSliceCurrent;
|
m_regSlicePrevious = m_regSliceCurrent;
|
||||||
@ -160,142 +158,141 @@ namespace PolyVox
|
|||||||
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateVerticesForSlice(const Array3DUint8& pBitmask,
|
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateVerticesForSlice(const Array3DUint8& pBitmask,
|
||||||
Array3DInt32& pIndicesX,
|
Array3DInt32& pIndicesX,
|
||||||
Array3DInt32& pIndicesY,
|
Array3DInt32& pIndicesY,
|
||||||
Array3DInt32& pIndicesZ,
|
Array3DInt32& pIndicesZ)
|
||||||
uint32_t uSlice)
|
|
||||||
{
|
{
|
||||||
const uint32_t uZRegSpace = uSlice;
|
for (int32_t iZVolSpace = m_regSliceCurrent.getLowerZ(); iZVolSpace <= m_regSizeInVoxels.getUpperZ(); iZVolSpace++)
|
||||||
|
|
||||||
const int32_t iZVolSpace = m_regSizeInVoxels.getLowerZ() + uZRegSpace;
|
|
||||||
|
|
||||||
//Iterate over each cell in the region
|
|
||||||
for(int32_t iYVolSpace = m_regSliceCurrent.getLowerY(); iYVolSpace <= m_regSliceCurrent.getUpperY(); iYVolSpace++)
|
|
||||||
{
|
{
|
||||||
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
uint32_t uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerZ();
|
||||||
|
|
||||||
for(int32_t iXVolSpace = m_regSliceCurrent.getLowerX(); iXVolSpace <= m_regSliceCurrent.getUpperX(); iXVolSpace++)
|
for (int32_t iYVolSpace = m_regSliceCurrent.getLowerY(); iYVolSpace <= m_regSizeInVoxels.getUpperY(); iYVolSpace++)
|
||||||
{
|
{
|
||||||
//Current position
|
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
|
||||||
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
|
||||||
|
|
||||||
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
for (int32_t iXVolSpace = m_regSliceCurrent.getLowerX(); iXVolSpace <= m_regSizeInVoxels.getUpperX(); iXVolSpace++)
|
||||||
const uint8_t iCubeIndex = pBitmask(uXRegSpace, uYRegSpace, uZRegSpace);
|
|
||||||
|
|
||||||
/* Cube is entirely in/out of the surface */
|
|
||||||
if (edgeTable[iCubeIndex] == 0)
|
|
||||||
{
|
{
|
||||||
continue;
|
//Current position
|
||||||
}
|
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
|
||||||
|
|
||||||
//Check whether the generated vertex will lie on the edge of the region
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
||||||
|
const uint8_t iCubeIndex = pBitmask(uXRegSpace, uYRegSpace, uZRegSpace);
|
||||||
|
|
||||||
|
/* Cube is entirely in/out of the surface */
|
||||||
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
if (edgeTable[iCubeIndex] == 0)
|
||||||
const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
|
|
||||||
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
|
|
||||||
|
|
||||||
/* Find the vertices where the surface intersects the cube */
|
|
||||||
if (edgeTable[iCubeIndex] & 1)
|
|
||||||
{
|
|
||||||
m_sampVolume.movePositiveX();
|
|
||||||
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
|
|
||||||
POLYVOX_ASSERT(v000 != v100, "Attempting to insert vertex between two voxels with the same value");
|
|
||||||
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
|
|
||||||
|
|
||||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
|
|
||||||
|
|
||||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerZ()));
|
|
||||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
||||||
|
|
||||||
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1-fInterp));
|
|
||||||
|
|
||||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
||||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
||||||
if(v3dNormal.lengthSquared() > 0.000001f)
|
|
||||||
{
|
{
|
||||||
v3dNormal.normalise();
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Allow the controller to decide how the material should be derived from the voxels.
|
//Check whether the generated vertex will lie on the edge of the region
|
||||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v100, fInterp);
|
|
||||||
|
|
||||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
||||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
||||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
||||||
surfaceVertex.data = uMaterial;
|
|
||||||
|
|
||||||
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
m_sampVolume.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
|
||||||
pIndicesX(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel();
|
||||||
|
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
|
||||||
|
|
||||||
m_sampVolume.moveNegativeX();
|
/* Find the vertices where the surface intersects the cube */
|
||||||
}
|
if (edgeTable[iCubeIndex] & 1)
|
||||||
if (edgeTable[iCubeIndex] & 8)
|
|
||||||
{
|
|
||||||
m_sampVolume.movePositiveY();
|
|
||||||
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
|
|
||||||
POLYVOX_ASSERT(v000 != v010, "Attempting to insert vertex between two voxels with the same value");
|
|
||||||
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
|
|
||||||
|
|
||||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
|
|
||||||
|
|
||||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()));
|
|
||||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
||||||
|
|
||||||
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1-fInterp));
|
|
||||||
|
|
||||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
||||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
||||||
if(v3dNormal.lengthSquared() > 0.000001f)
|
|
||||||
{
|
{
|
||||||
v3dNormal.normalise();
|
m_sampVolume.movePositiveX();
|
||||||
|
const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel();
|
||||||
|
POLYVOX_ASSERT(v000 != v100, "Attempting to insert vertex between two voxels with the same value");
|
||||||
|
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
|
||||||
|
|
||||||
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000));
|
||||||
|
|
||||||
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerZ()));
|
||||||
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||||
|
|
||||||
|
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
|
||||||
|
|
||||||
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||||
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||||
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||||
|
{
|
||||||
|
v3dNormal.normalise();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allow the controller to decide how the material should be derived from the voxels.
