137 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*******************************************************************************
 | |
| Copyright (c) 2005-2009 David Williams
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied
 | |
| warranty. In no event will the authors be held liable for any damages
 | |
| arising from the use of this software.
 | |
| 
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it
 | |
| freely, subject to the following restrictions:
 | |
| 
 | |
|     1. The origin of this software must not be misrepresented; you must not
 | |
|     claim that you wrote the original software. If you use this software
 | |
|     in a product, an acknowledgment in the product documentation would be
 | |
|     appreciated but is not required.
 | |
| 
 | |
|     2. Altered source versions must be plainly marked as such, and must not be
 | |
|     misrepresented as being the original software.
 | |
| 
 | |
|     3. This notice may not be removed or altered from any source
 | |
|     distribution. 	
 | |
| *******************************************************************************/
 | |
| 
 | |
| namespace PolyVox
 | |
| {
 | |
| 	/**
 | |
| 	 * \param volInput The volume to calculate the ambient occlusion for
 | |
| 	 * \param[out] arrayResult The output of the calculator
 | |
| 	 * \param region The region of the volume for which the occlusion should be calculated
 | |
| 	 * \param fRayLength The length for each test ray
 | |
| 	 * \param uNoOfSamplesPerOutputElement The number of samples to calculate the occlusion
 | |
| 	 * \param isVoxelTransparentCallback A callback which takes a \a VoxelType and returns a \a bool whether the voxel is transparent
 | |
| 	 */
 | |
| 	template<typename VolumeType, typename IsVoxelTransparentCallback>
 | |
| 	void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, const Region& region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, IsVoxelTransparentCallback isVoxelTransparentCallback)
 | |
| 	{
 | |
| 		//Make sure that the size of the volume is an exact multiple of the size of the array.
 | |
| 		if (region.getWidthInVoxels() % arrayResult->getDimension(0) != 0)
 | |
| 		{
 | |
| 			POLYVOX_THROW(std::invalid_argument, "Volume width must be an exact multiple of array width.");
 | |
| 		}
 | |
| 		if (region.getHeightInVoxels() % arrayResult->getDimension(1) != 0)
 | |
| 		{
 | |
| 			POLYVOX_THROW(std::invalid_argument, "Volume width must be an exact multiple of array height.");
 | |
| 		}
 | |
| 		if (region.getDepthInVoxels() % arrayResult->getDimension(2) != 0)
 | |
| 		{
 | |
| 			POLYVOX_THROW(std::invalid_argument, "Volume width must be an exact multiple of array depth.");
 | |
| 		}
 | |
| 
 | |
| 		uint16_t uRandomUnitVectorIndex = 0;
 | |
| 		uint16_t uRandomVectorIndex = 0;
 | |
| 		uint16_t uIndexIncreament;
 | |
| 
 | |
| 		//Our initial indices. It doesn't matter exactly what we set here, but the code below makes 
 | |
| 		//sure they are different for different regions which helps reduce tiling patterns in the results.
 | |
| 		uRandomUnitVectorIndex += region.getLowerX() + region.getLowerY() + region.getLowerZ();
 | |
| 		uRandomVectorIndex += region.getLowerX() + region.getLowerY() + region.getLowerZ();
 | |
| 
 | |
| 		//This value helps us jump around in the array a bit more, so the
 | |
| 		//nth 'random' value isn't always followed by the n+1th 'random' value.
