164 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			164 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*******************************************************************************
 | 
						|
Copyright (c) 2005-2009 David Williams
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied
 | 
						|
warranty. In no event will the authors be held liable for any damages
 | 
						|
arising from the use of this software.
 | 
						|
 | 
						|
Permission is granted to anyone to use this software for any purpose,
 | 
						|
including commercial applications, and to alter it and redistribute it
 | 
						|
freely, subject to the following restrictions:
 | 
						|
 | 
						|
    1. The origin of this software must not be misrepresented; you must not
 | 
						|
    claim that you wrote the original software. If you use this software
 | 
						|
    in a product, an acknowledgment in the product documentation would be
 | 
						|
    appreciated but is not required.
 | 
						|
 | 
						|
    2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
    misrepresented as being the original software.
 | 
						|
 | 
						|
    3. This notice may not be removed or altered from any source
 | 
						|
    distribution. 	
 | 
						|
*******************************************************************************/
 | 
						|
 | 
						|
#include "OpenGLWidget.h"
 | 
						|
 | 
						|
#include "PolyVoxCore/CubicSurfaceExtractor.h"
 | 
						|
#include "PolyVoxCore/MarchingCubesSurfaceExtractor.h"
 | 
						|
#include "PolyVoxCore/Mesh.h"
 | 
						|
#include "PolyVoxCore/SimpleVolume.h"
 | 
						|
 | 
						|
#include <QApplication>
 | 
						|
 | 
						|
//Use the PolyVox namespace
 | 
						|
using namespace PolyVox;
 | 
						|
 | 
						|
void createSphereInVolume(SimpleVolume<uint8_t>& volData, float fRadius)
 | 
						|
{
 | 
						|
	//This vector hold the position of the center of the volume
 | 
						|
	Vector3DFloat v3dVolCenter(volData.getWidth() / 2, volData.getHeight() / 2, volData.getDepth() / 2);
 | 
						|
 | 
						|
	//This three-level for loop iterates over every voxel in the volume
 | 
						|
	for (int z = 0; z < volData.getDepth(); z++)
 | 
						|
	{
 | 
						|
		for (int y = 0; y < volData.getHeight(); y++)
 | 
						|
		{
 | 
						|
			for (int x = 0; x < volData.getWidth(); x++)
 | 
						|
			{
 | 
						|
				//Store our current position as a vector...
 | 
						|
				Vector3DFloat v3dCurrentPos(x,y,z);	
 | 
						|
				//And compute how far the current position is from the center of the volume
 | 
						|
				float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
 | 
						|
 | 
						|
				uint8_t uVoxelValue = 0;
 | 
						|
 | 
						|
				//If the current voxel is less than 'radius' units from the center then we make it solid.
 | 
						|
				if(fDistToCenter <= fRadius)
 | 
						|
				{
 | 
						|
					//Our new voxel value
 | 
						|
					uVoxelValue = 255;
 | 
						|
				}
 | 
						|
 | 
						|
				//Wrte the voxel value into the volume	
 | 
						|
				volData.setVoxelAt(x, y, z, uVoxelValue);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
OpenGLMeshData buildOpenGLMeshData(const PolyVox::Mesh< PolyVox::Vertex< uint8_t > >& surfaceMesh, const PolyVox::Vector3DInt32& translation = PolyVox::Vector3DInt32(0, 0, 0), float scale = 1.0f)
 | 
						|
{
 | 
						|
	// Convienient access to the vertices and indices
 | 
						|
	const auto& vecIndices = surfaceMesh.getIndices();
 | 
						|
	const auto& vecVertices = surfaceMesh.getVertices();
 | 
						|
 | 
						|
	// This struct holds the OpenGL properties (buffer handles, etc) which will be used
 | 
						|
	// to render our mesh. We copy the data from the PolyVox mesh into this structure.
 | 
						|
	OpenGLMeshData meshData;
 | 
						|
 | 
						|
	// Create the VAO for the mesh
 | 
						|
	glGenVertexArrays(1, &(meshData.vertexArrayObject));
 | 
						|
	glBindVertexArray(meshData.vertexArrayObject);
 | 
						|
 | 
						|
	// The GL_ARRAY_BUFFER will contain the list of vertex positions
 | 
						|
	glGenBuffers(1, &(meshData.vertexBuffer));
 | 
						|
	glBindBuffer(GL_ARRAY_BUFFER, meshData.vertexBuffer);
 | 
						|
	glBufferData(GL_ARRAY_BUFFER, vecVertices.size() * sizeof(Vertex< uint8_t >), vecVertices.data(), GL_STATIC_DRAW);
 | 
						|
 | 
						|
	// and GL_ELEMENT_ARRAY_BUFFER will contain the indices
 | 
						|
	glGenBuffers(1, &(meshData.indexBuffer));
 | 
						|
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, meshData.indexBuffer);
 | 
						|
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, vecIndices.size() * sizeof(uint32_t), vecIndices.data(), GL_STATIC_DRAW);
 | 
						|
 | 
						|
	// Every surface extractor outputs valid positions for the vertices, so tell OpenGL how these are laid out
 | 
						|
	glEnableVertexAttribArray(0); // Attrib '0' is the vertex positions
 | 
						|
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex< uint8_t >), (GLvoid*)(offsetof(Vertex< uint8_t >, position))); //take the first 3 floats from every sizeof(decltype(vecVertices)::value_type)
 | 
						|
 | 
						|
	// Some surface extractors also generate normals, so tell OpenGL how these are laid out. If a surface extractor
 | 
						|
	// does not generate normals then nonsense values are written into the buffer here and sghould be ignored by the
 | 
						|
	// shader. This is mostly just to simplify this example code - in a real application you will know whether your
 | 
						|
	// chosen surface extractor generates normals and can skip uploading them if not.
