I didn't apply the changes to a few macro-heavy files as Visual Studio removes all indentation from macros, whereas the indentation can be handy to see nesting.
266 lines
4.4 KiB
C++
266 lines
4.4 KiB
C++
// Code from http://www.flipcode.com/archives/Perlin_Noise_Class.shtml
|
|
// This is only in PolyVox for the purpose of the examples. It was not written by
|
|
// the PolyVox authors and cannot be assumed to be under the same license as PolyVox.
|
|
|
|
/* coherent noise function over 1, 2 or 3 dimensions */
|
|
/* (copyright Ken Perlin) */
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include "Perlin.h"
|
|
|
|
#define B SAMPLE_SIZE
|
|
#define BM (SAMPLE_SIZE-1)
|
|
|
|
#define N 0x1000
|
|
#define NP 12 /* 2^N */
|
|
#define NM 0xfff
|
|
|
|
#define s_curve(t) ( t * t * (3.0f - 2.0f * t) )
|
|
#define lerp(t, a, b) ( a + t * (b - a) )
|
|
|
|
#define setup(i,b0,b1,r0,r1)\
|
|
t = vec[i] + N;\
|
|
b0 = ((int)t) & BM;\
|
|
b1 = (b0+1) & BM;\
|
|
r0 = t - (int)t;\
|
|
r1 = r0 - 1.0f;
|
|
|
|
float Perlin::noise1(float arg)
|
|
{
|
|
int bx0, bx1;
|
|
float rx0, rx1, sx, t, u, v, vec[1];
|
|
|
|
vec[0] = arg;
|
|
|
|
if (mStart)
|
|
{
|
|
srand(mSeed);
|
|
mStart = false;
|
|
init();
|
|
}
|
|
|
|
setup(0, bx0, bx1, rx0, rx1);
|
|
|
|
sx = s_curve(rx0);
|
|
|
|
u = rx0 * g1[p[bx0]];
|
|
v = rx1 * g1[p[bx1]];
|
|
|
|
return lerp(sx, u, v);
|
|
}
|
|
|
|
float Perlin::noise2(float vec[2])
|
|
{
|
|
int bx0, bx1, by0, by1, b00, b10, b01, b11;
|
|
float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
|
|
int i, j;
|
|
|
|
if (mStart)
|
|
{
|
|
srand(mSeed);
|
|
mStart = false;
|
|
init();
|
|
}
|
|
|
|
setup(0, bx0, bx1, rx0, rx1);
|
|
setup(1, by0, by1, ry0, ry1);
|
|
|
|
i = p[bx0];
|
|
j = p[bx1];
|
|
|
|
b00 = p[i + by0];
|
|
b10 = p[j + by0];
|
|
b01 = p[i + by1];
|
|
b11 = p[j + by1];
|
|
|
|
sx = s_curve(rx0);
|
|
sy = s_curve(ry0);
|
|
|
|
#define at2(rx,ry) ( rx * q[0] + ry * q[1] )
|
|
|
|
q = g2[b00];
|
|
u = at2(rx0, ry0);
|
|
q = g2[b10];
|
|
v = at2(rx1, ry0);
|
|
a = lerp(sx, u, v);
|
|
|
|
q = g2[b01];
|
|
u = at2(rx0, ry1);
|
|
q = g2[b11];
|
|
v = at2(rx1, ry1);
|
|
b = lerp(sx, u, v);
|
|
|
|
return lerp(sy, a, b);
|
|
}
|
|
|
|
float Perlin::noise3(float vec[3])
|
|
{
|
|
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
|
|
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
|
|
int i, j;
|
|
|
|
if (mStart)
|
|
{
|
|
srand(mSeed);
|
|
mStart = false;
|
|
init();
|
|
}
|
|
|
|
setup(0, bx0, bx1, rx0, rx1);
|
|
setup(1, by0, by1, ry0, ry1);
|
|
setup(2, bz0, bz1, rz0, rz1);
|
|
|
|
i = p[bx0];
|
|
j = p[bx1];
|
|
|
|
b00 = p[i + by0];
|
|
b10 = p[j + by0];
|
|
b01 = p[i + by1];
|
|
b11 = p[j + by1];
|
|
|
|
t = s_curve(rx0);
|
|
sy = s_curve(ry0);
|
|