 | |
| 		uIndexIncreament = 1;
 | |
| 
 | |
| 		const int iRatioX = region.getWidthInVoxels() / arrayResult->getDimension(0);
 | |
| 		const int iRatioY = region.getHeightInVoxels() / arrayResult->getDimension(1);
 | |
| 		const int iRatioZ = region.getDepthInVoxels() / arrayResult->getDimension(2);
 | |
| 
 | |
| 		const float fRatioX = iRatioX;
 | |
| 		const float fRatioY = iRatioY;
 | |
| 		const float fRatioZ = iRatioZ;
 | |
| 		const Vector3DFloat v3dRatio(fRatioX, fRatioY, fRatioZ);
 | |
| 
 | |
| 		const float fHalfRatioX = fRatioX * 0.5f;
 | |
| 		const float fHalfRatioY = fRatioY * 0.5f;
 | |
| 		const float fHalfRatioZ = fRatioZ * 0.5f;
 | |
| 		const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ);
 | |
| 
 | |
| 		const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
 | |
| 
 | |
| 		//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
 | |
| 		for(uint16_t z = region.getLowerZ(); z <= region.getUpperZ(); z += iRatioZ)
 | |
| 		{
 | |
| 			for(uint16_t y = region.getLowerY(); y <= region.getUpperY(); y += iRatioY)
 | |
| 			{
 | |
| 				for(uint16_t x = region.getLowerX(); x <= region.getUpperX(); x += iRatioX)
 | |
| 				{
 | |
| 					//Compute a start position corresponding to 
 | |
| 					//the centre of the cell in the output array.
 | |
| 					Vector3DFloat v3dStart(x, y, z);
 | |
| 					v3dStart -= v3dOffset;
 | |
| 					v3dStart += v3dHalfRatio;
 | |
| 
 | |
| 					//Keep track of how many rays did not hit anything
 | |
| 					uint8_t uVisibleDirections = 0;
 | |
| 
 | |
| 					for(int ct = 0; ct < uNoOfSamplesPerOutputElement; ct++)
 | |
| 					{						
 | |
| 						//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
 | |
| 						//This jitter value moves our sample point from the centre of the array cell to somewhere else in the array cell
 | |
| 						Vector3DFloat v3dJitter = randomVectors[(uRandomVectorIndex += (++uIndexIncreament)) % 1019]; //Prime number helps avoid repetition on successive loops.
 | |
| 						v3dJitter *= v3dHalfRatio;
 | |
| 						const Vector3DFloat v3dRayStart = v3dStart + v3dJitter;
 | |
| 
 | |
| 						Vector3DFloat v3dRayDirection = randomUnitVectors[(uRandomUnitVectorIndex += (++uIndexIncreament)) % 1021]; //Different prime number.
 | |
| 						v3dRayDirection *= fRayLength;
 | |
| 						
 | |
| 						AmbientOcclusionCalculatorRaycastCallback<VolumeType, IsVoxelTransparentCallback> ambientOcclusionCalculatorRaycastCallback(isVoxelTransparentCallback);
 | |
| 						RaycastResult result = raycastWithDirection(volInput, v3dRayStart, v3dRayDirection, ambientOcclusionCalculatorRaycastCallback);
 | |
| 
 | |
| 						// Note - The performance of this could actually be improved it we exited as soon
 | |
| 						// as the ray left the volume. The raycast test has an example of how to do this.
 | |
| 						if(result == RaycastResults::Completed)
 | |
| 						{
 | |
| 							++uVisibleDirections;
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					float fVisibility;
 | |
| 					if(uNoOfSamplesPerOutputElement == 0)
 | |
| 					{
 | |
| 						//The user might request zero samples (I've done this in the past while debugging - I don't want to
 | |
| 						//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.
 | |
| 						fVisibility = 1.0f;
 | |
| 					}
 | |
| 					else
 | |
| 					{
 | |
| 						fVisibility = static_cast<float>(uVisibleDirections) / static_cast<float>(uNoOfSamplesPerOutputElement);
 | |
| 						POLYVOX_ASSERT((fVisibility >= 0.0f) && (fVisibility <= 1.0f), "Visibility value out of range.");
 | |
| 					}
 | |
| 
 | |
| 					(*arrayResult)(z / iRatioZ, y / iRatioY, x / iRatioX) = static_cast<uint8_t>(255.0f * fVisibility);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 |