 | 
						|
	glEnableVertexAttribArray(1); // Attrib '1' is the vertex normals.
 | 
						|
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex< uint8_t >), (GLvoid*)(offsetof(Vertex< uint8_t >, normal)));
 | 
						|
 | 
						|
	// Finally a surface extractor will probably output additional data. This is highly application dependant. For this example code 
 | 
						|
	// we're just uploading it as a set of bytes which we can read individually, but real code will want to do something specialised here.
 | 
						|
	glEnableVertexAttribArray(2); //We're talking about shader attribute '2'
 | 
						|
	GLint size = (std::min)(sizeof(uint8_t), size_t(4)); // Can't upload more that 4 components (vec4 is GLSL's biggest type)
 | 
						|
	glVertexAttribIPointer(2, size, GL_UNSIGNED_BYTE, sizeof(Vertex< uint8_t >), (GLvoid*)(offsetof(Vertex< uint8_t >, data)));
 | 
						|
 | 
						|
	// We're done uploading and can now unbind.
 | 
						|
	glBindVertexArray(0);
 | 
						|
 | 
						|
	// A few additional properties can be copied across for use during rendering.
 | 
						|
	meshData.noOfIndices = vecIndices.size();
 | 
						|
	meshData.translation = QVector3D(translation.getX(), translation.getY(), translation.getZ());
 | 
						|
	meshData.scale = scale;
 | 
						|
 | 
						|
	return meshData;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char *argv[])
 | 
						|
{
 | 
						|
	//Create and show the Qt OpenGL window
 | 
						|
	QApplication app(argc, argv);
 | 
						|
	OpenGLWidget openGLWidget(0);
 | 
						|
	openGLWidget.show();
 | 
						|
 | 
						|
	QSharedPointer<QGLShaderProgram> shader(new QGLShaderProgram);
 | 
						|
 | 
						|
	if (!shader->addShaderFromSourceFile(QGLShader::Vertex, ":/decode.vert"))
 | 
						|
	{
 | 
						|
		std::cerr << shader->log().toStdString() << std::endl;
 | 
						|
		exit(EXIT_FAILURE);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!shader->addShaderFromSourceFile(QGLShader::Fragment, ":/decode.frag"))
 | 
						|
	{
 | 
						|
		std::cerr << shader->log().toStdString() << std::endl;
 | 
						|
		exit(EXIT_FAILURE);
 | 
						|
	}
 | 
						|
 | 
						|
	openGLWidget.setShader(shader);
 | 
						|
 | 
						|
	//Create an empty volume and then place a sphere in it
 | 
						|
	SimpleVolume<uint8_t> volData(PolyVox::Region(Vector3DInt32(0,0,0), Vector3DInt32(63, 63, 63)));
 | 
						|
	createSphereInVolume(volData, 30);
 | 
						|
 | 
						|
	// Extract the surface for the specified region of the volume. Uncomment the line for the kind of surface extraction you want to see.
 | 
						|
	auto mesh = extractCubicMesh(&volData, volData.getEnclosingRegion());
 | 
						|
	//auto mesh = extractMarchingCubesMesh(&volData, volData.getEnclosingRegion());
 | 
						|
 | 
						|
	// The surface extractor outputs the mesh in an efficient compressed format which is not directly suitable for rendering. The easiest approach is to 
 | 
						|
	// decode this on the CPU as shown below, though more advanced applications can upload the compressed mesh to the GPU and decompress in shader code.
 | 
						|
	auto decodedMesh = decode(mesh);
 | 
						|
 | 
						|
	//Pass the surface to the OpenGL window
 | 
						|
	OpenGLMeshData meshData = buildOpenGLMeshData(decodedMesh);
 | 
						|
	openGLWidget.addMeshData(meshData);
 | 
						|
 | 
						|
	openGLWidget.setViewableRegion(volData.getEnclosingRegion());
 | 
						|
 | 
						|
	//Run the message pump.
 | 
						|
	return app.exec();
 | 
						|
} |