|
||||||
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v100, fInterp);
|
||||||
|
|
||||||
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||||
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||||
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||||
|
surfaceVertex.data = uMaterial;
|
||||||
|
|
||||||
|
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||||
|
pIndicesX(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||||
|
|
||||||
|
m_sampVolume.moveNegativeX();
|
||||||
}
|
}
|
||||||
|
if (edgeTable[iCubeIndex] & 8)
|
||||||
// Allow the controller to decide how the material should be derived from the voxels.
|
|
||||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v010, fInterp);
|
|
||||||
|
|
||||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
|
||||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
|
||||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
||||||
surfaceVertex.data = uMaterial;
|
|
||||||
|
|
||||||
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
||||||
pIndicesY(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
|
||||||
|
|
||||||
m_sampVolume.moveNegativeY();
|
|
||||||
}
|
|
||||||
if (edgeTable[iCubeIndex] & 256)
|
|
||||||
{
|
|
||||||
m_sampVolume.movePositiveZ();
|
|
||||||
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
|
|
||||||
POLYVOX_ASSERT(v000 != v001, "Attempting to insert vertex between two voxels with the same value");
|
|
||||||
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
|
|
||||||
|
|
||||||
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
|
|
||||||
|
|
||||||
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()) + fInterp);
|
|
||||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
|
||||||
|
|
||||||
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1-fInterp));
|
|
||||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
|
||||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
|
||||||
if(v3dNormal.lengthSquared() > 0.000001f)
|
|
||||||
{
|
{
|
||||||
v3dNormal.normalise();
|
m_sampVolume.movePositiveY();
|
||||||
|
const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel();
|
||||||
|
POLYVOX_ASSERT(v000 != v010, "Attempting to insert vertex between two voxels with the same value");
|
||||||
|
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
|
||||||
|
|
||||||
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000));
|
||||||
|
|
||||||
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()));
|
||||||
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||||
|
|
||||||
|
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
|
||||||
|
|
||||||
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||||
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||||
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||||
|
{
|
||||||
|
v3dNormal.normalise();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allow the controller to decide how the material should be derived from the voxels.
|
||||||
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v010, fInterp);
|
||||||
|
|
||||||
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||||
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||||
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||||
|
surfaceVertex.data = uMaterial;
|
||||||
|
|
||||||
|
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||||
|
pIndicesY(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||||
|
|
||||||
|
m_sampVolume.moveNegativeY();
|
||||||
}
|
}
|
||||||
|
if (edgeTable[iCubeIndex] & 256)
|
||||||
|
{
|
||||||
|
m_sampVolume.movePositiveZ();
|
||||||
|
const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel();
|
||||||
|
POLYVOX_ASSERT(v000 != v001, "Attempting to insert vertex between two voxels with the same value");
|
||||||
|
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
|
||||||
|
|
||||||
// Allow the controller to decide how the material should be derived from the voxels.
|
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000));
|
||||||
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v001, fInterp);
|
|
||||||
|
|
||||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerZ()) + fInterp);
|
||||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
|
||||||
surfaceVertex.data = uMaterial;
|
|
||||||
|
|
||||||
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
|
||||||
pIndicesZ(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||||
|
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||||
|
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||||
|
{
|
||||||
|
v3dNormal.normalise();
|
||||||
|
}
|
||||||
|
|
||||||
m_sampVolume.moveNegativeZ();
|
// Allow the controller to decide how the material should be derived from the voxels.
|
||||||
}
|
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v000, v001, fInterp);
|
||||||
}//For each cell
|
|
||||||
|
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||||
|
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||||
|
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||||
|
surfaceVertex.data = uMaterial;
|
||||||
|
|
||||||
|
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
||||||
|
pIndicesZ(iXVolSpace - m_regSizeInVoxels.getLowerX(), iYVolSpace - m_regSizeInVoxels.getLowerY(), iZVolSpace - m_regSizeInVoxels.getLowerZ()) = uLastVertexIndex;
|
||||||
|
|
||||||
|
m_sampVolume.moveNegativeZ();
|
||||||
|
}
|
||||||
|
}//For each cell
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user