sz = s_curve(rz0);
|
|
|
|
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
|
|
|
|
q = g3[b00 + bz0]; u = at3(rx0, ry0, rz0);
|
|
q = g3[b10 + bz0]; v = at3(rx1, ry0, rz0);
|
|
a = lerp(t, u, v);
|
|
|
|
q = g3[b01 + bz0]; u = at3(rx0, ry1, rz0);
|
|
q = g3[b11 + bz0]; v = at3(rx1, ry1, rz0);
|
|
b = lerp(t, u, v);
|
|
|
|
c = lerp(sy, a, b);
|
|
|
|
q = g3[b00 + bz1]; u = at3(rx0, ry0, rz1);
|
|
q = g3[b10 + bz1]; v = at3(rx1, ry0, rz1);
|
|
a = lerp(t, u, v);
|
|
|
|
q = g3[b01 + bz1]; u = at3(rx0, ry1, rz1);
|
|
q = g3[b11 + bz1]; v = at3(rx1, ry1, rz1);
|
|
b = lerp(t, u, v);
|
|
|
|
d = lerp(sy, a, b);
|
|
|
|
return lerp(sz, c, d);
|
|
}
|
|
|
|
void Perlin::normalize2(float v[2])
|
|
{
|
|
float s;
|
|
|
|
s = (float)sqrt(v[0] * v[0] + v[1] * v[1]);
|
|
s = 1.0f / s;
|
|
v[0] = v[0] * s;
|
|
v[1] = v[1] * s;
|
|
}
|
|
|
|
void Perlin::normalize3(float v[3])
|
|
{
|
|
float s;
|
|
|
|
s = (float)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
s = 1.0f / s;
|
|
|
|
v[0] = v[0] * s;
|
|
v[1] = v[1] * s;
|
|
v[2] = v[2] * s;
|
|
}
|
|
|
|
void Perlin::init(void)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < B; i++)
|
|
{
|
|
p[i] = i;
|
|
g1[i] = (float)((rand() % (B + B)) - B) / B;
|
|
for (j = 0; j < 2; j++)
|
|
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
|
|
normalize2(g2[i]);
|
|
for (j = 0; j < 3; j++)
|
|
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
|
|
normalize3(g3[i]);
|
|
}
|
|
|
|
while (--i)
|
|
{
|
|
k = p[i];
|
|
p[i] = p[j = rand() % B];
|
|
p[j] = k;
|
|
}
|
|
|
|
for (i = 0; i < B + 2; i++)
|
|
{
|
|
p[B + i] = p[i];
|
|
g1[B + i] = g1[i];
|
|
for (j = 0; j < 2; j++)
|
|
g2[B + i][j] = g2[i][j];
|
|
for (j = 0; j < 3; j++)
|
|
g3[B + i][j] = g3[i][j];
|
|
}
|
|
|
|
}
|
|
|
|
|
|
float Perlin::perlin_noise_2D(float vec[2])
|
|
{
|
|
int terms = mOctaves;
|
|
float result = 0.0f;
|
|
float amp = mAmplitude;
|
|
|
|
vec[0] *= mFrequency;
|
|
vec[1] *= mFrequency;
|
|
|
|
for (int i = 0; i < terms; i++)
|
|
{
|
|
result += noise2(vec)*amp;
|
|
vec[0] *= 2.0f;
|
|
vec[1] *= 2.0f;
|
|
amp *= 0.5f;
|
|
}
|
|
|
|
|
|
return result;
|
|
}
|
|
|
|
float Perlin::perlin_noise_3D(float vec[3])
|
|
{
|
|
int terms = mOctaves;
|
|
float result = 0.0f;
|
|
float amp = mAmplitude;
|
|
|
|
vec[0] *= mFrequency;
|
|
vec[1] *= mFrequency;
|
|
vec[2] *= mFrequency;
|
|
|
|
for (int i = 0; i < terms; i++)
|
|
{
|
|
result += noise3(vec)*amp;
|
|
vec[0] *= 2.0f;
|
|
vec[1] *= 2.0f;
|
|
vec[2] *= 2.0f;
|
|
amp *= 0.5f;
|
|
}
|
|
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
Perlin::Perlin(int octaves, float freq, float amp, int seed)
|
|
{
|
|
mOctaves = octaves;
|
|
mFrequency = freq;
|
|
mAmplitude = amp;
|
|
mSeed = seed;
|
|
mStart = true;
|
|
}
|
|
|